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ABSTRACT. We study numericglly the three types of asymmetry associated
with the map x'-?-si—ailx Zi (i=1,2 respectively correspond to x>0 and
x50). The first case is the amplitude asymmetry (ay#a,), the second case
is the exponent asymmetry (z,=zz) and the last one is a discontinuous
map (e.,#€,). In the two first cases the period-doubling road to chaos is
topologically unmodified. In the last case the road to chaos is complete
ly new ("gap road"). Chaos now is attained through sequences of inverse
cascades. Various new features are observed, concerning the phase dia-
gream, kneading sequences, Liapunov and uncertainty exponents, number
of attractors, multifractality, among others. We also study the cross-
over between the discontinuous map and the continuous one.

Key-~words: Chaos; Dynamical systems; Multifractality; Liapunov

Exponent.
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1. INTRODUCTION

The evolution of a dynamical system governed by nonlinear one-dimension
al difference equation presents a very rich structure!. Universal rela-
tions in difference equations presenting a single extremun of the lx|z
class (z>1) were found by Grossmann and Thomae, Feigenbaum, and Coullet
and Tresser?. The equation they considered was of the type

X ¢ = £(x) =1 - a|xt|z (1)
The interesting behavior appears for x, € [-1,1] and a € [0,2]. For
z = 2, Eq. (1) is equivalent to the logistic map [x - 4uxt(1-xt)].
When a increses from O to a®(z) [a*(2) = 1.401155...; see ref. 3 for
a*(z)] the attractor {or long time solution), of the map (1) exhibits
a sequence of periodic orbits with periods 2 (k=0,1,2,...). The se-
quence {ay} where bifurcations occur, converges geometrically with a
rate &, (z) = (8, - 8y_y)/(ag,q - ay), which for large values of k , ap-
proaches. §(z) [§(2) = 4.6692...; see ref. 3 for other values of z).
Above a* the chaotic regime appears, where aperiodic attractors are
present, as well as an infinite number of periodic windows with period-
doubling bifurcations.

After Feigenbaum's work, a great amount of theoretical as well as

experimental efforts have been dedicated to study the standard routes to
chaos associated with continuous differentiable maps, namely, period-
doubling, intermittency and quasiperiodicity. Nevertheless& little effort
has been devoted to maps with an asymmetry at the extremu =10, Experi-
mental systems which can be described in terms of asymmetric maps are
now appearing (see ref.8 for laser cavity and ref. 9 for nonlinear os-
cillators). When the singularity.is a discontinuity, a new universal -
scenario to chaos appears’s»10. ‘

The aim of the present paper is to study the following asymmetric
map:

Ji-e - adx |*, if x >0
x. , = f(x ) = 1 17t L 4 (2
t+1 t {1 - €, - nzlxtlz: s 1f xtso )

The well known continuous symmetric case is recoveredfor zy = Zp £ 2,

a; = a Zaand €1 = €5 = 0. Three types of asymmetry are studied, name
ly, case 1 (a; # a3, 24 = 2, = 2z and €y = &) = 0), case I1 (a; = a, = a,
z, ¥ 2 and € = €9 = 6), and case IIIL (a1 = 3y Sa, 2z =2 Z 2z and

€q * 52). Some features of these maps such as phase diagrams, attractors,
Liapunov and uncertainty exponents, multifractality and others will be
studied in the following sections.

2. AMPLITUDE ASYMMETRY (CASE I)

The route to chaos in this case is via period-doubling bifurcations. How-
ever, the set {§,} asymptotically (k+~) presents an oscillatory behavior
between two fixed values. Let us now mention at this point that prelimi-
nary numerical work’ suggested that 6k approaches a single value, namely
that of the symmetric case. The present high accuracy calculations show
that this is not so, butérather it exhibit the oscillatory behavior, first
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studied by Arneodo et al . We have represented in Fig. 1(a) for z; = z,
=2 and €, = €y =0, the critical lines [in (a,,a;) space] which general-
jze a* (the first entrance into chaos) and aM(value of a above which fi-
nite attractors disappear). In Fig. 1(b) we show the limiting values 6,
between which {8y} oscillates for k large enough; these limiting values
are shown as function of a, along the critical line ay*(ay) of Fig. 1{a).

3. EXPONENT ASYMMETRY (CASE II)

_The route to chaos in this case oncemore is via period-doubling bifurca-
tion. However, a different behavior appears in the set {6, }: the §y’s do
not converge for incresing k, but proceed in oscillatory fashion between
two gs¥m8totic lines (and not limiting values), one of them being diver-
gent®s/»”7, In Fig. 2 we have presented our results as well as those of
ref. 6. This behavior has been recently exhibited experimentallyg. Above
a* (chaotic region), the relative sizes of the various periodic windows
are quite different from those of the z; = z, prototype. However, as in
case I, the sequence of high-order windows is the same of the symmetric
case, since this map satisfy the conditions required in ref. 11.
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Fig. 1. (a) Special cuts of the "first entrance into chaos” and "finite-
attractor-disappearance" hypersurfaces in the @,,a,) space for zy = z3 = 2
and €y = €7 = 0;(b) values of &y for k>>1 as function of a, along the
critical line a,*(a,) of (a). The numerical results for the asymptotic
values are roughly reproduced by &4 = 3.3a,* and G & 7/a2*.

4., DISCONTINUOUS MAPS {CASE I11)

Maps with a discontinuity at the extremum can be generated, for instance,
by appropriate Poincare sections in flows where trajectories on or near
the attractor pass close to a saddle (or hyperbolic) point. In this situ-
ation the evolution of the dynamical variable depends on the side with
respect to the saddle point, on which the preimages are localized. The
gstandard example of such systems is the Lorenz model, the origin of which
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Fig. 2. Evolution of the successive ratios {6 } for the z, = 2, = 2 pro-
totype and for the case II (z, = zp).

is a saddle point. A typical map generated on this model is the case III,
namely

x = £(x.) (3)

{1 - €y - alxt| . if x>0
t+1

1-¢€, - alxt| » if x4 20

vhere €4 # €3. In ref. 7, it has been 1nd1cated that £(0) = 1 -~ (e1+az)12,
which is not convenient; this choice in fact alters. the sequence of in-
verse cascades. The value of £{0) ‘actually used in the numerical calcula-
tions of ref. 7 was £(0) = 1 - P

4.1. Evolution of the Attractor

A very rich structure is present in the evolution of the attractor. The
Fig. 3 shows the a~dependence of the attractor for a typical case, namely
€g) = (0,0.1). We observe the appearance of sequences of inverse cas-
Aes in arithmetic progression ("inverse" refers the the fact that a
has to decrease in order to approach the accumulation point associated
with each cascade) initially mixed with pitchfork bifurcations. The first
cascade we observe for increasing a is ...14+12+108+6+4, which accumu-
lates on a=1. Immediately above this cascade we observe a couple of stan-
dard pitchfork bifurcations. Firther on, a new inverse cascade appears as
follows: ...21+17+13%9, and thenagain a pitchfork bifurcation into peri-
od 18. Then another inverse cascade appears as follows: ...76+58+40-+22.
After this cascade, no other standard pitchfork bifurcations are observed
(until the entrance into chaos), but instead new inverse cascades are pre
sent: ... 70*48+26, and then ... 108+82+56, and then ...142+86~30, etc.
A rule is observed: Within each cascade, the periods grow arithmetically
by adding the first element immediately below its accumulation point. In
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Fig. 3. (a) Discontinuous map and (b) a-evolution of the attractor for
(51,52)-(0,0.1), z,%z,=2 and x,=0.5.

fact, we have a very fine structure. We observe that between any two con-
secutive elements of a cascade there is another inverse cascade whose pe-
riods grow with the same rule mentioned above. For example, between the
elements 40 and 22 of the third cascade, the cascade ...102+62+22 exists.
Between the elements 102 and 62 of this cascade, we have the following
one ...266+164+62, and s0 on. The elements of these cascade appear discon
tinuously like tangent bifurcations. However, they do not present inter-
mittency, since the iterated fuanction f(f(...f(x))) presents square cor-
ners which cross the f(x)=x bissectrix.

In Fig. 4 we have represented, for a typical case, the "phase dia-
gram” in the space of the size of the gap and of a. Such phase diagram
will be refered hereafter as bunch of bananas Initially let us fix €
and vary a. We see the behavior described above: inverse cascades of at-
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Fig. 4. Phase diagram for zy = z, =2, €5, = 0 and x, = 0.5. The number
indicates the period of the attractor. For €, = 0 we recover the well
known period-doubling sequence.

tractors whose periods grow arithmetically and accumulate on values of a,
immediately below which appear cycles whose periods precisely are the
corresponding adding constants. Furthermore, between any two bananas we
always have another banana. The same kind of behavior is observed by
fixing a and varying €, (or £,, of both, with £,%¢ ). The accumulatxon
points of the cascades in turn accumulate (for increasing a if (E sE
are fixed) on a point which is the entrance intc chaos. In other woras,we
have a (presumably) infinite number of accumulation points where there is
no chaos (negative Liapunov exponents), as this only emerges at the ac-
ctumulation point of the accumulation po1nts.

For fixed (et,ez) a given banana exists between & minimal value &
and a maximal value a“. Within a given cascade of bananas (whose sequence
is noted with k = 1,2,3...) , we verify

oy - aE+1| v |a§_1 - ol (4.a)
as well as

jaR - aB| ~ aP_, - aB|" (4.5)
for k large enough. The same laws hold for { M} for all values of (61,821
such that €, ®# €,, in the presence or absence of h1gher order terms in

Eq. (3). Similar " features are observed if we fix a and vary (51,52)

4.2. Kneading Sequence

In the windows of the chaotic region for maps governed by (1) there are
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different kinds of stable periods of the same length. This differentiation
is characterized by the order in which the points are visited. For every

periodic orbit, there is one value of the control parameter for vhich the
orbit includes the "critical point"” (extremum) of the map. For this value
of the control parameter a it is possible to form a word of finite length
by noting whether each of the subsequent iterates in the orbit was less
than (go the left: L) or greater than (to the right: R) of the critical
point. Thus, & period-3 orbit X ,;,*R¥L*x . ;,, would be uniquely defined
by the notation RL which we call the Xisitatxon pattern {or kneading se-
quence). Metropolis, Stein and stein''(see also Derrida et al.'2) discov-
ered that the order in the arrangement of these words is independent of
the unimodal map studied. In particular, if the word P corresponds to &
period- which actually occurs, we can construct another word H(P)=PUP,
where us=R if there is &n even number of R's in P and usL otherwise. H dis
called the harmonic of P and represents the doubled-period adjacent to P.
For the discontinuous maps governed by Eq. (3) the inverse cascades
which are observed depend on the size of the gap, as is shown in Fig. 4.
For a fixed gap, the construction of the kneading sequences, for a given
cascade, obeys the following rule: If P, is the pattern of the n-cycle
that exists immediately below the accumulation point of the cascade and
P, is the pattern of the k-cycle of the cascade, then the pattern of the
m-cycle that results form the addition of the n-cycle and of the k-cycle
is Pp=PLuP,, where u=R(L) if the last bifurcation below that inverse cas-
cade reaches the x=0 axis by 0*(07). For instance, in the case (€,,€;) =
(0.1,0) when one branch of the attractor with period-4 reaches the x=0"
axis the inverse cascade ...18>14+10 appears (see Fig. 4). The patterns
associated with these periods are P;=RLR, P10=RLRRRLRLR, P Q-RLRRRLRLRLRLR
=PygLP,, Pyg=RLRRRLRLRLRLRLRLR=Py4LP;, etc. Between the elements 14 and 10
the cascade ...38+24-10 is present. The pattern associated with its ele-
ments are P24=P10LP14, P38-P24LP14, etc.

4.3. Crossover to the Period-doubling Scenario

The number of pitchfork bifurcations in the discontinuous maps is a func-
tion of the size of the gap. It increases when the size of the gap de-
creases, and diverges when the gap vanishes. For example, for (51,22) =
(0,0.0001) we observe six pitchfork bifurcation (mixtured with inverse
cascades), whereas for (€,,€9) = (0,0.1) there are only three pitchfork
bifurcations. In the a—evolution of the attractor, a cycle which results
from a pitchfork bifurcation can reappear further on: See cycle of size
two in Fig. 3. This cycle disappears at the value a; = (1—51)1'21 and
reappears at a, = (1-€,)/(1-€2)%1. To be more precise, these values are
slightly modified according to the attractor towards which the system
evolves, which in turn depends on the initial condition x,, as discussed
in section 4.5. The reappearance of the cycle with period two can even
happen above the first entrance into chaos. For example , the map with
(e4,€9)=(-0.1,0,1) first enters into chaos at a*=1.23 , wh?reas a=1,358.
When — e.=e.S¢  (continuous map), we have ag = a, = (1-¢ Y1721, a fact
which'clééiay jillustrates how the crossover to the period-doubling sce-
nario occurs. A similar study can be made for cycles with period 4,8,
etc.
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4.4. Liapunov Exponent

The chaotic regime is characterized by a high sensitivity on the initial
condition (value of xy). The Liapunov exponent ) provides a quantitative
measure of this dependence (A<0 and A>0 respectively correspond to pe-
riodic orbits and to chaotic motion). The Liapunov exponent is defined
through

N-1
AZlim 1 I Inff'(x) 5
ow N t=0 | lx-xt )

In Fig. 5 we present the a-evolution of the Liapunov exponent for the
typical case (81,5 ) = (0,0.1). The first entrance into chaos occurs in )
this case at a* = %.5447&14. We see in Fig. 5 remarkable features: (i) the
structure is roughly self-similar; (ii) the "fingers" corresponding to
high (low) periods are narrow (large); for a given cascade, they monoto-
nously become narrower when the periods increase and shift towards nega-
tive values of ), thus exhibiting (presumably) infinitely large periods
with no chaos; the higest and largest finger of each cascade corresponds
to the lowest period of that cascade; if we consider increasingly large
lowest periods, the tops of the fingers approach A=0 and drive the sys-
tem into chaos; (iii) changements of periods occur for A+=e, in remarkable
contrast with changement of periods in the period-doubling road, which
occur at A=Q.

Fig. 5. Evolution of the Liapunov exponent as function of a for (81,62)-
(0,0.1), zqy=2z,=2 and xo=0.5. The numbers in the fingers indicate the peri-
od of the attractor {(c) is the amplification of the small rectangle in (b),
which in turn is an amplification of (a).
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4.5. Uncertainty Exponent

Continuous one-dimensional maps presenting an unique extremum have at
most one finite attractor, which is independent on the initial conditions.
In maps with a gap at the extremum we verify that this picture is modi-
fied. In such cases, more than one finite attractor (typically two at-
tractors) appear when we cross from one banana (see Fig. 4) to a meigh-
boring one (we made this observation in several crossings, it probably
happens in all of them). The attractor which is chosen depends on the
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initial value X;. Two examples are presented in Fig. 6 for a=1.3 and
a=1.540344; the black and white regions are euclidean {(dimensionality
D=1) whereas the border-set between them is a fractal with capacity di-
mension d. The uncertainty exponent13 o, is given by oy=D-d. The system
is said to present final-state sensitivity or non-sensitivity according
to be 0Sa <1 or o,=1. To calculate we consider, in the interval of x,
corresponﬁing to finite attractor (roughly {-1,1])N randomly chosen val-
ves (typically N=10"). We then chose ¢ (say 10-? and below) and check
whether both attractors starting from xo*t coincide with that of xg; if
not, that value of x, is said uncertain. We denote N; the total number
of uncertain points. The uncertainty ratio N,,/N varies as e™. We find
0, %0.85 (0=0.22) for a=1.3 (a=1.540344). Numerical experiments based on
forth and back variations of a might present hysteresis according to the
initial value xp retained for the various steps (see ref. 10).

q 1340344
-1 0 !
| « =13

Fig. 6. Basins of attraction for typical values of a and (£,,€5)=(0,0.1)
and z=zp=2. For a=1.3 (a=1.540344) the black and white regions correspond
to cycles with period 8 and 2 (25 and 21) respectively.

4.6. Multifractality

The attractor ?2 discontinuous maps at the first entrance ﬁnto chaos is10
a multifractal'®, The formalism used to study multifractals consists in
covering the attractor with boxes , indexed by g, of gize 1; and assume
that the probability density scales like p; = 1;7, in the limit 1.+0.The
characterization of a multifractal is through the function f(a), which

is the dimension of the set of boxes which share a given index o.Through
a ngendre transformation, £{0) is related to the generalized dimension
D_1°. The minimal and maximal values of & respectively coincide with D,
and D__; the maximal value of f(a) coincides with the Hausdorff dimension
Do. In Fig. 7 we illustrate f(a) for the case (£,,€,) = (0,0.1). Its
shape is different (more square-like) from that obtained without gap (pe-
riod-doubling road to chacs), and the values we obtain are D;%0.95, D=0.45
and D_,*5.7. Notice that the period-doubling relation D_,w=zD,, fails in
the gap case.

4.7. Discontinuous map as a limit case

Since physical maps presumably do not exhibit a (sharp) discontinuity,
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Fig. 8. Evolution of the attractor as a function of a for the equation
(6) with £=0.1, w=0,1 , 2z=2 and x,=0.5.
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Fig. 9. Liapunov exponent as a function of a for €=0.1, z=2, x,=0.5 and
w=0.1,0.15, 0.2, 0.3. The numbers indicate the period of the attractor.
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Fig. 7. Multifractal funtion f{(o) for (51.52)-(0,0.1), 2(=2y=2 and xo=0.5

(chaos appears at a*=1.5447414).

we consider in this section the following continuous map16
- v z

Xeog = £x) 21+ elx|Ysgn(x) - alx|

(6)

with w<1<z. When w<<1 this map has a general shape very similar to the
map (1), but without discontinuities. In the case w=0, the rapidly changing
part of f£(x) around x=0 is replaced by a jump, and we recover the discon-
tinuous map (with E1-52§£). Notice that the map (6) has a Schwarzian deriv
ative which is positive for an interval of x around x=0. In Fig. B we show
the a-evolution of the attractor for a typical case. This picture is
roughly similar to Fig. 3. Near a=1 we observe the cycles with periods
2+6+4, a fact which is a reminiscence of the inverse cascade 2...10%8+6+4.
When v increases the map becomes more and more similar to the logistic

map (Eq. (1)), therefore a crossover to the period-doubling scenario is
expected. In Fig. 9 we show this crossover for a particular range of a.
Initially, we observe that both extrema correponding to changement of pe-
riods 2+6 and 6*4become chaotic and then merge in one extremum and then
becomes chaotic again.

For £>0 we found, in all cases studied, a sudden entrance into chaos
when the external parameter a is varied. For £<0 we found, before the first
entrance into chaos, a sequence of period doubling bifurcatioms with the
convergence ratio of the set {8, } being approximately the same of the
logistic equation. Therefore we observe indications for a route to chaos
via period-doubling in maps with positive Schwarzian derivative for an
interval of x around x=0. This situation is unusual .and . seems to us
an interesting question, worthy to be studied, since the maps studied
uptil now that present period-doubling route to chaos have nega-
tive Schwarzian derivative for all finite values of the dynamical
variable.
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5. CONCLUSIORNS

We have shown that an asymmetry introduced in the logistic map can alter
some of its basic features. Amplitude asymmetry (a;*aj) and exponent asym
metry (z,*2 } do not alter the bifurcation sequence, but the unigue ten-
dency associated with the set {§,} disappears. In the discontinuous map
(Eiie ) the route to chaos is completely modified. Sequences of inverse
cascaaes in arithmetic progression are observed in the evolution of the
attractor. There is no chaos at the accumulation point of these cascades,
which appears only at the accumulation point of the accumulation points.
Several other unusual features were found at the phase diagram, Liapunov
and uncertainty exponents, multifractality, among others.

We acknowledge with pleasure very fruitful suggestions by H.W. Capel,
M. Napidrkowski, as well as interesting remarks by A. Comiglio, E.M.F.
Curado, H.J. Herrmann, J.P. van der Weele and Ph. Nozieres. We are indebted
to P. Coullet and C. Tresser for calling our attention on ref. 4.
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