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Abstract

We study the ZN �ux tubes and monopole con�nement in deformed N = 2� super Yang-
Mills theories. In order to do that we consider an N = 4 super Yang-Mills theory with

an arbitrary gauge group G and add some N = 2, N = 1 and N = 0 deformation terms.

We analyze some possible vacuum solutions and phases of the theory, depending on the

deformation terms which are added. In the Coulomb phase for the N = 2� theory, G is

broken to U(1)r and the theory has monopole solutions. Then, by adding some deformation

terms, the theory passes to the Higgs or color superconducting phase, in which G is broken

to its center CG. In this phase we construct the ZN �ux tubes ansatz and obtain the BPS

string tension. We show that the monopole magnetic �uxes are linear integer combinations

of the string �uxes and therefore the monopoles can become con�ned. Then, we obtain a

bound for the threshold length of the string-breaking. We also show the possible formation

of a con�ning system with 3 di�erent monopoles for the SU(3) gauge group. Finally we show
that the BPS string tensions of the theory satisfy the Casimir scaling law.
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1 Introduction

It is long believed that particle con�nement at strong coupling regime should be a phenomenon
dual to the monopole con�nement in a (color)superconductor in the weak coupling. Therefore,
the study of monopole con�nement in weak coupling may shed some light on the particle con-
�nement and other phenomena in the dual con�ned theory. Since dualities are better understood
for supersymmetric theories, and in particular for the �nite ones, it is interesting to consider the
monopole con�nement in these theories or deformations of them. Therefore in the present work
we study the monopole con�nement in an N = 2� super Yang-Mills theory with the addition of
some N = 1 or N = 0 deformation terms.

Since the papers of Seiberg and Witten [1, 2], quite a lot work [4]-[18] have been done
analyzing di�erent aspects of con�nement in supersymmetric theories. Usually, one starts with
a microscopic N = 2 SU(N) super Yang-Mills (SYM) theory (with some possible matter �elds)
and then obtains an e�ective N = 2 U(1)N�1 SYM theory with a N = 1 deformation term. In
this theory, each U(1) factor is broken to Z, resulting in an (N � 1) in�nite towers of Nielsen-
Olesen �ux tubes or strings, which gives rise to con�nement of Dirac monopoles. However, as
was pointed out in [6], a similar phenomenon is not expected to happen to quark con�nement in
QCD. It is then believed that only some of these strings might be stable, which could correspond
to ZN strings in the microscopic theory.

On the other hand, in [10, 11] the solitonic monopoles and the Zk strings were obtained
directly as solutions of the same theory with two gauge symmetry breakings. In order to do
that, we considered N = 2 super Yang-Mills theories with an arbitrary simple gauge group
G, a massive hypermultiplet and an N = 0 deformation mass term. This hypermultiplet was
considered to be in the symmetric part of the tensor product of k fundamental representations,
with k � 2. We considered this theory in the weak coupling and showed the existence of vacuum
solutions which produce the symmetry breaking

G ! GS � [G0 � U(1)]=Zl ! G� � [G0 � Zkl]=Zl
where G0 is a subgroup of G and Zl is a common discrete subgroup of G0 and U(1) as explained
in [10, 11]. The �rst symmetry breaking happens when the N0 deformation mass parameter m
vanishes. Then, the theory has solitonic monopoles which should �ll representations of Gv0 , the
dual group of G0. The second symmetry breaking happens when m > 0. Since in this phase
�1(G=G�) = Zk, there exist Zk strings or �ux tubes. Moreover, since the U(1) factor is broken,
the monopole magnetic lines in this U(1) direction can no longer spread radially over space.
However, since the monopole magnetic �ux is an integer multiple of the �fundamental� Zk string
�ux, these lines can form Zk strings and monopoles become con�ned.

It is interesting to note that, when k = 2, the complex scalar � which produces the second
symmetry breaking that allows the existence of Zk strings, is in the same representation as that
of a diquark condensate. One then could think of � as being itself this diquark condensate,
and therefore we would have a situation quite similar to the one in an ordinary superconductor,
described by the Abelian-Higgs theory with the scalar being a Cooper pair. In addition, if the
gauge group is SU(N), the scalar in the adjoint representation of the vector supermultiplet
could also be thought to be a quark-antiquark condensate. These two kinds of condensates are
indeed expected to exist in the color superconducting phase of (dense) QCD at the weak coupling
[19, 20]. The e�ective theory describing these condensates are not well known. It should be a
SU(3) Yang-Mills-Higgs (or also called Ginzburg-Landau) theory with some scalars in the color
sextet and color octet representations. Therefore, one could think that the theory used in [10, 11]
or in the present paper, when the gauge group is G = SU(3), as been a toy model for an e�ective
theory of these condensates. Then, one conclude that the e�ective theory for these condensates
could have monopoles, �ux tubes and monopole con�nement, depending on the form of the
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potential.
Although the monopoles in [11] should �ll representations of the non-Abelian group Gv0 , the

monopole con�nement happened thought �ux tubes in a U(1) direction inside the non-Abelian
group G. The motivation of the present paper is to consider monopole con�nement through the
formation of �ux tubes due to breaking of the full non-Abelian group G, although in the present
case the (stable) monopoles are not expected to �ll representations of non-Abelian groups. In
order to do that, we shall consider the bosonic part of N = 4 SYM theory in the weak coupling
regime and add some N = 2, N = 1 or N = 0 deformation mass terms. These SYM theories
are usually denoted by N = 2�, N = 1� and N = 0� respectively. In [3, 6] was pointed out that
the N = 1� theory should have a weakly-coupled Higgs phase with magnetic �ux tubes and this
phase should be dual to a strongly-coupled con�ning phase in the dual theory. One of the aims
of the present paper is to analyze some properties of these magnetic �ux tubes. In section 2,
we obtain the lower bound for the string tension and corresponding BPS string conditions for
a Yang-Mills theory with three complex scalars in the adjoint representation. Then, in section
3, we analyze the possible vacuum solutions and corresponding gauge symmetry breaking which
happen depending on the mass deformation terms which are added to theN = 4 super Yang-Mills
theory. We show that in this theory there are vacuum solutions which produce the spontaneous
symmetry breaking,

G ! U(1)r ! CG;

where r is the rank of G and CG its center. The �rst symmetry breaking happens in the N = 4
and N = 2� theories. Then, the second symmetry breaking happens when one adds to the
N = 2� theory an N = 1 or an N = 0 deformation term (or both). In section 4, we analyze
the Coulomb or free-monopole phase which occurs in the �rst symmetry breaking. In this phase
there are BPS monopole solutions. In section 5, we analyze the Higgs or color superconducting
phase which occurs when it happens the second symmetry breaking. In this phase the monopoles
chromomagnetic lines can not spread out radially over space. However, since in this phase

�1(G=CG) = CG;

when CG is non-trivial, these �ux lines can form topologically nontrivial ZN strings. We then
construct the ZN string ansatz. Some ZN string solutions have been considered in [21] for
di�erent SU(N) gauge theories. We show that the �ux of the magnetic monopoles can be
expressed as an integer linear combination of the string �uxes. Therefore, in the Higgs phase the
monopole magnetic lines can form ZN strings and the monopole can become con�ned, as in [11].
We then obtain for the monopole-antimonopole system a bound for the threshold length for the
string-breaking. In section 6 we consider G = SU(N) and analyze how the monopoles magnetic
�ux could be consider to be formed by a set of a string and an antistring in the fundamental
representation. For the SU(3) gauge group we show that, besides the monopoles-antimonopole
system, the monopoles with strings attached could form a con�ning system with 3 di�erent
monopoles. In section 7, we show that the BPS string tensions satisfy the Casimir scaling law.

2 String BPS conditions

Let us start with a Yang-Mills-Higgs theory with three complex scalars �s; s = 1; 2; 3, in the
adjoint representation of an arbitrary gauge group G which we shall consider to be simple,
connected and simply-connected. Let �s = Ms + iNs where Ms and Ns are real scalars and
pseudo-scalars respectively. Let us consider the Lagrangian

L = �1

4
Ga��G

��
a +

1

2
(D��

�
s)a (D

��s)a � V
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where V is for the moment an arbitrary positive potential. In [10], it was considered a theory with
a complex scalar in the adjoint and another complex scalar initially in an arbitrary representation,
and it was obtained that the non-Abelian string BPS conditions for an arbitrary gauge group.
Let us repeat this procedure for the case with three scalars in the adjoint. Let D� = @� + ieW�,
D� = D1 � iD2 and Bi = �"ijkGjk=2 is the non-Abelian magnetic �eld. Let us consider a
static con�guration with cylindrical symmetry and not depending on x3. Then, generalizing the
Bogomol'nyi procedure [22], we obtain that the string tension T must satisfy

T =

Z
d2x

�
1

2

h
(Eia)

2 + (Bia)
2 +

��(D��s)a
��2i+ V

�
�

Z
d2x

�
1

2

h
j(D��s)aj2 + (B3a)

2 � e (��sbifabc�sc)B3a

i
+ V

�
�

Z
d2x

�
1

2
(B3a)

2 � daB3a �XaB3a + V

�
=

Z
d2x

�
1

2
[B3a � da]

2 �XaB3a � 1

2
(da)

2 + V

�
where

da � e

2
(��sbifabc�sc)�Xa; (1)

and the quantity Xa is a real scalar which transforms in the adjoint representation. We could
consider that

Xa =
e

2
[mNs

Im (�sa) +mMs
Re (�sa) + cÆa;0]

where mNs
, mMs

and c are real mass parameters and the last term could only exist if G contains
a U(1) factor generated by T0 (and therefore G would not be simple). If

V � 1

2
(da)

2 ; (2)

it follows that

T � �
Z
d2xXaB3a : (3)

Since T � 0, we take the upper (lower) sign if the above integral is positive (negative). The
equality happens when

B3a = �da (4)

D��s = 0 (5)

V � 1

2
(da)

2 = 0 (6)

Eia = B1a = B2a = D0�s = D3�s = 0 (7)

and we recover the non-Abelian string BPS conditions in [10] for the particular case in which all
scalars are in the adjoint. Like in [10], for simplicity we shall consider that mM3

could be the
only non-vanishing mass parameter in Xa ands we shall rename it by m. Note that if we had
chosen to set that only mN3

6= 0, then Xa would allow a non-vanishing pseudoscalar vacuum
solution which would result that the magnetic charge of the monopole and the �ux of the string
to be Lorentz scalar and not pseudoscalar as usual. Moreover we shall consider G to be simple
since we are interested in string solutions associated to the breaking of non-Abelian group and
not due to the breaking of U(1) factors. Therefore we shall consider that Xa do not have the
term cÆa;0.

We shall consider the potential

V =
1

2

h
(da)

2 + f ysafsa
i

(8)
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with da given by (1) and

f1 � 1

2
(e [�3; �1]� ��1) ;

f2 � 1

2
(e [�3; �2] + ��2) ; (9)

f3 � 1

2
(e [�1; �2]� �3�3) :

This potential ful�lls condition (2). For this potential, the BPS condition (6) is equivalent to
the condition

fs = 0 ; s = 1; 2; 3 :

This is the potential of the bosonic part of N = 4 super Yang-Mills (SYM) theory with some
mass term deformations which break completely supersymmetry. If we set m = 0, N = 1
supersymmetry is restored and we obtain the potential considered in [3]. If further �3 = 0 we
recover the potential of N = 2 with a massive hypermultiplet in the adjoint representation.
Finally, if also � = 0, we obtain N = 4. As usual, we shall denote by N = 2�, N = 1� and
N = 0� to the theories which are obtained by adding deformation mass terms to N = 4 SYM
theory.

Note that the term Xa is necessary if one want to have a BPS string which is not tensionless.
Therefore this term generalize the rôle of the Fayet-Iliopolous terms in theories with U(1) factors,
by given tension to the BPS string. However Xa in general breaks supersymmetry.

3 Phases of the theory

The vacua of the theory are solutions of

G�� = D��s = V = 0 : (10)

The condition V (�s) = 0 is equivalent to

da = 0 = fsa : (11)

We shall only consider the theory in the weak coupling regime, and therefore we shall not consider
the quantum corrections to the potential. We are looking for vacuum solutions which produce
the symmetry breaking

G ! U(1)r ! CG

where r is the rank of G and CG its center. For the �rst phase transition it will appear (solitonic)
magnetic monopoles. Then, in the second phase transition it will appear magnetic �ux tubes or
strings (if CG is non-trivial) and the monopoles will become con�ned. In order to produce this
symmetry breaking we shall look for vacuum solutions of the form

�vac1 = a1T+ ;

�vac2 = a2T� ; (12)

�vac3 = a3T3 ;

Wvac
� = 0 ;

where a1 and a2 are complex constants, a3 is a real constant and

T3 = Æ �H ; Æ �
rX

i=1

2�i
�2i

=
1

2

X
�>0

2�

�2
;

T� =
rX

i=1

p
ciE��i ;
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with �i and �i being simple roots and fundamental weights respectively and

ci �
rX

j=1

�
K�1

�
ij

with Kij = 2�i � �j=�2j being the Cartan matrix. The generators T�, T3 form the so called
principal SU(2) subalgebra of G. The vacuum con�guration �vac3 breaks G into U(1)r and then
�vac1 or �vac2 breaks it further to CG. Note that this is not the only possible vacuum con�guration
which produce the above symmetry breaking. However in this paper we shall restrict to analyze
this con�guration. We shall adopt the conventions

[Hi; E�] = �iE�;

[E�;E��] =
2�

�2
�H;

where �i means the i component of the root �. Let

�vi �
2�i
�2i

; �vi �
2�i
�2i

;

be the simple coroots 2 and fundamental coweights respectively. Then using the relations

�vj = �vi

�
K�1

�
ij
;

�vi � �j = Æij ;

we obtain from the vacuum equations da = 0 = fs, that�
a3 � �

e

�
ai = 0 ; for i = 1; 2 ;

a1a2 =
�3a3
e

;

ma3 = ja2j2 � ja1j2 :
Independently of the values of the mass parameters, this system always has the trivial solution

a1 = a2 = a3 = 0, which correspond to the vacuum in which the G is unbroken. Let us analyze
other possible vacuum solutions in which G is broken.

From this system we can conclude that if � = 0, there exist non-vanishing solution only if
�3 = 0 = m, which means that we recover N = 4 SYM theory. In this case, a1 = 0 = a2 and
a3 can be arbitrary which implies that G is broken to U(1)r if a3 is non-vanishing. But then
if we add a N = 1 or N = 0 deformation to the N = 4 potential, by considering either �3 or
m non-vanishing, then the only solution is the trivial a1 = a2 = a3 = 0 and G returns to be
unbroken. Therefore it doesn't happen monopole con�nement when � = 0, at least for vacuum
con�gurations like (12).

For the N = 2� theory, in which � 6= 0 and �3 = 0 = m, the situation is like in the N = 4
case, with the solution a1 = 0 = a2 and a3 arbitrary, which results in G broken to U(1)r for
a3 6= 0. Let us analyze the vacuum solutions when we add deformation terms to N = 2�:

i) Adding the N = 1 deformation term (� 6= 0, �3 6= 0 and m = 0).

In this case, there are non trivial solutions satisfying

a3 =
�

e
;

a1a2 =
�3�

e
;

ja1j2 = ja2j2 :
2In this paper the de�nition of �vi di�ers to the one adopted in [10] and [11] by a factor of two.
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which results in a vacuum which breaks G ! CG.

ii) Adding the N = 0 deformation term (� 6= 0, �3 = 0 and m 6= 0 ).

If �3 = 0, then either a1 = 0 or a2 = 0. We shall take a1 = 0. Then, there are two possible
situations:

� m� < 0 ) If we consider a2 6= 0, then a3 = �=e which would imply ja2j2 < 0. Therefore
in this case, we must have a2 = 0 = a3 and G remains unbroken.

� m� > 0 ) In this case there is the non-trivial solution

a3 =
�

e
; (13)

ja2j2 =
m�

e
; (14)

which also results in a vacuum which breaks G ! CG.

iii) Adding the N = 1 and N = 0 deformation terms (� 6= 0, �3 6= 0 6= m).

In this case there are non-trivial solutions with

a3 =
�

e

and a1 and a2 satisfying

a1a2 =
�3�

e
;

m�

e
= ja2j2 � ja1j2 :

Once more G is broken to CG.
In summary, in the N = 4 and N = 2� theory, the gauge group G can be broken to U(1)r

which corresponds to the Coulomb phase. If we add to N = 2� a N = 1 or N = 0 deformation
(or both), the gauge group can be further broken to CG, which gives rise to the Higgs or color
superconducting phase. Let us analyze each of these phases in the next sections.

4 The Coulomb phase

In this phase G is broken to U(1)r and there exist solitonic monopole solutions. As we have
seen,that phase can only occur for the N = 4 and N = 2� cases. That could happen for example
for energy scales in which one can consider �3 = 0 = m. In this phase a1 = 0 = a2 and a3 6= 0.
In principle a3 is an arbitrary non-vanishing constant. However, we shall �x

a3 =
�

e

in order to have the same value as in the Higgs phase. The vacuum solution �vac3 singles out
a particular U(1) direction which we call U(1)Æ . Since for any root �, Æ � � 6= 0, we can con-
struct a monopole solution for each root �. The asymptotic �eld con�guration for the monopole
associated to the root � can be written as [23]

�3(�; ') = g�(�; ')�
vac
3 g�(�; ')

�1 = a3g�(�; ')Æ �Hg�(�; ')�1 ;
Bi(�; ') =

ri
er2

g�(�; ')T
�
3 g�(�; ')

�1 ; (15)

�1(�; ') = �2(�; ') = 0 ;
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where
g�(�; ') = exp(i'T�

3 ) exp(i�T
�
2 ) exp(�i'T�

3 ) ;

with the SU(2) generators

T�
1 =

E� +E�

2
; T�

2 =
E� �E��

2i
; T�

3 =
1

2
�v �H :

The associated monopole magnetic charge is

g � 1

j�vac3 j
I
dSlTr [Re (�3)Bl] =

2�

e

Æ � �v
jÆj : (16)

with

Æ2 =
hv (hv + 1) r

24
;

where hv is the dual Coxeter number of G. Clearly g is equal to the monopole magnetic �ux
in the U(1)Æ direction, �mon. It is also convenient to de�ne magnetic �uxes associated to each
element of the little group U(1)r . As explained in [24], in the sphere with r !1, the little group
of �3(�; ') varies within G by conjugation with the gauge transformations g�(�; '). Therefore
the magnetic �ux associated to the Cartan generator �vi �H, i = 1; 2; :::; r, can be de�ned as

�
(i)
mon �

I
dS

l
Tr
h
g�(�; ')�

v
i �Hg�(�; ')�1Bl

i
=

2�

e
�vi � �v ; (17)

which are topologically conserved charges [25].
These are BPS monopoles with masses given by the central charge of the N = 2 algebra

[26, 2]. For the monopoles with vanishing fermion number, their masses are Mmon = jgjj�vac3 j.
Not all of these monopoles are stable. The stable or fundamental are the ones with lightest
masses [25]. For the present symmetry breaking, the fundamental monopoles are associated to
the simple roots for the simple-laced algebras or to the long simple roots for the non simply-laced
ones. Their masses are

ML
mon =

2�

ejÆj j�
vac
3 j: (18)

Note that, since G is completely broken to U(1)r, di�erently from [11], here the stable monopoles
do not �ll representations of a non-Abelian unbroken group.

5 The Higgs or color superconducting phase

In the Higgs or color superconducting phase, G is broken to its center CG. That can happen
when N = 2� is broken by a N = 1 or N = 0 deformation term (or both). In this phase, the
monopole chromomagnetic �ux lines can not spread out radially over space. A phenomena like
that is expected to happen in the interior of very dense neutron stars [19]. However, since for
simply connected G

�1 (G=CG) = CG ; (19)

when CG is non-trivial, these �ux lines can form topologically nontrivial ZN strings, with N
being the order of CG.Then, the monopoles of N = 2� become con�ned in this phase, as we shall
show bellow.

In order to have �nite string tension, these string solution must satisfy the vacuum equations
asymptotically where the radial coordinate �!1, which implies that

�s('; �!1) = g(')�vacs g(')�1;

WI('; �!1) = g(')Wvac
I g(')�1 � 1

ie
(@Ig(')) g(')

�1;
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where capital Latin letters I; J denote the coordinates 1 and 2; �vacs and Wvac
I are given by Eq.

(12) and g(') 2 G. In order for the �eld con�guration to be single valued, g('+2�)g(')�1 2 CG.
Considering

g(') = exp i'M ;

then exp 2�iM 2 CG. That implies that M must be diagonalizable and we shall consider that

M = ! �H:

Then, in order to exp 2�i! �H 2 CG,

! =
rX

i=1

li�
v
i ;

where li are integer numbers, that is, ! must be a vector in the coweight lattice of G, which has

the fundamental coweights �vi as basis vectors, and is equivalent to the weight lattice �w
� eGv�

of the covering group of the dual group eGv [27]. In principle, we could have other possibilities
for M like some combinations of step operators, which however we shall not discuss here.

With the above choice for g('), the asymptotic string con�guration can be written as,

�s('; �!1) = ei'!�H�vacs e�i'!�H ; (20)

WI('; �!1) =
"IJx

J

e�2
! �H ; I = 1; 2: (21)

Note that not all of these strings are necessarily stable.
We can consider the string ansatz

�1 ('; �) = ei'!�H
rX

i=1

�
f i1(�)E�i

�
e�i'!�H =

rX
i=1

ei'!��if i1(�)E�i ;

�2 ('; �) = ei'!�H
rX

i=1

�
f i2(�)E��i

�
e�i'!�H =

rX
i=1

e�i'!��if i2(�)E��i ;

�3 ('; �) = ei'!�H
rX

i=1

�
f i3(�)�

v
i �H

�
e�i'!�H =

rX
i=1

f i3(�)�
v
i �H;

WI ('; �) =
"IJx

I

e

rX
i=1

gi(�)�
v
i �H ; W0 ('; �) = 0 =W3 (':�) ;

which results that

B3 ('; �) =
1

e�2

rX
i=1

�vi �H
@gi (�)

@�
:

These functions must satisfy the boundary condition

f in(�!1) = an
p
ci ; for n = 1; 2 ;

f i3(�!1) = a3 ;

gi(�!1) = li ;

for i = 1; :::; r, in order to recover the asymptotic con�guration (20), (21) and

f in(� = 0) = 0 ; for n = 1; 2 and i such that ! � �i = li 6= 0 ;

gi(� = 0) = 0 ; for i = 1; :::; r ;
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in order to eliminate the singularities at � = 0. One can put the ansatz in the BPS conditions
(4)-(7) and obtain �rst order di�erential equations similar to the ones in [10]. Otherwise one
can put in the equations of motion for the non-BPS cases. Like in [10], the BPS conditions are
consistent with the equations of motion only when m vanishes. However in the case in which
N = 2� is broken by a N = 0 deformation, we must take the limit m! 0 in order to maintain
the symmetry breaking G ! CG, similarly to the Prassard-Sommerfeld limit [28] for the BPS
monopole.

Like in [21] we shall consider that �3 is constant and equal to its asymptotic value, i e,

�3 ('; �) =
�

e
T3: (22)

For the BPS string, using the above ansatz and boundary conditions, one obtains Eq. (22)
directly from the BPS condition D��3 = 0, which implies that f i3(�) = const: = a3 = �=e.
Hence the lower bound for the string tension given by Eq. (3), for X = emRe(�3)=2, can be
written as

T � me

2

���vac3

�� j�stj = m�

2
jÆj j�stj (23)

where

�st �
1

j�vac3 j
Z
d2xTr (Re (�3)B3) =

�e
� jÆj

I
dlITr (Re (�3)WI) =

2�

e

Æ � !
jÆj (24)

is the string �ux in the U(1)Æ direction. The bound in Eq.(23) holds for the BPS strings. For the
case of N = 2� broken by an N = 0 deformation, the limit m ! 0 would imply T ! 0. Then, if
one wants to have a BPS string with �nite T , one should also take �!1, similarly to the case
of the BPS Zk strings in [10]. A similar limit was considered in [5, 9]. That is exactly like the
London limit in the Abelian-Higgs theory describing superconductors where one takes to in�nite
the mass of the scalar. On the other hand, when N = 2� is broken by an N = 1 deformation
(i.e. m = 0, � 6= 0 and �3 6= 0), from (23) we see that the BPS string will be tensionless. The
same happens in general for the BPS strings associated to a coweights ! such that Æ �! = 0, and
therefore �st = 0.

Similarly to the monopole, we can de�ne string �uxes associated to each Cartan element
�vi �H,

�
(i)

st �
Z
d2xTr

�
�vi �H B3

�
=

2�

e
�vi � ! : (25)

Therefore, from (24) or (25), we can conclude that the string �uxes take values in the coweight
lattice of G. Let us now check if the magnetic �uxes of the monopoles are compatible with the
ones of the strings. Since an arbitrary coroot �v can always be expanded in the coweight basis as
�v =

Pr
i=1 ni�

v
i where ni are integer numbers, one can conclude that the magnetic �uxes (16) or

(17) of the monopoles can in principle be expressed as an integer linear combinations of the string
�uxes (24) or (25). Therefore in the Higgs phase, the monopole magnetic �ux lines can no longer
spread radially over the space, since G is broken to the discrete group CG. However they can form
one or more �ux tubes or strings, and the monopoles can become con�ned. We shall call this set
of strings attached to a monopole as con�ning strings. This set of con�ning strings must have
total �ux given by Eq. (24) or (25) with ! = �v. That means that this set of con�ning magnetic
strings belongs to the trivial topological sector of �1(G=CG) since exp 2�i�

v �H = 1 in G. The
fact that the set of con�ning strings must belong to the trivial sector is consistent with the fact
that the set is not topologically stable and therefore can terminate at some point. However since it
has a non-vanishing �ux it must terminate in a magnetic source, i. e., a monopole. It is important
to stress the fact that a string con�guration belonging to topological trivial sector doesn't imply
that its �ux must vanishes as we can see from (24). All these results are generalizations of some
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well known results for the Z2-string of SU(2) Yang-Mills-Higgs theory, as explained in [29, 30].
In this theory there are at least two complex scalars in the adjoint representation which produce
the symmetry breakings SU(2) ! U(1) ! Z2, similarly to our case. In the Higgs phase, it can
in principle exist string con�gurations with �ux 2�n=e for any integer n, although only the ones
with n = �1 are topologically stable. The ones with odd n belong to the topologically non-trivial
sector while the ones with even n belong to the trivial sector. Therefore string con�gurations
belonging to the same topological sector does not have necessarily the same �ux and therefore
are not related by (non-singular) gauge transformations [29][31]. The string con�guration with
n = 2, belonging to the trivial sector and which can be formed by two strings with n = 1, is
the one which can terminate in the 't Hooft-Polyakov monopole with magnetic charge g = 4�=e,
and can produce the monopole-antimonopole con�nement [32]. In more algebraic terms one can
say that this set of integer numbers n form the coweight lattice �w of SU(2), the subset of even
numbers 2n form the SU(2) coroot lattice �r and the quotient �w=�r ' Z2 correspond to the
center of SU(2). Therefore this quotient has two elements which are represented by the cosets
�r and 1 + �r. Each coset corresponds to a string topological sector, with �r been the trivial
one. These results also holds for an arbitrary group G, where [27]

CG '
�w

� eGv�
�r (Gv)

; (26)

with �r(G
v) been the root lattice of the dual group Gv or, equivalently, the coroot lattice of G,

which has the simple coroots �vi as basis vectors. If N is the order of CG, then this quotient can
be represented by the N cosets

�r(G
v) and �v

i;min +�r(G
v); (27)

where �v
i;min are the minimal fundamental coweights of G. A fundamental coweight is minimal

if
�v
i;min �  = 1

where  is the highest root and there exist exactly (N � 1) of them. The minimal coweights
�v
i;min are associated to a special outer automorphism of the extended Dynkin diagrams [33].

For SU(N), all fundamental weights �i are minimal.
From Eqs. (19) and (26) it implies that

�1(G=CG) =
�w

� eGv�
�r (Gv)

; (28)

and we can conclude that each string topological sectors is associated to a coset in (27), with
�r(G

v) been the trivial topological sector. It is important to note that for G = SU(N), this
result is equivalent to consider the string topological sectors to be associated with the N -ality of
the representations. However the above result holds for arbitrary G.

Since the con�ning string con�guration linking a monopole to an antimonopole belongs to
the trivial topological sector, it can break when it has enough energy to create a new monopole-

antimonopole pair. Like was done in [11], one can obtain a bound for the threshold length dthfor
the string breaking, using the relation

2ML
mon = Eth = Tdth � me

2

���vac3

�� j�stj dth ; (29)

where Eth is the string threshold energy and ML
mon is the mass of the lightest monopoles, given

by Eq. (18). In the above relation we used the string bound given by Eq. (23) and did not
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consider a possible energy term proportional to the inverse of the monopoles distance, known as
the Lücher term. The modulus of the string �ux, j�stj, must be equal to the modulus of the
magnetic charges jgj of each con�ned monopoles. Let us consider that jgj = 2�jÆ � �vj=jÆj with
�v being an arbitrary coroot. Therefore one can conclude from Eq. (29), using Eq. (18), that

dth � 4

mejÆ � �vj :

6 Monopole con�nement for SU(N) broken to ZN

Let us consider G = SU(N). Since SU(N) is simply laced, we don't need to distinguish between
weights and coweights, roots and coroots. We have seen that the magnetic lines of a given
monopole with magnetic charge g = 2�Æ ��v=jÆj, can form a set of �ux tubes or strings. However
there are countless di�erent string con�gurations with this magnetic �ux. It is not clear at the
moment which could be the preferable one. The most �economical� sets would be the ones formed
by a strings and an antistring as we shall see bellow.

For SU(3), the quotient (26), which is equivalent to CSU(3) = Z3, possesses three elements
which can be represented by the cosets �r(SU(3)), �1+�r(SU(3)) and �2+�r(SU(3)). One can,
for example, construct string solutions associated to each of the three weights �1; �1 � �1; �1 �
�1 � �2 of the fundamental representation. Since all of them belong to the coset �1 +�r, these
string solutions belong to the same topological sector. However one can observe from Eq. (24)
that they don't have same �ux �st, similarly to the Z2 strings of SU(2) theory. Therefore these
string solutions are not related by gauge transformations since �st is gauge invariant. One can
construct the corresponding antistring solutions associated the the negative of these weights,
which form the complex conjugated representation 3 and which belong to the coset �2+�r. The
magnetic �uxes of the monopoles associated to the 6 non-vanishing roots of SU(3) can easily be
written using these strings in the following way: for the monopole �1 we can attach the strings
�1 and ��1 + �1. For the monopole �2 we can attach strings �1 � �1 and ��1 + �1 + �2. For
the monopole �1 + �2 we can attach the strings �1 and ��1 + �1 + �2. And similarly for the
other 3 monopoles associated to the negative roots, just changing the sings. The remaining 3

combinations of strings and antistring has vanishing �uxes �
(i)

st .
One could draw the above set of strings attached to monopoles as shown in Fig.1, where the

circles represent the monopoles and the arrows are the string �ux �
(i)

st . We represented the strings
associated to weights in the fundamental representation by an arrow going out of the monopole
and for the antistrings we reversed the sense of the arrow and simultaneously changed the sign
of the weight. Then, in addition to the monopole-antimonopole pairs one could also conjecture
the formation of a system with the monopoles �1, �2 and ��1 � �2 as shown in Fig. 2. Note
that since these monopoles are not expected to �ll the 3 dimensional fundamental representation
of SU(3), that system is not exactly like a baryon. With this con�guration of monopole with
strings attached, one could also think to put one string in the north pole and the on the other
in the south pole, forming a con�guration similar to the bead described in [31].

In principle one could also think to attach to the monopole �1 the strings 2�1 and �2�1+�1
which belong to the 6 dimensional symmetric tensor representation and its complex conjugated.
However one can conclude directly from the expression for the �uxes and string tension that, in
the BPS case, the string 2�1 can decay in 2 strings �1 and the string �2�1 + �1 can decay in
the strings ��1 and ��1+ �1. A similar result have been conjectured in some di�erent theories
[6, 16, 13].

One can easily extend the above construction of strings attached to monopoles to the SU(N)
case. In this case the quotient (26) has N elements which can be represented by the cosets

�r(SU(N)) and �i +�r(SU(N)); i = 1; 2; ::: ; N � 1:
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The representation corresponding to the fundamental weight �k can be obtained by the antisym-
metric tensor product of k fundamental representations associated to �1. Once more one can
consider the strings associated to the weights of the fundamental N dimensional representation,

�1 and �1 �
lX

j=1

�j ; l = 1; 2; :::; N � 1;

which belong to the �1 +�r(SU(N)) coset and to the negative of these weights which form the
complex conjugated representation N , which belongs to the �N�1 + �r(SU(N)) coset. Since
N � N = adj: + 1, one can write the �uxes of monopoles (not all of them stable) associated
to the N(N � 1) non-vanishing roots, in terms of a string and an antistring. For example for
the monopole associated to the SU(N) root �p + �p+1 + � � � + �p+q one could attach strings
associated to the weights �1��1��2�� � ���p�1 and ��1+�1+ � � �+�p+q. Like for the SU(3)
case, one could in principle form a con�ning con�guration formed by the monopoles associated
to the N � 1 simple roots �i and the negative of the highest root ��1 � �2 � � � � � �N�1.

Since for SU(N), �N�k = ��k + �, where � 2 �r(SU(N)), each weight in the coset �N�k +
�r(SU(N)) is the negative of a weight in �k +�r(SU(N)), and therefore the bound of a string
tension, given by Eq. (23), associated to a weight in �k+�r(SU(N)) should be equal to the one
associated to the negative weight in �N�k +�r(SU(N)).

7 String tension and Casimir scaling law

The string tension is one of the main quantities to be determined in quark con�nement in QCD.
In these last 20 years quite a lot of work have been done trying to determine this quantity.
There are mainly two conjectures for the string tension: the �Casimir scaling law� [34] and the
�sine law� [4]. In these two conjectures it is considered the gauge group G = SU(N) and a
string in the representation associated to the fundamental weight �k which can be obtained by
the antisymmetric tensor product of k fundamental representations associated to �1. For the
Casimir scaling conjecture, the string tension should satisfy

Tk = T1
k(N � k)

N � 1
; k = 1; 2; :::; N � 1; (30)

where T1 would be the string tension in the �1 fundamental representation. On the other hand,
for sine law conjecture,

Tk = T1
sin
�
�k
N

�
sin
�
�
N

� ; k = 1; 2; :::; N � 1:

There are some papers [5, 6, 14, 35] using di�erent approaches like MQCD, AdS/CFT, etc, given
some support to this last conjecture. On the other hand several lattice studies [36] have appeared
in the literature in the last years given support to both conjectures.

All these conjectures are concerned to the chromoelectric strings. However, as we mentioned
in the introduction, one expects that chromomagnetic strings could be related to chromoelectric
string by a duality transformation. Therefore one could ask if the tension of our chromomagnetic
string satisfy one of the two conjectures.

Let us start with a general gauge group G. From Eqs. (23) and (24), we obtain that the
string tension satis�es the bound

T! � m��

e
jÆ � !j

where ! must belong to one of the cosets (27). Let us

! = �vk � �!
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where �vk is a minimal fundamental coweight and �! 2 �r(G
v). Remembering that �vk is a fun-

damental weight of eGv, and the quadratic Casimir associated to this fundamental representation
is

C(�vk ) = �vk �
�
�vk + 2Æ

�
;

it follows that,

T! � m��

e

����12 �C(�vk )� �vk � �vk
�� Æ � �!

���� : (31)

Clearly for a string con�guration in the trivial topological sector, i.e. ! = ��! 2 �r(G
v), the

above string tension bound does not have the �rst term.
Let us now consider G = SU(N). The quadratic Casimir associated to the representation

with fundamental weight �k is

C(�k) =
N2 � 1

2N

�
k (N � k)

N � 1

�
:

Moreover

�k = e1 + e2 + � � �+ ek � k

N

NX
j=1

ej

where ei � ej = Æi;j . Therefore

�k � �k = k (N � k)

N
:

Hence, for SU(N)

T�k��! �
m��

e

�����12
 
(N � 1)2

2N

k (N � k)

N � 1

!
� Æ � �!

����� (32)

Therefore the �rst term in the RHS of this inequality or equivalently the BPS string tension
associated to ! = �k, can be written as

T BPS

�k
= T BPS

�1

k (N � k)

N � 1
; k = 1; 2; :::; N � 1 (33)

where

T BPS

�1
=
m��

2e

(N � 1)2

2N

is the BPS string tension associated to ! = �1. Hence we explicitly showed that the BPS string
tensions associated to an arbitrary SU(N) fundamental weight �k satisfy the Casimir scaling
conjecture, given by Eq. (30). However, in the Casimir scaling law conjecture (and also in the
sine law conjecture), it is believed that the string tension should be the same for all weights in
a given topological sector. But from Eq. (31) or (32), we can see that the �rst term depends
only on the coset or topological sector but the second term is proportional to Æ ��! and therefore
depends explicitly on which weight is being considered. As we have seen, that result is exactly
like the SU(2) case, where the strings in a given topological sector (i.e. n even or odd) do not
have same magnetic �ux and consequently string tension. On the other hand only the strings
with n = �1 are stable and satisfy (33). As we have mentioned before, not all of the strings
associated to weights in a given coset are expected to be stable. Therefore, it would be interesting
to determine the stability conditions for these string solutions, similarly to what was done for
the BPS monopoles [25] and BPS U(1) string solutions [37].
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