
CBPF-NF-028/01

hep-th/0104171

April 2001

BPS String Solutions in Non-Abelian

Yang-Mills Theories

Marco A. C. Kneipp1 and Patrick Brockill2

Centro Brasileiro de Pesquisas F́ısicas (CBPF),

Coordenação de Teoria de Campos e Part́ıculas (CCP)

Rua Dr. Xavier Sigaud, 150

22290-180 Rio de Janeiro, Brazil

Abstract

Starting from the bosonic part of N=2 Super QCD with a “Seiberg-Witten”
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1 Introduction

String (and vortex) solutions[1] may have many important applications such as their

possible relevance for quark confinement [2][3], for galaxy formation [4][5] and for super-

conductors [6]. These solutions may also be relevant for a field theory formalism for the

“fundamental” string or the D-strings. Non-BPS string solutions in non-Abelian theo-

ries were first analysed in [7][8], for the particular case of SO(10). There are various

motivations for looking for BPS solutions. Firstly because they appear naturally in su-

persymmetric theories, often in connection with dualities. Secondly, because they satisfy

first order differential equations which are easier to solve than the second order equations

coming from the equations of motion. And finally because BPS (or almost-BPS) strings

may be relevant for confinement[3] (for a recent review see[9]).

The BPS solutions for monopoles in Yang-Mills-Higgs are known for an arbitrary

semi-simple gauge group broken by a scalar in the adjoint representation[10]. However

for strings (and vortices), the BPS solutions are only known for U(1) Yang-Mills-Higgs

theories broken to a Z exact symmetry group [11] (see a review [12]) and for some other

particular examples ([13][14] and references therein). Our aim is thus to obtain the BPS

string solutions in a Yang-Mills-Higgs theory with an arbitrary semi-simple gauge group

broken to a non-Abelian residual group.

In the paper of Seiberg-Witten [3], the authors consider a SU(2) N = 2 super Yang-

Mills theory, and associated to the point in the moduli space where the monopole becomes

massless they obtained an effective U(1) N = 2 super QED with an N = 2 mass break-

ing term. In this effective theory, the U(1) is broken to a Z group, the theory develops

an Abelian string solution and as it happens Abelian confinement occurs. After this

work, many interesting papers appeared [16] analysing various related issues, considering

either U(1) or U(1)N−1 effective theories broken to discrete groups. Since we are consid-

ering a non-Abelian generalization of Seiberg-Witten effective theory with a non-Abelian

unbroken group, our BPS string solution may have some relevance for non-Abelian con-

finement. More precisely, in our theory the strings are associated to elements of a Zk

group, rather than the Z group, and the breaking of gauge symmetry by a scalar in the

adjoint allows monopole solutions to arise belonging to representations of (the dual) non-

Abelian unbroken symmetry[17], rather than U(1) singlets. On the other hand, keeping

in mind that our results can be specifically applied to the symmetry breaking scheme

Spin(10)
126→ SU(5)×Z2, it would also be interesting to study possible applications of our

BPS string as a cosmic string.



CBPF-NF-028/01 2

We begin by obtaining, in section 2, the string BPS conditions considering the bosonic

part of N = 2 super QCD with one flavour and with an N = 2 breaking mass term for the

scalar in the vector multiplet, similar to the case considered by Seiberg-Witten[3]. Then,

in section 3 we show that the vacuum structure is compatible with a symmetry breaking

scheme considered by Olive and Turok [15], which allows the existence of Zk-strings and

which has Spin(10)
126→ SU(5) × Z2 as a particular case. In section 4, we consider a

Zk-string ansatz and obtain the first order differential equations which are exactly the

same as the ones for the BPS string in the U(1) theory. From this ansatz we obtain that

the string tension is constant. This may ensure a confining potential between monopoles

increasing linearly with their distance.

2 BPS Strings in Non-Abelian Yang-Mills-Higgs The-

ories.

Let us consider the Lagrangian in 3+1 dimensions

L = Tr
{
−1

4
GµνGµν +

1

2
DµS

†DµS
}

+
1

2
Dµφ

†Dµφ− V (S, φ) . (1)

with an arbitrary semi-simple gauge group, where S is a complex scalar field in the

adjoint representation and φ is another complex scalar whose representation we shall

specify below. As in the U(1) theory (for a review see [12]), let us consider a static field

configuration with cylindrical symmetry not depending on x3 and the only non-vanishing

component of Gµν being G12 ≡ −B. The string tension is then

T =
∫
d2x

{
1

2
Tr
[
B2 + |DµS|2

]
+

1

2
|Dµφ|2 + V (S, φ)

}

≥
∫
d2x

{
1

2
Tr
[
B2 + |D1S|2 + |D2S|2

]
+

1

2
|D1φ|2 +

1

2
|D2φ|2 + V (S, φ)

}
(2)

Let us denote by ρ the distance from the string axis. In order for T to be finite, the field

must tend to vacua configurations at ρ→ ∞ , satisfying the conditions

DµS = Dµφ = O(1/ρ2) ,

V (S, φ) = O(1/ρ3) , (3)

B = O(1/ρ2) .

Let D± = D1 ± iD2. Using the identity

[D±φ]
† [D±φ]− |D1φ|2 − |D2φ|2 = ±

[
iεij∂i

(
φ†Djφ

)
+ eφ†G12φ

]
,
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and the fact that ∫
d2xεij∂i

(
φ†Djφ

)
= 0 ,

(which follows from the above boundary conditions) and similar results for the scalar S,

it results that

T =
∫
d2x

{
Tr
[
1

2
B2 +

1

2
|D∓S|2 ∓ e

2
S† [B, S]

]
+

+
1

2
|D±φ|2 ± e

2

(
φ†Bφ

)
+ V (S, φ)

}

≥
∫
d2x

{
1

2
B2

a ±
e

2

(
S∗

b ifbcaSc + φ†Taφ
)
Ba + V (S, φ)

}
.

Note that we used the above identities with opposite signs for the fields φ and S, in order

to make contact with the supersymmetric Lagrangian, as will become clear below. Let

Ya =
e

2

(
S∗

b ifbcaSc + φ†Taφ
)
+Xa (4)

where

Xa = −me
2

(
Sa + S∗

a

2

)
.

Then T can be written as

T ≥
∫
d2x

{
1

2
[Ba ± Ya]

2 ∓XaBa − 1

2
Y 2

b + V (S, φ)
}

≥
∫
d2x

{
∓XaBa − 1

2
Y 2

a + V (S, φ)
}
.

If V (S, φ)− Y 2
a /2 ≥ 0, then

T ≥
∫
d2x {∓XaBa} (5)

and the bound is saturated if and only if

D0φ = D3φ = D0S = D3S = 0 (6)

D±φ = 0 , (7)

D∓S = 0 , (8)

Ba ± Ya = 0 , (9)

V (S, φ)− 1

2
Y 2

a = 0 , (10)

which are BPS equations for the string. The first conditions (6) imply thatW0 = 0 = W3.

We shall consider

V (S, φ) =
1

2

(
Y 2

a + F †F
)
, F ≡ e

(
S† − µ

e

)
φ . (11)
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Then the BPS condition (10) implies that F = 0. When m = 0, this potential coincides

with the one for N = 2 Super YM (20) (see appendix A) if the scalar φ2 = 0 of the

hypermultiplet vanishes. The case m �= 0 clearly breaks N = 2 supersymmetry since it

gives a bare mass to Sa. This is akin to the situation considered by Seiberg and Witten

[3] where the authors obtained confinement by introducing a bare mass to the scalar in

the vector supermultiplet. This Xa term is important in order to change the vacuum

structure of the theory.

The equations of motion that follow from our Lagrangian are

(DµG
µν)a −

ie

2

(
φ†TaD

νφ−Dνφ†Taφ− S∗
b ifabcD

νSc +DνS∗
b ifabcSc

)
= 0 ,

DµD
µφk + eYaT

a
klφl − e2

[(
S − µ

e

)(
S† − µ

e

)
φ
]
k

= 0 ,

DµD
µSd + eYa

(
ifadcSc − m

2
δad

)
− e2φ†

(
S − µ

e

)
Tdφ = 0 .

Let us check if the BPS equations for the string are consistent with them. Acting with

the covariant derivative Di, i = 1, 2, on (9) and using the other BPS conditions it results

that

DµG
µν
a +

ie

2

[
Dνφ†Tdφ− φ†TdD

νφ− (DνS)∗b ifdbcSc + S∗
b ifdbcD

νSc − m

2
(DνSd −DνS∗

d)
]
= 0

This relation is consistent with the first equation of motion if m = 0. Similarly, from the

BPS conditions we obtain

0 = D∓D±φ− e
(
S − µ

e

)
F

= −DµD
µφ∓ eG12φ− e

(
S − µ

e

)
F

= −DµD
µφ− eYaTaφ− e

(
S − µ

e

)
F

and

0 = D±D∓Sd − eF †Tdφ

= −DµD
µSd ± e (G12S)d − eF †Tdφ

= −DµD
µSd − ieYafadbSb − eF †Tdφ

Once again, this last relation is consistent with the equations of motion only when m = 0.

However this condition must be understood in the limiting case m→ 0 as we shall discuss

in the next section. Therefore it is only in this limit that we can have BPS strings

satisfying (6)-(11). One can check that 1/4 of the N = 2 supersymmetry transformations

(25) vanish for field configurations satisfying the BPS conditions (6)-(11) in the limit

m→ 0.



CBPF-NF-028/01 5

3 Vacua solutions.

The total energy for this theory is non-negative and it vanishes (vacuum) if and only if

Dµφ = DµS = Gµν = 0 , (12)

V = 0 ⇔ Ya = F = 0

in all spacetime. In order for the string to have finite tension T , the fields at ρ → ∞
must tend to vacuum configurations. Moreover, a necessary condition for the existence of

string solutions is that these vacua must break the gauge group G into Gφ such that

Π1(G/Gφ) = Zk , (13)

which allows the existence of Zk strings.

Let us consider Hi, Eα to be generators of a Lie algebra in the Cartan-Weyl basis,

with H†
i = Hi and E†

α = E−α, Tr(HiHj) = δij , Tr(EαE−β) = 2δαβ/α
2 and satisfying the

commutation relations

[Hi, Eα] = αiEα ,

[Eα, E−α] = αv ·H , αv ≡ 2α

α2
.

Moreover Hi|λa >= λi
a|λa >. A symmetry breaking satisfying (13) can be realized in

the following way[15]: let λφ be an arbitrary fundamental weight and let Svac and φvac

be two scalars in the vacuum configuration. As is well known, a scalar in the adjoint

representation of the form Svac ∝ λφ ·H breaks the gauge group into

G→ GS = U(1) ×K/Zl ,

where K is the subgroup of G associated to the algebra whose Dynkin diagram is given

by removing the dot corresponding to αφ from that of G, U(1) is generated by λφ ·H and

Zl is a subgroup of U(1) and K and is generated by

v0 = exp(2πizλvφ ·H) , z ≡ |Z(G)|
|Z(K)| , (14)

where |Z(G)| is the order of the center of G and |Z(K)| is the order of the center of K.

This symmetry breaking pattern allows the existence of monopoles. If the theory has

another scalar φvac ∝ |kλφ >, k being an integer, the gauge group G is further broken

into[15]

G→ Gφ = Zkl ×K/Zl ⊂ GS
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where Zkl is generated by v
1/k
0 and K is as before. Then, Π1(G/Gφ) = Zk. In order for

φvac ∝ |kλφ > we may consider that φ belongs to the irrep Rkλφ
with kλφ as highest

weight.3 The symmetry breaking scheme Spin(10)
126→ SU(5) × Z2 considered by Kibble

et al[5] for the cosmic string corresponds to a particular case of this general result.

Let us show that the vacuum conditions (12) admit solutions of this form. Consider

φvac = a|kλφ > and Svac = v ·H where a , v ∈ R and < kλφ|kλφ >= 1. The condition

Ya = 0 is equivalent to

YaTa =
(
φ†Taφ

)
Ta +

[
S†, S

]
−m

(
S + S†

2

)
= 0 . (15)

Using that

(φ∗iTaijφj)Ta = Tr
(
φφ†Ta

)
Ta = φφ† =

=
(
φ†Hiφ

)
Hi +

α2

2

(
φ†Eαφ

)
E−α ,

from (15) follows that

v =
ka2

m
λφ .

On the other hand, from the condition F = 0, it results that v ·λφ = µ/ke, which together

with the previous relation leads to

a2 =
mµ

k2eλ2
φ

.

Then,

φvac = a|kλφ > ,

mSvac = ka2λφ ·H , (16)

Wvac
µ = 0 ,

is a solution of the vacuum conditions (12) which satisfy Π1(G/Gφ) = Zk.

Expanding the fields around this vacuum (S = Sq + Svac, Wµ = W q
µ +Wvac

µ , etc)

and considering

W q
µ =

∑
i�=φ

W i
µHαi

+W φ
µHαφ

+
∑
α

W α
µEα ,

3If k = 2, it can also be interesting to consider φ belonging to the symmetric part of the tensor product

of two fundamental representations with highest weight λφ, [Rλφ
×Rλφ

]S ≡ R
sym
2λφ

⊃ R2λφ
. (For SU(N),

R
sym
2λN−1

= R2λN−1 . For SO(10), R
sym
2λ5

= 126⊕ 10 and R2λ5 = 126 ). A physical motivation to consider

φ ∈R
sym
2λφ

is because it allows a Yukawa coupling with two spinors in the fundamental representation Rλφ
,

and this term gives rise to the mass term for the spinors when φ has a non-trivial expectation value. In

this case one could also consider φ as a difermion condensate as in the BCS theory.
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where Hα ≡ αv ·H , from the kinetic terms of S and φ one finds the gauge particle mass

terms ∑
α>0

(
λφ · αv

) [(α)4 e2k2a4

4m2
+
e2a2k

2

]
W αµW−α

µ +
e2a2k2

2
W φµW φ

µ .

As we mentioned before, the BPS conditions are compatible with the equations of

motion when m = 0. However, if we do this, a = 0 and there is no symmetry breaking,

which is necessary in order for string solutions to exist. This result is very similar to

what happens for the BPS monopole (see for instance [18]). In that case, one of the

BPS conditions is V (φ) = λ(φ2 − a2)2/4 = 0, which implies the vanishing of the coupling

λ.(Note that for the string and the monopole, Xa and V are terms which break N = 2

supersymmetry and which vanish for the BPS configurations.) However, that condition

must be understood in the limiting case λ → 0 [19] in order to retain the boundary

condition |φ| → a as r → ∞, and to have symmetry breaking. In our case, we have

the same situation with a small difference: if one considers m→ 0, then a→ 0. We can

avoid this problem by allowing µ→ ∞ such that mµ, or equivalently a, remains constant,

implying that the field φ becomes infinitely heavy. The same happens for the gauge fields

W α
µ in which λφ · αv �= 0.

It is important to mention that if we take m = 0, (16) is no longer a vacuum solution,

but it is possible to consider other vacuum solutions such that Π1(G/Gφ) �= 0. However,

in this case, we were not able to construct a string ansatz satisfying the BPS conditions.

4 String Solutions.

The string must tend at ρ → ∞ to vacuum solutions in any angular direction θ. Let us

denote φ(θ) = φ(θ, ρ → ∞), S(θ) = S(θ, ρ → ∞), etc and let φ(0) = φvac, S(0) = Svac

and Wi(0) = Wvac
i = 0. Then, the vacuum conditions (12) imply that

Wi(θ) =
−1

ie
(∂ig(θ)) g(θ)

−1 i = 1, 2 ,

φ(θ) = g(θ)φvac ,

S(θ) = g(θ)Svacg(θ)−1 ,

for some g(θ) ∈ G. In order for the field configurations to be single-valued, g(2π) ∈ Gφ.

Then, a necessary condition for the existence of strings is that g(2π) belongs to a non-

connected component of Gφ[7]. Let g(θ) = exp iθM . Then, at ρ→ ∞

φ(θ) = aeiθM |kλφ > ,
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mS(θ) = ka2eiMθλφ ·He−iMθ , (17)

Wi(θ) =
εijx

j

eρ2
M , i, j = 1, 2 .

One possible choice for M is

M =
n

k

λφ ·H
λ2

φ

,

with n being a non-vanishing integer defined modulo k. From (17), it is direct to see that

for this choice g(2π) ∈ Gφ. Indeed, since[20]

λ2
φ =

1

2
α2

φ

|Z(K)|
|Z(G)| ,

we see from (14) that g(2π) = v
n/k
0 .

Let us consider the ansatz

φ(θ, ρ) = f(ρ)einθa|kλφ > ,

mS(θ, φ) = h(ρ)ka2λφ ·H , (18)

Wi(θ, ρ) = g(ρ)M
εijx

j

eρ2
→ B(θ, ρ) =

M

eρ
g′(ρ) ,

with the boundary conditions

f(∞) = g(∞) = h(∞) = 1 ,

in order to recover the configuration (17) at ρ→ ∞ and

f(0) = g(0) = 0

in order to eliminate singularities at ρ = 0.

Putting this ansatz in the BPS conditions (7)-(10), from the first order differential

equations it results that:

h(ρ) = const = 1

f ′(ρ) = ±n
ρ

[1 − g(ρ)] f(ρ)

g′(ρ) = ∓e
2a2ρk2λ2

φ

2n

[
|f(ρ)|2 − 1

]

which are exactly the same differential equations which appear in the U(1) case. These

equations don’t have analytic solutions, however their existence has been proven and some

of their properties have been analysed (see for instance [21]).
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It is important to emphasize that the BPS conditions only hold when m → 0 and

for m �= 0 the string becomes non-BPS as has been already pointed out in [22] for the

G = U(1) case.

Using the ansatz (18), it is straightforward to obtain the BPS bound for the string

tension (5)

T = πa2|n|
which once more coincides with the U(1) result. Since the tension is constant, it may

cause a confining potential between monopoles increasing linearly with their distance,

which is an interesting behavior since it may produce quark confinement in a possible

dual theory.

5 Conclusions

In this paper we showed the existence of BPS Zk-string solutions for arbitrary semi-

simple gauge groups broken to non-Abelian groups. In order to obtain these solutions we

considered the bosonic part of N = 2 SQCD with one flavour and a N = 2 breaking mass

term. We showed that BPS conditions are compatible with the equations of motion only

if m→ 0. We must also to take µ→ ∞, with mµ fixed, in order to allow gauge symmetry

breaking, where m is the S bare mass and µ is the φ bare mass. We found vacua solutions

compatible with the existence of string solutions and we were able to construct these string

solutions satisfying the BPS conditions. Since our theory is a non-Abelian generalization

of Seiberg-Witten effective theory, we hope that our BPS string solution may have some

relevance for non-Abelian confinement. In particular, since in our theory the breaking of

gauge symmetry by S allows for monopole solutions belonging to representations of (the

dual) non-Abelian unbroken symmetry and the string solutions are associated to elements

of a Zk group, we expect that monopole bound states with properties more similar to the

ones of quark bound states in QCD may appear in our theory. An indication of the

existence of these monopole bound states comes from the fact that in our theory the

BPS string tensions are constant which may give rise to a potential between monopoles

increasing linearly with their distance. It would be interesting if one could find monopole

bound solutions (in the classical theory) similar to the breathers in sine-Gordon theory.
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A N=2 SQCD Potential.

Using Sohnius’ conventions[23] and considering S = M + iN , the bosonic part for the

potential of N=2 Super Yang-Mills with one hypermultiplet can be written as

V (S, φm) =
e2

8

{
(S∗

b ifbcaSc)
2 +

(
φ†mσ

p
mnTaφn − vpδa0

)2
+

4µ2

e2
φ†mφm

−4µ

e
φ†m

(
S + S†)φm + 2φ†m

{
S†, S

}
φm

}
(19)

where σp are the Pauli matrices and the terms vpδa0 are the Fayet-Iliopoulos that may

exist associated to a possible U(1) factor4 with a generator we shall denote T0. This

expression can be rewritten as

V (S, φm) =
1

2

((
d1

a

)2
+
(
d2

a

)2
+ (Da)

2 + F †
mFm

)
(20)

where

Da =
e

2
(S∗

b ifbcaSc) + d3
a , (21)

dp
a =

e

2

(
φ†mσ

p
mnTaφn − vpδa0

)
, p = 1, 2, 3 , (22)

F1 = e
(
S† − µ

e

)
φ1 , (23)

F2 = e
(
S − µ

e

)
φ2 . (24)

From this expression it is easy to see that we recover (11), for m = 0, when one puts

φ2 = 0.

Let us denote by ψ and λm, m = 1, 2, the pseudo-Majorana spinors belonging to the

vector supermultiplet and to the hypermultiplet respectively. TheirN = 2 supersymmetry

transformations are given by[23]

δλm =
i

2
Gµνγ

µνξm − γµDµ (M + γ5N) ξm − ie [M,N ] γ5ξ
m + iξnσp

nmd
p (25)

δψ = − [iγµDµ + e (M + γ5N) − µ] ξmφm

4The coupling constant for a possible U(1) factor is not necessarily the same as the non-Abelian part,

but for notational simplicity we shall consider the same constant e.
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where γµν ≡ i[γµ, γν ]/2 and where the ξm are supersymmetry parameters.
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