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Abstract

A matrix method has been applied to solve the electron equation of motion in electric
and magnetic �elds. The analogy between this problem and that of an ensemble of nuclear
spins in a magnetic �eld, described by the Bloch equations, leads to transient solutions
similar to spin echoes, which we shall call current echoes, a phenomenon not yet observed
experimentally. In a con�guration of static and oscillating �elds, the components of the
Hall current are calculated in the rotating reference frame. Then we consider transverse
pulsed magnetic �elds and derive expressions for the transient e�ects.
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Spin Echo pulse NMR, discovered by Hahn in 1950 [1], is today one of the most
important tools in experimental Solid State Physics. The technique allows the study of
magnetic and transport phenomena in solids through the measurement of NMR spectra,
relaxation times, Knight and chemical-shifts, etc. In 1954 E.T. Jaynes developed a very
simple and elegant matrix method to the study of the solutions of the Bloch equations [2].
In a subsequent paper A.L. Bloom applied the method to investigate spin echo shapes and
amplitudes in the presence of inhomogeneous magnetic �elds [3]. Here we show, by means
of the same formalism, that a similar phenomenon may exist in conducting materials. The
idea is to apply Jaynes method to solve the equation of motion of electrons in electric and
magnetic �elds. First we analyze the case where a static magnetic �eld is applied parallel

to the electric �eld and another continuous AC magnetic �eld exists perpendicularly to
both. The rotating reference frame is introduced and the Hall current is calculated in
this system of coordinates. Then we follow to investigate the case where the AC �eld is
applied as a sequence of pulses.

Our starting point is the classical equation of motion for an electron in an electric (
E ) and magnetic ( B ) �elds, which in standard units is written as [4]:

@p

@t
= �

p

�
� e(E+ v �B) (1)

where p = mv is the electron momentum and � is the relaxation time, which takes into
account the interactions between the electron and the lattice.

De�ning the electric current J by

J = �nev = �
ne

m
p

where n is the conduction electron density we can rewrite equation (1) as

@J

@t
+
J� �E

�
+ 
(B� J) = 0 (2)

with 
 � �e=m and � = ne2�=m is the classical electrical conductivity at T = 0.
Equation (2) has the same structure as the Bloch equation for the motion of the

nuclear magnetization from an spin ensemble in a magnetic �eld, with the spin-spin and
spin-lattice relaxation times being the same [5]. It can be regarded as a Bloch equation for

the electrical current. Following Jaynes [2], we can write (2) in matrix form by de�ning a
matrix ~� which performs the cross product, as follows:

~� � 
B� = 


0
B@ 0 �Bz By

Bz 0 �Bx

�By Bx 0

1
CA (3)

The current equation becomes:

@J

@t
+
�
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�
+ ~�

�
J = A(t) (4)

where A(t) = �E(t)=� .
The general solution of this equation can be written as
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J(t) = U(t; 0)J(0) +
Z t

0
U(t; t0)A(t0)dt0 (5)

where U(t; t0) is a time-developing matrix which satis�es the homogeneous equation (4) of
Jaynes [2]. For the case where the matrix ~� is time-independent, U(t; t0) takes the form:

U(t; t0) = exp
�
1

�
+ ~�

�
(t� t0) (6)

We can now check the applicability of these results by applying (5) and (6) to some
simple situations.

(i) B = (0; 0; Bo) and A(t) = (�=� )(Eo; 0; 0). That is, a static magnetic �eld along
the z-axis and a static electric �eld along the x-axis. Taking J(0) = 0 as initial condition,
the second term of (5) can be readily calculated yielding:

J(t) =
�

�

�
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�
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We wish to analyze the �rst term from this expression which represents the stationary
solution. It is a straightforward matter to calculate the matrix operator appearing in this
term:

�
1

�
+ ~�

��1
=

1

��2 + !2
c

0
B@

��1 �!c 0
!c ��1 0
0 0 (��2 + !2

c )�

1
CA

where !c = 
Bo is the cyclotron frequency of the electron. Applying this matrix to the
vector E de�ned above we �nd the solutions:

Jx(1) =
�Eo

1 + !2
c�

2

Jy(1) =
!c�

1 + !2
c�

2
�Eo (7)

Jz(1) = 0

which are the expected results [4].
(ii) Let us now consider a more interesting case where DC electric and magnetic �elds

exist along the z-axis and one AC magnetic �eld is applied along x, that is:

B = (2B1cos!t; 0; Bo)

E = (0; 0; Eo)

With this form for B the solution (6) is no longer valid, since ~� will not be time-
independent. We can however follow the usual procedure which consists in analyzing the
problem in a rotating reference frame where B is stationary. On such a frame B takes
the form [5]:

B = (B1; 0;
!



�Bo)
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with the Bloch equation (2) remaining unaltered.
On the rotating frame ~� is time-independent and the solution (6) can be again applied.

The stationary solution will be given by:

J(1) =
�

�

�
1

�
+ ~�

��1
E

where �
1

�
+ ~�

�
=

0
B@ ��1 �(! � !c) 0

(! � !c) ��1 �!1
0 !1 ��1

1
CA

with !c = 
Bo and !1 = 
B1.
As before, by applying the inverse of the matrix above to the vector E one �nds:

J(1) =
��Eo

1 + [!2
1 + (! � !c)2]� 2

0
B@

(! � !c)!1�
!1

1+(!�!c)2�2

�

1
CA

At the resonance, ! = !c and the components of J in the rotating frame become:

Jx(1) = 0

Jy(1) =
!1�

1 + !2
1�

2
�Eo

Jz(1) =
�Eo

1 + !2
1�

2

These expressions can be regarded as the components of the Hall current in the rotating

frame (compare with equation 7). Note that if we switch o� the AC �eld by making
!1 = 0 we �nd Jx = Jy = 0 and Jz = �Eo, which is the expression for the current on the
laboratory frame.

The most interesting results emerge from the above formalismwhen we consider pulsed
magnetic �elds. As it happens in the usual pulse NMR, the observation of transient
e�ects (FID's, spin echoes, etc.) is only possible if the system does not relax too fast.
Roughly speaking, the relaxation times must be long compared to the length of time of one
experiment. In the NMR of magnetic metals, for instance, the time scale of experiments
is of the order of tens of microseconds, whereas the relaxation times are usually hundreds
of microseconds [6]. The applicability of the following results to metallic systems (and
eventually other conducting media) depends upon the electron total scattering rate ��1,
which should be about 20 MHz or less (corresponding to a relaxation time of 50 ns or
more). In metals, at temperatures well below the Debye temperature, �D, the electron-
phonon and impurities scattering rates are the main contributions to ��1. Whereas the
former follows a T 3 law and can be reduced by a factor of about 105 by going from 4.2
K to 50 mK, the later depends on the details of the material preparation, its history,
and it is di�cult to be predicted. This contribution should be minimum in high purity
single-crystals. Its not of the author knowledge any recent report where relaxation times
have been measured in simple metal single-crystals at low temperatures. However, it is
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our belief that with the modern ultra high vacuum techniques of deposition and crystal
growing, metallic single-crystals can be prepared in a degree of purity such that � could
be 50ns or more at, say, 50 mK.

Following the description of Jaynes [2] the components of the current after any se-
quence of pulses can be written as

0
B@ J 0

+

J 0

�

J 0

z

1
CA =

0
B@ ��2 ���2 �2����

��2 �2 �2��
��� ��� j�j2 � j�j2

1
CA
0
B@ J+

J�
Jz

1
CA (8)

where � and � are the elements of the 2 � 2 unimodular matrix Q given by [7] 1

Q =

 
� �
��� ��

!
(9)

Thus, if we start with J = Jz, after a pulse sequence the transverse component of the
current, J�(t), will be proportional to the product �2��.

Let us �rst exam the situation where only one pulse of duration �p is applied. We
want to calculate J�(t) after the pulse as a function of the applied �elds and pulse width.
We consider again static magnetic Bo and electric Eo �elds along the z-axis. A pulsed
magnetic �eld of amplitude B1 is applied along the x-axis. It is easy to show that during
the application of the pulse, the elements of Q are given by [3]:

� = cos
�

B�p
2

�
� icos(�)sin

�

B�p
2

�

� = �isin�sin
�

B�p
2

�
(10)

where � = tg�1(!1=�!), 
B = (!2
1 + �!2)1=2 and �! = ! � !c. After the pulse these

matrix elements will become

� = exp
�
�i

�!t

2

�

� = 0 (11)

The resultant Q-matrix will be given by the product of the individual matrices de-
scribing the evolution of the current during each interval of time [3]:

Q = Q2Q1

Performing this matrix product we �nd for the transverse component of the current:

J�(t) =
i

2
e�i�!t

�
sin�sin(
B�p)� sin2�sin2

�

B�p
2

��
(12)

1Here the matrix element � is not to be confused with the time-evolution matrix ~�. As in Jaynes we
keep the same Greek letter but the matrix is distinguished by a tilde.
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At the resonance, �! = 0, � = �=2 and we have

Jx = 0

Jy =
�Eo

2
sin(
B1�p)

We see that this free-current-decay will be maximum when 
B1� = �=2. We also see that
the current is reversed by the rotating �eld, when 
B1� = �.

In order to calculate J�(t) after a sequence of two pulses, we follow the same procedure
as above. Now we just have to calculate the product of four matrices and use (10) and
(11):

Q = Q4Q3Q2Q1

where Q4 describes the evolution of the current after the second pulse, Q2 between them
and Q3 and Q1 during their application. The result becomes simpler if we make the two
pulses as having the same width; this means Q1 = Q3. With the same initial conditions
as before, we �nd for J�(t)

J�(t) = �2i�Eo

�
cos

�

B�p
2

�
+ icos�sin

�

B�p
2

��
sin3�sin3

�

B�p
2

�
e�i�!(t���p) (13)

where ��p is the time interval between the pulses. In this expression t is measured from
the second pulse.

The above expression represents a current echo. At the resonance we have

J� = �i�Eosin(
B1�p)sin
2
�

B1�p
2

�
(14)

or, in terms of the components

Jx = 0

Jy = �Eosin(
B1�p)sin
2
�

B1�p
2

�

These expressions are identical to that for the spin echo in the magnetic case, ex-
cept that here j
j = e=m � 1:76 � 103 GHz kGauss�1, is much larger than its nuclear
counterpart.

Figure 1 shows current echo components calculated for �p = 1 ns, B1 = 10 Gauss,
��p = 100 ns, �! = 0:0 GHz (1a) and �! = 0:1 GHz (1b) 2. The relaxation time was
taken as � = 100 ns. These curves were obtained under the assumption of a Lorentzian
distribution in the magnetic �eld inhomogeneity.

In this paper we have worked out solutions for the equation of motion of electrons
in various con�gurations of electric and magnetic �elds, by applying a matrix method
developed by Jaynes [2]. We have shown that the similarity between this problem and
that of the motion of the nuclear magnetization in a magnetic �eld leads to transient

2Here we have simpli�ed our notation; it is implicit that �! = 2���
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solutions which we have called current echoes (and current FID's). The observation of
current echoes could in principle be made in a similar way to NMR, by detecting the e.m.f.
in a \pick-up" coil, induced by the transient current, with subsequent demodulation of the
signal, which then would appear as in �gure 1 [8]. If proved to exist, current echoes could
become a helpful tool in the investigation of transport properties in various materials
through the measurement of their electron cyclotron resonance spectra and relaxation
times. The formalism developed by Jaynes can easily be generalized to include more
than one relaxation time and, much like in the magnetic case, concepts such as electron
temperature should be introduced. Current-echoes could then open new possibilities for
the study of electron-electron and electron-lattice mechanisms of interaction in solids.
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Figure 1 - Calculated current echo components for ! = !c (a) and ! � !c = 0:1 GHz
(b). The relaxation time was taken as � = 100 ns (see text for details).
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