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Abstract

Topologically non trivial e�ects appearing in the discussion of duality transformations
in higher genus manifolds are discussed in a simple example, and their relation with the
properties of Topological Field Theories is established.
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Duality transformations [1] [2] [3] [4] [5] are constructed with the aim to relate di�er-
ent models of particles, strings and other extended objects by establishing equivalences
between their spectrum and observables. For spin systems [2] and some two dimensional
�eld theories [3] they have been constructed explicitly and present interesting features
like strong coupling to weak coupling mappings or de�nite relations between solitons and
Fock space states. However in most of the cases where their existence have been conjec-
tured only partial evidence of the desired correspondences have been established, mainly
in the form of particle spectrum identi�cations. In the path integral approach the search
of duality transformations translate to that of adequate equivalence between partition
functions or generating functionals. There, space is also opened to apply related ideas to
restricted low energy e�ective actions [4].

Dualized models have been obtained using path integrals introducing auxiliary �elds
in the path integral conveniently restricted and integrating out the original �elds (or part
of them)[5]. For 2-D and some 3-D models the results obtained by this method [6] have
been shown to match those obtained in the operatorial approach [2] [3]. In this letter
we show by taking a simple model that this procedure corresponds to a coupling with a
topological �eld theory. This introduces the topological properties of the base manifold
into the formalism, and gives a dynamical function to the topological �eld theories.

There are essentially two forms in which a least action principle implements a linear
restriction of the formGij'j = 0: Introducing a quadratic lagrangian density L = 'iG

ij'j

or by means of a Lagrange multiplier. In the path integral approach the same e�ect of
incorporating a factor of a power of 1=det(G) is obtained. Using the Lagrange multiplier
one has as an intermediate step

I(') =
Z
D'�(G')exp�

Z
L(')dDx; (1)

which allows for additional factors. This situation is somehow modi�ed when the operator
G applied to the �elds is non-singular as occurs with gauge systems. In this case care has
to be taken with the zero eigenvalues of the the operator by means of some procedure
which ultimately corresponds to the introduction of a modi�ed measure. One has also
the additional restriction of looking only to gauge invariant aspects of the model. This
is the situation one faces when one intends to impose the restriction F��(A) = 0 or more
generally dA = 0 on gauge �elds. If no other �elds are involved after taking care of the
longitudinal sector in the path integral, the two options above correspond to nothing else
that a Chern-Simons [7] like topological �eld theory or a topological BF model of coupled
antisymmetric and vector �elds [8],[9]. The correct integration measure is best obtained
by imposingBRST invariance of the e�ective action. This leads to the complete de�nition
of the corresponding topological �eld theories [7][8] [9]. In this sense and stressing the
structure of (1) we note that BF theories are the adequate tools to de�ne the restrictions
�(dA) or �(F��(A)) into the path integral framework. Going into the details let us write
the partition function for such models [8] [9]

Z[0] =
Z
DADBDhe�

R
(LBF+Lgf )d

Dx; (2)

where Dh stands for the integration on the complete set of ghost and auxiliary �elds, Lgf

is the gauge �xing term of the lagrangian density and LBF is the BF lagrangian. This is
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given in the general case by LBF = B ^ F (A) with B a (D � p � 2)-form and F = dA
with A an p + 1-form. In the particular case of D = 3 and A a vector �eld we have the
simple expression

LBF = B�F
�(A) = B��

���@�A� (3)

which will be useful later. In this case, F�(A) = 1=2����F ��(A) and the conditions
F�(A) = 0 and F��(A) = 0 are completely equivalent since F0 = F12, F1 = F20 and
F2 = �F10.

In recent works [5], the restriction of zero curvature imposed to an auxiliary gauge �eld
has been used as fundamental ingredient for the introduction of dual variables and dualized
models in the path integral approach. The essential steps of this method are as follows.
First a gauge symmetry is identi�ed and the corresponding gauge model is considered
restricted to the condition F��(A) = 0 which is implemented by means of a Lagrange
multiplier (In fact, as we show below in a concrete example the symmetry considered
may be one of only some terms of the lagrangian density and the main line of reasoning
remains untouched). Then, after some intermediate manipulations which depend a little
on the speci�c model considered, the auxiliary �eld or the lagrange multiplier become
the fundamental variable of the dualized model. The appearance or not of a mapping
between the strong coupling and the weak coupling of the models is not granted by this
procedure and depends of the systems under consideration.

Since topological �eld theories are distinguished for being able to extract the topo-
logical non-trivial information of the manifolds where they are formulated, stressing their
role in the construction of the dualized models appears as a promising way of incorpo-
rating this issues in the formulation. In what follows we will show how global aspects
intervene the implementation of duality in the rather simple but non-trivial example of
vector models in 3-D.

In 3-D massive, parity odd excitations may be described by three di�erent vector
models [10] which are respectively the topologically massive model (TMM), the so-called
self-dual model (SDM) (here self-dual is not related with duality as we are interested but
refers to a property of the equations of motion of the model) and a third model which we
will call the intermediate model (IM). The corresponding lagrangian densities are given
by

LTMM = �
m

2
(����@�A�)(�

���@�A�) +
1

2
A��

���@�A� (4)

LSDM =
m

2
a�a

� �
1

2
a��

���@�a� (5)

LIM =
m

2
a�a

� � a��
���@�A� +

1

2
A��

���@�A� (6)

These systems have been studied extensively from various points of view and may be
easily shown to be locally equivalent by means of di�erent analysis. Deser and Jackiw
[10] provided the original proof of the equivalence of the (TMM) and the (SDM) solving
the canonical equal-time algebra of the quantized �elds in terms of a canonical free massive
�eld. They also introduced the intermediate model as a master �rst order formulation
of the other two: Taking variations respect to a� or A� in (6) and substituting back the
resulting equation in LIM one recover respectively LTMM or LSDM . The local equivalence
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of this models has also been discussed in the canonical Hamiltonian approach [11] and in
fact it has been shown that the SDM, which is not a gauge theory emerges as a gauge �xed
version of the TMM in topologically trivial manifolds. On the other hand in higher genus
manifolds the TMM and the SDM are not equivalent. This is most easily established
noting that the only solution of the SDM which satis�es F�(a) = 0 is a� = 0 in contrast
to the TMM for which every 
at connection is a solution [12].

Let us turn to the point we want to raise and note that the TMMmay also be obtained
as the dualized version of SDM when one applies the duality transformation described
above. To see this let us consider the partition function of the SDM in a genus zero
manifold

ZSDM [0] = N

Z
Da�exp�

Z �m
2
a�a

� �
1

2
a��

���@�a�)
�
d3x: (7)

For notational simplicity we write our equations for a 
at metric but they generalize to the
curved case. Next observe that the second term in LSDM is invariant under the addition
of a gradient. In genus zero manifolds one is then allowed to introduce an auxiliary
gauge �eld A� coupled to a� in the form Lint(a;A) = �(1

2(a� +A�)����@�(a� +A�)) and
impose F�(A) = 0. Then A� is a pure gauge and Lint(a;A) is in fact equal to the second
term of LSDM . In higher genus manifolds this last statement is no true an is here that
the non-trivial topological properties of the system �nd their way into the formulation.
Introducing a Lagrange B� to promote the �(F�(A)) to the lagrangian we write

ZSDM [0] = N

Z
Da�DB�DA�exp�

Z �
�
1

2
(a� +A�)�

���@�(a� +A�)

+
m

2
a�a

� +B�(�
���@�A�) +

1

2�
(@�B�)(@�B�)

+
1

2�
(@�(A� + a� �B�)(@�(A� + a� �B�)

�
d3x: (8)

To maintain our argument simple we do not enter into the details of the gauge �xing
procedure, which are well understood and amount to a proper de�nition of �(F�(A)) and
simply raise to the e�ective lagrangian a gauge �xing term for both auxiliary �elds. To
facilitate the Gaussian integration that follows, we choose the conditions @�(A� + a� �
B�) = 0 for the A �eld and @�B� for the B �eld which are clearly allowed. What we
have obtained in this intermediate step is the partition function of a BF topological �eld
theory coupled to a matter �eld described by the SDM. Now one can perform the Gaussian
integration in the �eld ~A� = A� + a� � B�, which due to the gauge �xing term is not
singular and we get

ZIM [0] = ~N
Z
Da�DB�exp�

Z �m
2
a�a

� � a��
���@�B�

+
1

2
B��

���@�B� +
1

2�
(@�B�)(@�B�)

�
d3x: (9)

This is the partition function of the IM, which is recognized as a Chern-Simons topological
model coupled to the SDM. From here we close the loop to the partition function of the
TMM by simply performing the Gaussian integration in a�. This establishes that (in
genus zero manifolds) the TMM and the SDM are equivalent models related by a duality
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transformation. In higher genus manifolds a detailed computation of the partition function
of the TMM and the SDM in the Hamiltonian approach reveals that in fact they di�er by
a nontrivial factor which, as suggested by (9) is identi�ed as the partition function of the
Chern-Simons topological �eld theory [12]. The complete equivalence of the TMM with
the IM is easily established. Some of this considerations generalize to non-Abelian and
tensor �elds [13] [14].

A similar relation between the generating functionals of the models may also be ob-
tained such that if we introduce the external current minimally coupled to the TMM
(which is a gauge model and call for it) we do not get this current minimally coupled
to the SDM. This together with the topological blindness of the SDM is relevant for the
discussion of anyons in these models. [15].

Let us conclude by summarizing the most salient lessons we take from this analysis:

� Duality transformations are implemented by coupling the original model with a BF
topological theory. In genus zero manifolds this do not introduce any di�erence
but in higher genus manifolds the equivalence of the models is conditioned. In the
case discussed above the net e�ect is a coupling of the matter �elds with a Chern-
Simons topological theory. This feature is likely to be generalized to other contexts
and furnishes a dynamical function for the topological �elds theories as mentioned
at the beginning. We note that this matches with the fact that although BF �elds
interacting with classical sources do not act with a force on them, they select the
allowable trajectories on topological grounds.

� Our experience with the TMM and the SDM suggests also to look to models con-
nected by a duality transformation as related by a gauge �xing procedure [11]. We
note that physical observables in the TMM are only the gauge invariant operators
and this does not occur in the SDM for which other operators are also allowed as
observables.

The issues discussed in this letter do not address the interesting possibility of duality
between the particles of the TMM and the SDM and the soliton spectrum of this or
related models. On the other hand most of the discussion presented here translate to more
general contexts where duality transformations have been implemented in the functional
approach. The conclusions derived from this minimal model should shed light to these
more general cases. In particular one understand in a simple way why the the dualized
models should become sensible to the topological properties of the base manifold.
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