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Abstract

Classical Maxwell and Maxwell-Chern-Simons (MCS) Electrodynamics in (2+1)D

are studied in some details. General expressions for the potential and �elds are ob-

tained for both models, and some particular cases are explicitly solved. Conceptual and

technical di�culties arise, however, for accelerated charges. The propagation of electro-

magnetic signals is also studied and their reverberation is worked out and discussed.

Furthermore, we show that a Dirac-like monopole yields a (static) tangential electric

�eld. We also discuss some classical and quantum consequences of the �eld created by

such a monopole when acting upon an usual electric charge. In particular, we show

that at large distances, the dynamics of one single charged particle under the action

of such a potential and a constant (external) magnetic �eld as well, reduces to that

of one central harmonic oscillator, presenting, however, an interesting angular sector

which admits energy-eigenvalues. For example, the quantisation of these eigenvalues

yields a Dirac-like condition on the product of the charges. Moreover, such eigenvalues

are shown to feel (and respond) to discrete shift of the angle variable. We also raise the

question on the possibility of the formation of bound states in this system.
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Introduction

Field-theoretic models de�ned in a (2+1)-dimensional space-time have been studied for nearly

two decades[1, 2]. Actually, lower-dimensional models have provided many interesting results

which do not take place in the (3+1)D world, e.g., Schwinger' mechanism in QED2[3] and

fractional statistics in three dimensions [4]. Consequently, lower-dimensional theories cannot

be considered as mere lower limits of four-dimensional ones; they have rather revealed char-

acteristics that are intrinsic to its dimensionality.

On the other hand, some (2+1)D theories, whenever supplemented by a Chern-Simons' term,

turn out to exhibit a new interesting physical content, as for example, Maxwell and Einstein-

Hilbert actions [2, 9]. Furthermore, it has been claimed that such models (mainly those in

the context of MCS) have relevance for a deeper understanding of some Condensed Matter

phenomena, like the Quantum Hall E�ect (QHE)[5] and High-Tc Superconductivity [6] (see

also, Ref. [7, 8]).

Although Maxwell and Maxwell-Chern-Simons (mainly the latter, in both Abelian and non-

Abelian frameworks) have attracted a great deal of e�orts, it is curious that one has not

provided an \electrodynamical body" (Li�enard-Wiechert-type potentials, Larmor-like formula

and so forth) for such (say, Abelian) theories which would be similar to the one we have for

(3+1)D Maxwell3. Thus, we shall try to draw the attention to the fact that the \lack" of a

complete \electrodynamical body" is related to some serious di�culties, for instance, in cal-

culating A� (and F��) for a single accelerated point-like charge. In view of that, a Larmor-like

expression relating energy-ux (radiation) and the acceleration of the sources is still missing.

We start the present work by studying the Maxwell (massless) case. Some results are dis-

3Although in a di�erent approach, a classical analysis of the non-Abelian case (SU(2), more precisely) was

performed by D'Hoker and Vinet[10].
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cussed and a number of di�culties are pointed out. Following, we add a Chern-Simons term

to the former model and some consequences of such a procedure are worked out. Going on,

we analyse the issue concerning the introduction of a Dirac-like monopole within both models

and some properties of its �eld. Some e�ects of its potential on an usual electric charge are

discussed in both classical and quantum (non-relativistic) frameworks. We close this paper

by pointing out some Conclusions and Prospects.

i) Classical Maxwell Electrodynamics in D=(2+1)

Let us consider the D=(2+1) Maxwell Electrodynamics (MED3) Lagrangian: 4

LMED = �1

4
F��F

�� + j�A
� : (1)

The invariance of the action under local Abelian gauge transformations, A�(x) ! A�(x) �
@��(x), is ensured by the conservation of the 3-current, say, @�j� = 0. Moreover with the usual

de�nition of the �eld strength, F�� = @�A� � @�A�, we get F�� = (F0i = +( ~E)i;F12 = B).

Next, the �eld-strength clearly satis�es @�F �� = j� and @� ~F � = 0, whence there follow:

rB = @t ~E
� +~j� ; r � ~E = � and r � ~E� = @tB ;

where we have de�ned ~F � = 1
2
����F�� = (+B;� ~E�), with the components of a dual-vector

given by (~U�)i = �ijUj.

The dynamical equation for the more basic quantity, A�, reads (in the gauge @�A� = 0):

�A�(x) = j�(x) : (2)

The solutions to this wave-equation may be readily obtained by means of the well-known

Green's function method (or by applying the Hadamard's Descent Method, see Ref. [11] for

further details). However, as we shall see, in (2+1)D the Green functions, G2+1(x�y), present
a quite di�erent behaviour respect to their (3+1)D-counterpart: the support of G2+1 lies no

longer only on the surface of the light-cone, where (x� y)2 = 0; it rather spreads throughout

the whole internal region, (x � y)2 > 0 (blowing up as (x� y)2 ! 0+). As we shall see, this

4Our conventions read: diag(���) = (+;�;�), greek letters running 0,1,2; the 2-D spatial coordinates are

labeled by latin letters running 1,2; and �012 = �012 = �12 = �12 = +1.
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will lead to profound modi�cations in planar electrodynamics whith respect to its 3-spatial

counterpart, say, (3+1)D Maxwell theory.

We solve eq. (2) by taking: �xG
2+1(x � y) = �2+1(x � y) ) ~G2+1(k) = �1=k2, and

hence:

G2+1(x� y) =
1

(2�)3

Z
d2+1k

eik(x�y)

k2
;

which, after a suitable choice of the integration contour on the k0-complex plane and the

subsequent integration yields (the advanced function is easily got by introducing a �(�� ); �
is the usual step-function):

G2+1
ret (x� y) = �

�(� )

2�

Z 1

0
J0(kr) sin(k� )dk = ��(� )

2�

�(� 2 � r2)p
� 2 � r2

; (3)

where � = x0� y0 and r = j~x� ~yj. The integral above may be found, for example, in Ref.[13]

(on page 731 and eq. 6.671-7). The �nal form of such a function con�rms what we have already

stated about its support: instead of a Dirac delta, we get a step-function (times a rational

one) of the space-time interval. Furthermore, we shall see later that such an aspect will lead us

to some new interesting properties of this model whenever compared to the (3+1)D Maxwell

theory, namely, the reverberation of signals and the \lack"of a Larmor-like formula for the

radiated power.

Next, by taking a single point-like charge, j�(y) = q
R+1
�1 _z�(s)�2+1(y � z(s))ds, we get the

general form for its potential (we have omitted the homogeneous part of the potential):

A�
ret(x) = +

q

2�

Z +1

�1
�(x0 � z0(s))

�[(x� z(s))2]q
(x� z(s))2

_z�(s) ds ; (4)

with (x� z)2 = [(x0 � z0)2 � j~x� ~zj2]. The expression for the �eld-strength is also obtained

in the usual way, and reads:

F��(x) =
q

2�

Z +1

�1
�(x0 � z0)�((x� z)2)

P 2
q
(x� z)2

[�z� (x� z)� P + _z� (x� z)�(1 �Q)� �$ �] ds: (5)

Here, it is worthy noticing that, in general, we do not get to solve the expressions above.

Actually, we have tried to solve elementary accelerated motions, say parabolic and hyper-

bolic ones. Unfortunately, we have found serious di�culties in performing some integrals

that are highly non-trivial and plagued with serious divergences that have to be suitable



{ 5 { CBPF-NF-027/00

handled5. In (3+1)D, the scenario is quite di�erent, because we have a �3+1((x� z)2) (instead
of �((x � z)2)=

q
(x� z)2) which, in turn, implies in a straightforward factorisation of the

integral in s-variable, by picking up only those points for which (x� z)2 = 0.

Hence, we conclude that the lack of closed analytic expressions for A� (and F��) in the

case of an arbitrary motion (Li�enard-Wiechert-type expressions) is deeply related to the fail-

ure of the Huyghens' principle, since the solutions to the �-operator in (2+1)D, G2+1, do not

satisfy such a principle (indeed, the same happens for any Gn+1, n even. See, for example,

Ref.[11, 12, 15, 16]).

On the other hand, even the static case (the constant motion may be easily got by a Lorentz'

boost) reveals some of the new characteristics of the model. Thus, by taking z� = (s;~0) )
_z� = (1;~0); we get:

A�(x) =

8><
>:
A0(~r; t) = � q

2� ln j~rj+ q
2� lim�!+1

�
ln j� +p� 2 � r2j

�
~A(~r; t) = 0

(6)

F��(x) =

8><
>:
F0i(~r; t) = + q

2�
ri

r2
� q

2�r
i lim�!r+

�
�

r2
p
�2�r2

�
Fij(~r; t) = 0

: (7)

Here, we notice that, besides the well-known ln j~xj-behaviour of the potential in planar Elec-

trodynamics, there is an extra term which explicitly diverges. Such a term clearly represents

the asymptotic value of the potential as j~xj ! +1 and is directly related to the infrared

divergence of the theory. Indeed, by calculating A�(x) by means of ~A�(k) (its Fourier trans-

form), we may clearly see that such a term arises when the mass term is set to zero. On

the other hand, the explicitly divergent term appearing in the F�� above may be removed

by a suitable subtraction procedure, which is possible because of such a quantity vanishes

asymptotically. [Among others, such subtleties will appear in Ref.[17]].

Still concerning the general F�� -form, eq. (5), there remains an interesting issue to be pointed

5It was already pointed out in the literature that (2+1)D Electrodynamics indeed imposes additional

troubles in calculating some quantities; for example, in Ref.[14], the author discusses some di�culties brought

about by the logarithmic behaviour of the potential.
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out. By taking into account the terms proportional to the acceleration, �z(s), which are those

that e�ectively contribute to the energy-ux and so, to a Larmor-like formula, we notice

that such terms are proportional to
R
ds=R(s) [R(s) being essentially

q
(x� z)2] and might

surprisingly lead us to the result that radiation in (2+1)D no longer falls o� with r�1 (as

we know from (3+1)D electrodynamics); instead, it increases proportionally to ln j~rj! As far
as we have seen, this seems to be not an impossibility, it rather might come to be another

peculiar property of (2+1)D Electrodynamics.

Another peculiar characteristic of the model concerns the propagation of electromagnetic

signals. In order to see this, let us start by considering some well-known results from (3+1)D.

First, let us take the following charge con�guration: �(~y; t0) = q�3(~y)�(t0). Its scalar potential

reads:

�sup(~x; t) = � q

4�

�(t� j~xj)
j~xj ;

which is clearly the linear superposition of �-pulses,

�pulse(~x; t) = � q

4�

�(t� j~xj)
j~xj ;

produced by the (\hypothetical") con�guration �(~y; t0) = q�3(~y)�(t0) (we placed the charge at

the origin in the time t0 = 0, and we imediately took it away). The previous results state us

that sharply produced signals (pulses) may be at later times recorded as sharp ones; such a

\sharpness conservation" is precisely what leads us to the linear superposition above.

Next, let us see how the same scenario takes place in (2+1) dimensions. Let us start by

considering the \hypothetical" con�guration: �(~y; t0) = q�2(~y)�(t0). Now, its potential reads:

�pulse(~x; t) =
q

2�

�(t� j~xj)q
t2 � j~xj2

: (8)

Clearly, although such a signal has been sharply sent (at t = 0 it was just at j~xj = 0) it cannot

later be recorded as a sharp one: the pulse develops a \tail" (its spreading in time) and so

it reverberates. Therefore, we now need a very long time to record a sharp signal sent at an

earlier time. Next, we obtain the superposed case, which is got from �(~y; t0) = q�2(~y)�(t0);
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and reads:

�sup(~x; t) = +
q

2�
ln

0
@t+

q
t2 � j~xj2
j~xj

1
A�(t� j~xj) : (9)

Furthermore, we may see another peculiar characteristic of the signals: they superpose in

a logarithmic (and not linear) way. Such a sort of superposition leads us to an interesting

point if we compare with previous results (eqs. (8) and (9)), when t & j~xj (t equal or slightly
greater than j~xj): while the single pulse' potential, eq. (8), appears to be very strong, the

contrary happens to the superposed case, which is very weak there! A somewhat \paradoxal"

superposition of signals. However, as time goes by, things straighten up: while single pulses

fall o�, their superposition appears to broaden the potential. [The expressions for the electric

�eld are also easily obtained and exhibit similar phenomenon concerning reverberation, while

the superposition is \better-behaved" than the �-potential]. Moreover, notice that as (and

only as) t!1, we recover the static potential, eq. (6):

�(~x) = � q

2�
ln j~xj+ q

2�
lim
t!1 ln jt+

q
t2 � j~xj2j:

Thus, the results discussed above bring an additional complication to the (classical, at least)

electrodynamics of a system of interacting charges, since even single pulses (of potentials or

�elds) emitted by an electric charge will demand a very long time to be completely `felt'

by another one. In other words, even the static (for concreteness) feature of the potentials

and �elds will be no longer determined only by the (static) con�guration of the charges; it

rather demands a very long time to actually happen, since at �nite times the electromagnetic

quantities are time-dependent.

Indeed, in (2+1)D, we may regard the classical propagation of a signal as if the wave front

travels with velocity c, and decreasing in a such a way that the back point of the signal has

null-velocity (this is exactly what eq. (8) says). These e�ects appear to be consequences of the

failure of the Huyghens' principle (the reverberation itself) as well as of the dimensionality of

the space-time (logarithmic superposition). Physically, such a propagation may be compared,

to some extent, to the propagation of disturbances in an in�nite planar physical medium, like

an in�nitely extended planar membrane.
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Actually, similar conclusions concerning the reverberation of signals were already discussed

by other authors [11, 15]. For instance, Courant and Hilbert in their classical book[12] analyse

such a propagation and, by virtue of the failure of the Huyghens principle, they conclude that

D'Alembertian' waves (in general), even if sharply produced, cannot be later recorded with

the same sharpness.

Furthermore, we would like here to raise a question in view of what we have understood

about the spreading that unavoidably a�ects the classical propagation of sharp signals in

(2+1)D. By facing an electromagnetic signal rather as a wave, reverberation a�ects its prop-

agation and we can no longer speak of sharp pulses; on the other hand, if we are to give the

electromagnetic signal the status of a particle, we wonder whether the concept of photon as a

localised energy packet should not be reassessed in the framework of planar Electromagnetism.

An analogous question is pertinent in the MCS-case (next section). There, however, by virtue

of the mass gap, reverberation is more expected to happen, since massive (Klein-Gordon or

Proca-like) �elds exhibit such a phenomenum even in (3+1) dimensions [18, 19].

ii) Maxwell-Chern-Simons model

Let us write the Lagrangian for the Maxwell-Chern-Simons Electrodynamics (MCS):

LMCS = �1

4
F��F

�� +
m

2
����A�@�A� + j�A

� ; (10)

where m
2 �

���A�@�A� = m
2A�

~F � is the (Abelian) Chern-Simons term, which provides a mass

for the boson, A�, without breaking the original local gauge symmetry of the action [2],

SMCS =
R
d2+1xLMCS(x). Moreover, the mass parameter, m, may be taken to be positive or

negative. Depending on the choice of its signal, the `massive photon' will carry polarisation

equal to +1 (m > 0) or -1 (m < 0).6 Notice, however, that in both cases, massless or massive,

6Talking about spin in (2+1) dimensions, we should be careful, since its meaning is rather di�erent from

its (3+1)D-counterpart. In fact, for a massive particle, its \spin" in (2+1)D has some similarities with the

helicity of its massless correspondent in (3+1)D: only the positive, +1, or negative, -1, polarisations may take

place, while no component of zero-polarisation appears. See, for example, Binegar's paper in Ref.[4]. See also
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the \photon" carries only one physical degree-of-freedom, which highlights its `scalar nature'.

Actually, since its mass is given by means of a topological mass term, we do not expect to

have any additional degree-of-freedom.

The �eld-strength obeys @�F �� = j� +m ~F � and also the Bianchi identity, @� ~F � = 0, whence

there follow:

rB = @t ~E
� +~j� +m~E ; r � ~E = � +mB and r � ~E� = @tB :

Now, the A�-potential satis�es (where we have introduced a gauge-�xing term whose param-

eter is �): �
���� �m����@� � � + 1

�
@�@�

�
A�(x) � O��

x A�(x) = j�(x):

After having obtained O�1, we remove the gauge-�xing and longitudinal terms. Next, inte-

grating over the k-variable, the solutions may be written in terms of Green's functions:

A�(x) =
Z
d2+1y

�
G2+1(x� y)��� +

m

m2

�
Gmass(x� y)�G2+1(x� y)

�
����@�

�
j�(y) ; (11)

where the massive Green' function is given by:

Gmass
ret

adv
(x� y) = � 1

2�

�[t2 � r2] cos
�
m
p
t2 � r2

�
p
t2 � r2

�[� t]:

with t = x0 � y0 and r = j~x � ~yj. We clearly see that, as m ! 0, then Gmass ! G2+1.

Similarly to its massless counterpart, Gmass does not satisfy the Huyghens' principle: again,

the support spreads throughout the whole region (x� y)2 � 0.

Next, the general expression for A�, as produced by a single point-like charge, takes the form:

A�(x) = +
q

2�
�
Z +1

�1
ds�(x0 � z0(s))�[(x� z)2]

8<
:
cos(m

q
(x� z)2)q

(x� z)2
_z�+

+
m

m2
����

2
4 _z�(x� z)�

0
@m sin(m

q
(x� z)2)

(
q
(x� z)2)2

+
cos(m

q
(x� z)2)� 1

(
q
(x� z)2)3

1
A+

+�z� _z�

0
@cos(m

q
(x� z)2)� 1q
(x� z)2

1
A
3
5
9=
; ; (12)

Ref. [20].
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from which we may notice the di�culties which arise in trying to solve it for arbitrary mo-

tions of the charge (indeed, the general solution to such an expression deeply depends on the

massless one). There is also a new sort of term, not present in the massless case, which is

explicitly acceleration-dependent (a radiation-like term, the last one in the eq. above).7 Such

a term, in turn, will lead to another one that explicitly depends on d3z=ds3 in the expression

for F�� : a back-reaction-like term. By virtue of its length, we shall not give the explicit form

for this �eld here. We refer the reader to Ref.[17], where a detailed derivation of the results

above will be presented. We only anticipate that the possibility that the radiation increases

like a ln j~rj also takes place here.

Even though a general solution for A� (and F��) for arbitrary motions appears to be far

o� our possibilities, it is instructive to work out static quantities which already exhibit some

of the new properties brought about by the Chern-Simons term. They read as follows:

A�(x) =

8><
>:

�(~x) = + q
2�
K0(mj~xj)

Ai(~x) = � q
2�

m
m2

�ijxj

j~xj
�

1
j~xj �mK1(mj~xj)

� ; (13)

F��(x) =

8><
>:
Ei(~x) = � q

2�
mxi

j~xj K1(mj~xj)
B(~x) = + q

2�
mK0(mj~xj) = m�(~x)

: (14)

Now, we see that A� acquires a better asymptotic behaviour: A� ! 0 as j~xj ! 1 (at large

distances, K0 and K1 roughly behave as e�jm~xj=
q
jm~xj). Indeed, even the long-range sector of

~A now decreases as j~xj�1 (such a sector is related to the well-known non-dynamical massless

pole and also to the possibility of topological objects such as vortex-like magnetic �eld). In

addition, due to the Chern-Simons term, the charge now produces a non- vanishing static

magnetic �eld. Nevertheless, this does not lead to radiation at all. Indeed, it is easily to show

that r � ~S� = r � ( ~E�B) = 0, with ~S� being the Poynting vector. We should now comment

on the short-distance behaviour of these quantities. By recalling that, for z � 1 (z > 0), the

modi�ed Bessel functions behave as K0(z) � � ln(z=2) and K1(z) � z�1, we see that, near

the charge, � and B diverge as ln jm~xj while ~E blows up as j~xj�1. The vector potential, on

7Although in a di�erent context, we would like to point out the works of Ref.[21], where the action for

a relativistic charged particle minimally coupled to an Abelian Chern-Simons is shown to be equivalent to a

higher-derivative action whenever the U(1)-�eld is integrated out.
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the other hand, exhibits a very peculiar behaviour: it vanishes as j~xj ! 0! Such a result is

actually in accordance with eq. (11): the Ai components should vanish as
q
t2 � j~xj2 ! 0,

what indeed happens, in the static case, when we get very close to the charge. Hence, we see

that classical MCS model recover the massless one when we get very close to the charge.

Next, we shall treat the propagation of signals in the Maxwell-Chern-Simons framework. We

shall start by obtaining and analysing the single pulse case, which is produced by �(~y; t0) =

q�2(~y)�(t0). The quantities read (we have omitted �(t� j~xj) in all expressions below):

�pulse(~x; t) = +
q

2�

cos(m
q
t2 � j~xj2)q

t2 � j~xj2
; (15)

Ai
pulse(~x; t) = �

q

2�

m

m2
�ij@j

0
@cos(m

q
t2 � j~xj2)� 1q
t2 � j~xj2

1
A ;

for the potentials, while the �elds are:

Ei
pulse(~x; t) = +

q

2�
@i

0
@cos(m

q
t2 � j~xj2)q

t2 � j~xj2

1
A +

q

2�

m

m2
�ij@t@j

0
@cos(m

q
t2 � j~xj2)� 1q
t2 � j~xj2

1
A(16)

Bpulse(~x; t) = � q

2�

m

m2
r2

x

0
@cos(m

q
t2 � j~xj2)� 1q
t2 � j~xj2

1
A :

The reverberation of the pulse is evident: it is very strong when t & j~xj and decreases as time

goes by, vanishing as t!1. The superposed case may also be readily obtained (essentially,

by integrating expressions above from j~xj to t). For example, the scalar potential superposes

as:

�sup(~x; t) =
Z t

j~xj
�(~x; � )d� = +

q

2�

Z t

j~xj

cos(m
q
� 2 � j~xj2)q

� 2 � j~xj2
d� ; (17)

Here, a new result takes place in the MCS framework: we cannot exactly evaluate how elec-

tromagnetic signals superpose for an arbitrary case, since the integral above is not available,

in closed form, unless t!1 (the other quantities also depend on the same integral). At this

limit, we get (see, for example, Ref. [13], page 419, eq. 3.754-2):

lim
t!1

Z t

j~xj

cos(m
q
� 2 � j~xj2)q

� 2 � j~xj2
d� = K0(mj~xj);
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which, in turn, leads us to the static potential, eq. (13), as t!1. A similar scenario holds

for the other quantities, such as the vector potential and the �eld-strengths. Thus, we see

that, in the case of the ~E-�eld, only its longitudinal component survives asymptotically.

iii)Dirac-like monopole and its tangential electric �eld

Now, let us draw the attention to the introduction of a Dirac-like object into the previously

studied models and to discuss some characteristics and consequences of the �elds produced

by this sort of monopole.

As it is well-known, such an (point-like) object shows up by breaking the Bianchi' identity[22]:8

@� ~F � = g, which in terms of the potentials gets the form:

Z
t
dt
Z
xy
d2x (�ij [@i; @t]Aj(~x; t)� [@x; @y]�(~x; t)) = g ; (18)

in the static limit, it reduces to:

[@x; @y]�(~x) = �g�2(~x) : (19)

Now, the above equation may be satis�ed only if � carries a \singular structure". Indeed, by

recalling that

[@x; @y] arctan
�
y

x

�
= @x

 
x

x2 + y2

!
+ @y

 
y

x2 + y2

!

exactly coincides with

r2 ln
q
x2 + y2 = +2��(x)�(y);

we identically solve eq. (19) by taking (as usual r =
p
x2 + y2 and ' = arctan(y=x))

�(~x) = � g

2�
arctan

�
y

x

�
) �(r; ') = � g

2�
' ; (20)

It is worthy noticing the remarkable feature of such a potential: it has an angular, instead of

a radial dependence.

8In the Maxwell-Chern-Simons case, the na�ive breaking of such an identity yields the breaking of gauge

invariance. Thus, one should take into account that the monopole induces an extra electric current in order

to balance @�j
� = 0, and so restores gauge invariance (see Ref.[24, 25] for details. See also Ref.[26] for an

alternative approach to a similar problem in (3+1) dimensions).
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This leads to a very interesting (static) electric �eld (~E = �(r� + @t ~A), as usual):

~E(x; y) = +
g

2�

xŷ � yx̂

x2 + y2
) ~E(r; ') = +

g

2�

ê'
r
: (21)

Whence, we clearly see the announced property of the g-monopole: it yields a (static) tan-

gential electric �eld9. [As far as we have seen, such a peculiarity takes place only in (2+1)D

Electrodynamics. Furthermore, we do expect that such a property survives at time-dependent

regimes]. Moreover, it is worth noticing that a point-like magnetic vortex is characterised by

a vector potential identical in structure to the tangential electric �eld above[23]. Thus, we

may identify a \duality" between both objects: the vortex is obtained from the monopole

(more precisely, from its \string" -see below) by taking the electric �eld and the charge of the

�rst to be respectively the vector potential and the magnetic ux associated to the latter.

As it is well-known, the \angle-function" has a semi-rect of `ill-de�nition', say, it is glob-

ally de�ned only on the x � y-plane without, for instance, the branch x 2 f[0;+1)g10.
Therefore, the scalar potential su�ers from such a `singularity', which in turn should not be

identi�ed with the string of the (2+1)D monopole. Actually, in this space-time, the \string"

of a Dirac-like monopole shrinks to a (spatial) point while the monopole itself appears to be

a sort of `instanton' (see, for example, Ref.[24, 25]). Thus, the modi�ed Bianchi equation,

@� ~F � = g�2(~x), have to be rather viewed as an equation for the \string", which appears to

be localised at static limit (it is clear that the \string" may be chosen to be at any point

on the plane. By means of the gauge-transformation approach this involves a time-dependent

function relating di�erent spatial points). Although such a localisation seems to state us that

g should be rather faced as a peculiar electric charge, we stress that this is not so. Indeed,

what happens is that, at static limit, the vanishing of radiation, r � ~S� = r � (~E�B) = 0, de-

9Strictly speaking, such a �eld does not produce a genuine Newton's force on another charge (usual or

peculiar one), since the force between them would not lie on the line that links both particles, as may be

readily seen.
10Thought as an one-form, such a \function" it is the simpler (lower-dimensional) example of a closed but

not exact one-form (d2' 6= 0), so it is not properly a function in the x � y-plane (recall its multi-valuedness

character). However, as thought as the imaginary part of the ln-function in the context of Riemann surfaces

it becomes a well-de�ned (say, single-valued) function.
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mands that the monopole' magnetic �eld must also vanish. [Notice that such a requiriment,

B = 0, is intimately related to the tangential feature of ~E, once that ~E� becomes radial, and

so r � ~E� 6= 0]. Hence, what we may state is that such an object yields only non-vashing

(tangential) electric �eld at the static limit.

Next, we analyse the (classical) dynamics of a usual electric charge, q, with mass m, moving

under the action of such a tangential �eld. Its equations of motion are readily obtained and

read as follows:

2�m

gq
�x = � y

x2 + y2
and

2�m

gq
�y = +

x

x2 + y2
; (22)

or in (r; ')-coordinates:

2�m

gq
(�r � r _'2) = 0 and

2�m

gq

d

dt
(r2 _') = 1 : (23)

Now, due to the angle-dependent feature of the potential, we notice that the particle' \angular

momentum" is clearly not conserved; also the eqs. of motion are rather coupled and cannot

be analitically solved. Indeed, the following relation

�xx+ �yy = 0 =) �� = �1

�

readily follows from (22), with �(t) = x(t)
y(t) , whose solution reads:

Z
d�p�2 ln � + c1

= t+ c2 =) e�c1=2
Z
e�u

2=2du = t+ c2 ;

where we have de�ned �(t) = e(c1�u
2)=2. Now, since the Gaussian integration is not available

for arbitrary limits, an explicit solution for our problem cannot be achieved and numerical

resolution is demanded. In this line, a typical plot of the motion (x � y-coordinates) of the

charged particle is shown in Fig. 1.a. By virtue of the tangentially repulsive nature of the

electric �eld, the particle is quickly drifted away, despite the signals of the charges.

A further system which deserves more attention is that in which we also have the presence

of an external (constant, for simplicity) magnetic �eld. A realistic planar system may be
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Figure 1: Typical plot (x-y-coordinates) of the trajectory of a charged particle (initially at rest

in x = 1; y = 0); a) under the action of the tangential electric �eld alone (with 2�m=qg = 1);

and b) also with an external magnetic �eld, B0 (with m = qB0 =
qg
2� = 1).

obtained at very low temperatures (around or less than 1K) and su�ciently strong magnetic

�eld (at least 10T) perpendicular to a very thin plate 11. Such a perpendicular �eld is got by

taking a vector potential entirely con�ned to the 2D-spatial plane, say

~A = ~A1 = B0xĵ ; ~A = ~A2 = �B0yî ; (24)

(Landau gauges) or still (symmetric gauge)

~A =
~A1 + ~A2

2
=
B0

2

�
xĵ � yî

�
: (25)

Now, our present system is composed by the electric charge subject to the external magnetic

and to the tangential electric �eld as well. Again, the classical eqs. of motion are easy to be

obtained and read (eqs. of motion in r; ' imediately follow):

m

q
�x = � q

2�

y

x2 + y2
+B0 _y and

m

q
�y = +

g

2�

x

x2 + y2
�B0 _x ; (26)

11Such systems may be realised, for instance, in the interface between two semi-conductors. Furthermore,

since the motion of the charges (electrons, for concreteness) takes place as if the third dimension (perpendicular

to the plane of motion) were frosen, the generally employed 2D (spatial) treatment is justi�ed, and has been

shown to gives us a very good explanation of the physical phenomena which occur whithin such systems, e.g.,

the Quantum Hall E�ect.
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Or, by de�ning complex dynamical variables as � = x+ iy and �� = x� iy, we get:

2m(���� + ����) + iqB0( _��
� � � _��) = 0 and 4�m(�� _�� + _����) + iqg

( _��� � � _��)
���

= 0:

Despite their symmetric appearance, the resolution of the eqs. above is not too easy. Indeed,

we claim that they may be even more di�cult to be solved than those in the absence of mag-

netic �eld (former case). On the other hand, numerical resolution shows us that the magnetic

�eld tends to compensate the repulsive e�ect of the electric one so that the (classical) motion

of the particle appears to drift in a more slower way, describing an almost regular spiral-like

pattern (see Fig. 1.b). Notice also that the distance between two neighbour arms of such a

pattern decreases as the radial distance increases: the particle asymptotically `approaches'

to perform a closed trajectory (in the next section, we shall see that, the quantum dynamics

of the charged particle asymptoticaly, r ! 1, reduces to that of one central harmonic os-

cillator). Indeed, such a pattern is strongly dependent on the signal of the charges and the

direction of the magnetic �eld, say, some choices of these signals may lead us to other types

of trajectory of the q-charge (yet presenting some regularities; more details will appear in

Ref.[17]).

There is, however, at least one important information which may be analytically obtained: in

both cases, B0 = 0 and B0 6= 0,the velocity of the charged particle is bounded by the angle,

as below:

(~v)2 =
qg

m�
'+ (~v0)

2 : (27)

It is worthy noticing that the number of windings of the charge around the origin must be

taken into account, i.e., the kinectic energy is determined by the total angle descrided by the

charge. [As a sort of quantum counterpart, we shall see that as r !1 the (angular) energy

eigenvalues have to be shifted as '! '+ 2� (see next section for details)].

iv) Preliminary analysis of the quantum charge-monopole system

Next, we shall present a preliminary quantum (non-relativistic) analysis of the system above:

one electric charge, q, moving under the action of the monopole scalar potential, V /
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arctan(y=x), and of an external constant magnetic �eld, B0. The Hamiltonian (the pure

gq-system is readily got by setting ~A = 0),

H =
1

2m
(~p� q ~A)2 + qV

for this system is obtained by taking ~A in a particular gauge (Landau or symmetric, eqs. (24-

25), as well as V (x; y) = � g
2�
arctan(y=x) = � g

2�
arg(~r). [Notice that the potential remains

invariant under general scale transformation, say: x ! f(x; y)x and y ! f(x; y) y ; but,

the same symmetry is not present in the full Hamiltonian, even for f(x; y) = a = constant.

For the analysis to be presented here, concerning the non-conservation of the angular-momentum

and some of its consequences, as well as asymptotic bahaviours of the present system, it will

be more convenient to write the Hamiltonian above in polar coordinates, r; ', and ~A in the

symmetric gauge, like below:

H =
1

2m

�
pr

2 +
pr
r
+ (qB0)

2r2
�
+

1

2m

p'
2

r2
+
qB0

2m
p' � gq

2�
' ; (28)

with r and ' de�ned as before and ~p = prêr +
p'
r
ê', whence there follows that pr $ �i} @

@r

and p' $ �i} @
@'
.

Now, we notice the �rst remarkable feature of this Hamiltonian: H is explicitly angle-

dependent and so non-invariant under rotations; conversely, the angular momentum operator,

J = p' = �i} @
@'
, is not conserved, [J;H] = +i}gq=2� 6= 0.

Although other angle-dependent Hamiltonians have been studied and shown to be relevant in

Physics (see for example [27]), a remarkable di�erence between them and the one presented

here is that the latter is not separable. Indeed, as far as we have seen, the system appears

to present an intricate coupling between its degrees-of-freedom, despite of the coordinates

chosen. [Perhaps, some non-standard tranformation could lead us to such a separation, but

could also lead us, on the other hand, to results which were of hard physical interpretation.

Such an issue remains to be investigated].
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It is clear, from the Hamiltonian (28) and also from the fundamental commutation rela-

tions, [r; '] = [pr; p'] = 0 and [r; pr] = ['; p'] = +i}, that the non-separability arises from the

non-conservation of the angular momentum, [J;H] 6= 0. Indeed, as it may be easily checked,

such an angular sector would be separable if it had the general form 1
r2
(J2 + aJ + b'). So, it

is the lack of a 1=r2-factor in J and in '-terms what prevents us from a split of variables.

On the other hand, by facing H as being non-separable, the analytical resolution of the

eigenvalue problem, Hj >= Ej >, appears to be of very hard achievement. [Actually, the

presence of the terms proportional to ' and r -or powers of r- in H prevents us from solving

this eigenvalue problem by means of, for example, hypergeometric functions (see, for example

Ref. [28])].

Therefore, a numerical resolution appears to be a more suitable (and direct) attempt to-

wards solving the problem (results will be communicated as soon as they were obtained).

Here, however, we shall deal with some analytical results at asymptotic limits, even though

some of them appear to be quite qualitative. We shall mainly discuss the limits r !1 and

r! 0:

i)r!1: supposing that the canonical momenta remain �nite in this limit, we get:

H(r; ')r!1 � 1

2m
(p2r + q2B2

0r
2) +

qB0

2m
p' � gq

2�
' ; (29)

in which the variables appear explicitly split, say, Hr!1 = Hr
r!1+H'

r!1. Thus, at this limit,

we have that (the limit r !1 is implicit hereafter)

(Hj (r; ') >) = (Enj (r; ') >) =) (Hr +H')jR(r)�(')) >= ((Er + E')jR� >) ; (30)

which leads us to:

HrRk(r) = Er
kRk(r) and H'�l(') = E'

l �l(') : (31)

Therefore, as r !1, we get the following set of di�erential eqs.:

}
2 d

2

dr2
R + (2mEr � q2B2

0r
2)R = 0 ; (32)

i}
d

d'
� + (�' + �')� = 0 ; (33)
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with � = +mg=�B0 and �' = 2mE'=qB0.

We notice that, as r! 1, the radial part of the Hamiltonian reduces to that of one central

harmonic oscillator, whose solutions may be written in terms of Hermite polynomials, Hn:

Rk(u) = R0e
�u2=2Hk(u);

with u = qB0r and k any non-negative integer. This implies the well-known eigenvalues

Er
k = }B0(k + 1=2).

On the other hand, the angular sector appears to be quite unusual. Indeed, by solving the

di�erential equation in ',we readily obtain

�l(') = �0 exp

"
i

}

 
�'

2
+ �'l

!
'

#
: (34)

It is worth noticing the new '2-like phase factor, along with the usual linear one. As a �rst

remark, we should stress that it cannot be removed by any suitable gauge tranformation;

indeed, it must rather be faced as a consequence of the '-like scalar potential. Although quite

unusual, it leads us to new and interesting results, as we shall see in what follows.

First, notice that �(') has periodicity 2�(�� + �'l ). Thus, the requirement that � be

single-valued, i.e., continuous, is equivalent to set

2�(��+ �'l ) = 2�l} : (35)

The lowest value, �'0 = ���}, gives us

E'
0 = �gq}=2 ; (36)

which may be viewed as a quantisation condition on the gq-product (notice that the product

is uniquely determined by the lowest angular energy eigenvalue, E'
0 ). The parameter l, in

turn, is to be identi�ed with the number of windings the q-particle gives around the origin

(so, it measures the full angle described by the q-charge). Whence, l has to be taken as a non-

negative integer. Therefore, the eigenvalues associated to the angular variable feel whether it

is running between 0 and 2�, 2� and 4�, and so forth. In other words, whenever ' is shifted,
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say, by 2�, its associated eigenvalues respond to this change by shifting up their values. the

latter result may be understood as the quantum analogue of the classical one, as expressed

by eq. (27).

Moreover, we could be tempted to naively apply J -operator on j kl > above, to get

J j kl >= (�'+ �'l )j kl >= (�('+ �) + l)j kl >;

and hence, guess that j kl > carry continuous angular momentum. However, this is not a le-

gitimate procedure, because j kl > are not eigenvectors of J (recall that [J;H] 6= 0). Actually,

as far as we have seen, the only two quantities which may be simoutaneously diagonalised

in jpsikl >-basis are Hr and H' (the components of the full asymptotic Hamiltonian, eq. (29)).

Clearly, the results and remarks above are strictly valid only at the asymptotic limits speci-

�ed previously. Whether similar scenario does happen at arbitrary distances (as the classical

result (27) does), remains to be studied and will be strongly dependent on the separation of

variables in the original Hamiltonian, eq. (28). Now, let us discuss the r ! 0-limit.

ii) r! 0: we have seen that near the origin (where the \string" is localised), the charged

particle experiences a very strong tangentially repulsive electric �eld (see previous section for

details). Since as r ! 0 this �eld blows up, it is expected that q can never reach the origin,

say, its wave-function must vanish there: j (r = 0; ') >� 0. Such a requirement may be

viewed as the counterpart of the Dirac-veto in (3+1)D: a single charge moving under the action

of the magnetic monopole �eld could not cross the string of its associated vector potential[22].

Thus, what remains to be determined is how quickly j > do vanishes as r ! 0. Never-

theless, contrary to the r ! 1-limit, in which the Hamiltonian gets separable, here the

variables are no longer na�ively separated. This arises because p2'=r
2 is now one of the leading

terms, similar to the original problem, described by the Hamiltonian (28). Thus, we claim

that, even for r! 0, we demand numerical techniques in order to get some information about

the gq-system; say, for instance, the form of its wave-function and eigenvalues.
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A naive analysis of the limits discussed above would lead us to conclude that, since the charged

particle is repelled from the origin by the '-potential and since as r ! 1 its dynamics re-

duces to that of one central harmonic oscillator (whose wave-functions fall o� exponentially),

it is expected that the system yields physical bound states. Therefore, even though the pure

gq-system does not admit bound states (once that the con�ning r2-type potential is absent,

for this case, in eq.(29), we get indeed a radially free particle), when it is supplemented by

an external magnetic �eld (constant , for concreteness and strong enough), the possibility for

such states may be raised.

Nevertheless, when charged particles (say, electrons) are moving on the plane subject only

to a perpendicular magnetic �eld, then the choice of Landau gauge immediately reduce the

quantum problem to that of one harmonic oscillator in one dimension, along with a free par-

ticle motion in the other. In this case, we cannot have bound states. However, when the

system is supplemented by an extra, say, scalar potential (as in the present case), it is also

well-known that bound states show up, even in the case of repulsive potential[29]. Here, we

have just raised such a question, and a precise answer demands further investigation. These

and other quantum aspects of the present system are been studied [30], and we would like to

communicate eventual results about them in a forthcoming paper.

v) Concluding remarks

We have shown that classical (2+1)D Maxwell and Maxwell-Chern-Simons Electrodynam-

ics present some interesting novelties as compared to Maxwell theory in (3+1)D, namely, the

reverberation of signals and the far-from-trivial question of a Larmor-like formula. As we have

seen, such phenomena are intimately related to the failure of the Huyghens' principle. Namely,

the latter is very di�cult to be obtained even for constant accelerated motions (parabolic

and hyperbolic ones). The integrals involved are highly non-trivial and appear to diverge,

so demanding some suitable regularisation scheme. On the other hand, we hope that some

hints about such a Larmor' formula could be obtained with the help of numerical calculations.
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Concerning the Dirac-like monopole, it also presents some new properties whenever com-

pared to its (3+1)D-counterpart; for instance, its static tangential electric �eld. Furthermore,

whenever acting on a single charged particle, it leads us to interesting classical and quantum

results. For example, the gq-system (with B0) has been shown to give rise, at least asymptot-

icaly and at non-relativistic regimes, to one central harmonic oscillator, with an interesting

angular sector which contribute to the energy-eigenvalues. As future perspectives, it remains

to be studied whether these results survive at �nite distances and, still completely open,

the issue concerning possible e�ects of this peculiar potential on spin particles, for instance,

planar Dirac fermions. Moreover, by virtue of its peculiar scalar potential (and unusual con-

sequences), such a monopole could be relevant to Condensed Matter problems. For instance,

by facing this object as a sort of impurity (scatter) within a sample, could its presence modify

the Hall conductivity? And possibly, how would actually look like such a modi�cation?
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