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Abstract

In this letter, we present the Parkes-Siegel formulation for the massive Abelian N=1
super-QED2+2 coupled to a self-dual supermultiplet, by introducing a chiral multiplier
super�eld. We show that after carrying out a suitable dimensional reduction from (2+2) to
(1+2) dimensions, and performing some necessary truncations, the simple supersymmetric
extension of the �3QED1+2 coupled to a Chern-Simons term naturally comes out.
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The issue of self-duality has deserved a great deal of attention since a self-dual Yang-Mills theory
in Atiyah-Ward space-time (2+2 dimensions) [1] has been pointed out as a source for various integrable
models in lower dimensions, according to a conjecture by Atiyah and Ward [2].

Recently, the simple supersymmetric version of the self-dual Yang-Mills theory and self-dual super-
gravity model in Atiyah-Ward space-time has been formulated by Gates, Ketov and Nishino [3]. Also,
by a suitable dimensional reduction proposed by Nishino, N=1 and N=2 super-Chern-Simons theories
in D=1+2 were generated from N=1 and N=2 super-self-dual Yang-Mills theories in D=2+2 [4].

In the last years, 3-dimensional �eld theories [5] have been well-motivated in view of the possibilities
of providing a gauge-theoretical foundation for the description of condensed matter phenomena, such
as high-Tc superconductivity [6], where the QED3 and �3QED1+2 [6, 7] are some of the theoretical
approaches used to understand more deeply about high-Tc materials. The �niteness on the Landau
gauge of Chern-Simons theories [8] is also an interesting result that motivates the study of 3-dimensional
gauge theories.

The relationship between massive Abelian N=1 super-QED2+2 in Atiyah-Ward space-time and N=1
super-�3QED inD=1+2 has already been investigated by carrying out a dimensional reduction �a la Scherk
from (2+2) to (1+2) dimensions and by performing some suitable supersymmetry-preserving truncations
[9, 10].

The purpose of this letter is to show that N=1 super-�3QED coupled to a super-Chern-Simons term
in D=1+2 can be generated from the massive Abelian N=1 super-QED2+2 [9, 10] coupled to a self-
dual supermultiplet by using the Parkes-Siegel formulation in D=2+2 [11]. The dimensional reduction
used here to show the relationship between the models previously mentioned was proposed by Nishino
in Ref.[4]. Also, some suitable supersymmetry-preserving truncations are needed in order to suppress
non-physical propagating modes as well as to keep a simple supersymmetry in D=1+2.

To introduce mass to the matter sector in D=2+2, without breaking gauge-symmetry, we have to
deal with four scalar super�elds: a pair of chiral and a pair of anti-chiral super�elds; the members of
each pair have opposite U (1)-charges [9, 10]. The Parkes-Siegel formulation for the massive Abelian
N=1 super-QED2+2 coupled to a self-dual supermultiplet, by introducing a chiral multiplier super�eld,
is described by the action : 1

SSDSQED = �
Z
ds �cW +

Z
dv

�
	y+e

4qV eX+ +	y�e
�4qV eX��+

+ im

�Z
ds 	+	� �

Z
des eX+

eX�
�
+ h.c. ; (1)

where q is a real dimensionless coupling constant and m is a real parameter with dimension of mass. The
+ and � subscripts in the matter super�elds refer to their respective U (1)-charges.

In the action (1), the chiral (	�), the anti-chiral ( eX�) and the chiral multiplier (�) super�elds are
de�ned as follows:

	�(x; �; e�) = ei
~�=~@�

�
A�(x) + i� �(x) + i�2F�(x)

�
; eD _�	� = 0 ; (2)

eX�(x; �; e�) = ei�=@
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B�(x) + ie�e��(x) + ie�2G�(x)i ; D�

eX� = 0 ; (3)

��(x; �; e�) = ei
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���E(x) � �����H��(x)

�
+ i�2F�(x)

i
; eD _��� = 0 ; (4)

where, A� and B� are complex scalars,  � and e�� are Weyl spinors, F� and G� are complex auxiliary
scalars, A� is a Weyl spinor, E is a complex scalar, H�� is a complex antisymmetric rank-2 tensor and
F� is a Weyl auxiliary spinor.

In the Wess-Zumino gauge [12], a complex vector super�eld, V , is written as

V (x; �; e�) = 1

2
i���e�B�(x) � 1

2
e�2��(x) � 1

2
�2e�e�(x)� 1

4
�2e�2D(x) ; (5)

1We are adopting in this letter, ���=(+;�;�;+), for the A-W space-time metric, ds�d4xd2�,
des�d4xd2e� and dv�d4xd2�d2e�, where � and e� are Majorana-Weyl spinors. Also, the supersymmetry
covariant derivatives are de�ned by : D�=@��i=@� _�

e� _� and eD _�=e@ _��i=e@ _����. For more details about
notational conventions in D=2+2 and D=1+2, see ref.[9, 10].
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where D is a complex auxiliary scalar, � and e� are Weyl spinors and B� is a complex vector �eld.

The �eld-strength super�elds, W� and fW _�, de�ned by

W� =
1

2
eD2D�V and fW _� =

1

2
D2 eD _�V ; (6)

respectively, satisfy the chiral and anti-chiral conditions, eD _�W�=0 and D�
fW _�=0 .

By adopting the Wess-Zumino gauge and considering the super�elds de�ned above, the following
component-�eld action stems from the superspace action of eq.(1) :
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where G�� is the usual �eld-strength associated to B�.
Therefore, it can be easily seen, from (7), that the �eld equation for H�

�� gives the self-duality of the
�eld-strength G�� :

�SSDSQED
�H�

��

= 0 =) G�� =
1

2
�����G�� : (8)

Since we are adopting the Wess-Zumino gauge, we can read directly from the matter sector of (1),
the following set of local U (1)��U (1) transformations [9, 10] :

�gA
�
� = �iq�(x)A�� ; �g 

c

� = �iq�(x) c� and �gF
�
� = �iq�(x)F �� ; (9)

�gB� = �iq�(x)B� ; �g e�� = �iq�(x)e�� and �gG� = �iq�(x)G� ; (10)

where ����i is an arbitrary in�nitesimal complex function. The transformations for the gauge super-
�eld components surviving the Wess-Zumino gauge are as follows :

�g� = �g e� = 0 ; �gD = 0 and �gB� = i @�� : (11)

Also, for the component �elds of the multiplier super�eld (4), since �g��=0, we have :

�gA� = �gF� = 0 ; �gE = 0 and �gH�� = 0 : (12)

Therefore, in the Wess-Zumino gauge, the U (1)-symmetry is gauged by the real part of B� with real
gauge function , whereas the U (1)�-symmetry is gauged by its imaginary part with real gauge function
�. By analysing the transformations (9) and (10), a local Weyl-like symmetry U (1) naturally comes out
as one of the actual symmetries of the action (7). However, the gauge �eld (the real part of B�) that
gauges this symmetry will be supressed in the process of dimensional reduction, then, such a symmetry,
will not persist in D=1+2 [9].

Since �3QED1+2 coupled to a topological model in D=1+2 has been used in some theoretical ap-
proaches in Condensed Matter Physics [6, 7] (and we are interested to obtain its N=1 supersymmetric
version), it will be interesting to perform the dimensional reduction proposed by Nishino [4] on the action
given by eq.(7). Bearing in mind that this process should yield extended supersymmetry [13, 14], some
truncations will be needed in order to remain with an N=1 supersymmetry in D=1+2, as well as to
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suppress unphysical modes that will certainly appear after the dimensional reduction are performed [9].
These modes correspond to negative-norm 1-particle states (ghosts) and they will be unavoidable in 3
dimensions, for the kinetic terms of the action (7) are totally o�-diagonal.

We perform the dimensional reduction2 �a la Nishino [4] from D=2+2 to D=1+2 on the action (7).
As a result, it can be found the following supersymmetric action in D=1+2 :
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where the real parameter, �, has dimension of mass. Notice that after the dimensional reduction, the
coupling constant q has acquired dimension of (mass)

1

2 .
Since the spectrum of the action given by eq.(13) will be spoiled by the presence of negative-norm

states, truncations will be needed in order to suppress these unphysical modes. However, to identify the
ghost �elds to be truncated, we must to diagonalize the whole free sector of the action (13).

To perform the diagonalization of the free action (13), we need to �nd some linear combinations of
the �elds. Therefore, by the same procedure used for the case presented in Ref.[9], we have found the
following transformations :

1. gauge sector :

A =
1p
2
(� + �) and � =

1p
2
(� � �) ; (14)

F =
p
2 ('+ �) and � =

p
2 (' � �) ; (15)

E =
1p
2
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1p
2

� bE � bD� ; (16)

2. fermionic and bosonic matter sector :

 � =
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2

�b � � b c� + b�� � b�c�� and �� =
1p
2

�b�� � b�c� � b � � b c�� ; (17)

A� =
1p
2

�
1p
2

�
�A� � �A��

�
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�
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1p
2

�
1p
2

�
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�
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1p
2

�
1p
2

�
�F� � �F ��

�
+ bG�

�
and G� = � 1p

2

�
1p
2

�
�F� � �F ��

�
� bG�

�
: (19)

By replacing these �eld rede�nitions into the action (13), one ends up with a diagonalized action,

where the �elds, �, b�+, b��, bB+ and bB� appear like ghosts in the framework of an N=2-supersymmetric
model. Therefore, in order to suppress these unphysical modes, truncations must be performed. Bearing
in mind that we are looking for an N=1 supersymmetric 3-dimensional model (in the Wess-Zumino

gauge), truncations have to be imposed on the ghost �elds, �, b�+, b��, bB+ and bB�. To keep N=1

2After the dimensional reduction is performed, the 3-dimensional metric becomes �mn=(+;�;�).
Note that, �, �, A, F ,  and � are now Dirac spinors in D=1+2.
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supersymmetry in the Wess-Zumino gauge, we must simultaneously truncate the component �elds, bG+,bG�, bD, bE, �, �, am and � 3 . Now, the choice of truncating am, instead of Am, is based on the analysis
of the couplings to the matter sector: Am couples to both scalar and fermionic matter and we interpret
it as the photon �eld in 3 dimensions.

After performing these truncations, and omitting the (b ) and ( � ) symbols, we �nd the following
action in D=1+2 :

SSCS�3QED =

Z
d3x̂

�
��klmAkFlm � 2��� +

� A�+2A+ �A��2A� + i +
m@m + + i �
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mA+ � iA��@mA� � iA+@

mA�+ + iA�@
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�
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�
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m
�
A�+A+ + A��A�

�
+

� m

�
 + + �  � � +A�+F+ � A��F� +A+F

�
+ �A�F ��

��
; (20)

hence, we conclude that this is a supersymmetric extension of a parity-preserving action minimally coupled
to a Chern-Simons �eld [5, 6, 7]. However, to render our claim more explicit, we are going next to rewrite
(20) in terms of the super�elds of N=1 supersymmetry in 3 dimensions.

In order to formulate the N=1 super-Chern-Simons coupled to the �3QED (20) in terms of super�elds,
we refer to the work by Salam and Strathdee [15]. Extending their ideas to our case in D=1+2, the
elements of superspace are labeled by (xm; �), where xm are the space-time coordinates and the fermionic
coordinates, �, are Majorana spinors, �c=�. 4

Now, we de�ne the N=1 complex scalar super�elds with opposite U (1)-charges, ��, as

�� = A� + � � � 1

2
��F� and �y� = A�� +  �� �

1

2
��F �� ; (21)

where A+ and A� are complex scalars,  + and  � are Dirac spinors and F+ and F� are complex auxiliary
scalars. Their gauge-covariant derivatives read :

ra�� = (Da � iq�a) �� and ra�
y
� =

�
Da � iq�a

�
�y� ; (22)

where Da�@a�i(m�)a@m and Da��@a+i(�m)a@m . The gauge superconnection, �a, is written in the
Wess-Zumino gauge as

�a = i(m�)aAm + ���a and �a = �i(�m)aAm + ���a ; (23)

with �eld-strength super�eld, Wa, given by

Wa = �1

2
DbDa�b : (24)

By using the previous de�nitions of the super�elds, (21), (23) and (24), and the gauge-covariant
derivatives, (22), we found how to build up the N=1 super-�3QED action coupled to a super-Chern-
Simons term, in superspace; it reads :

SSCS�3QED
=

Z
dv̂

n
2�(�W ) + (r�y+)(r�+) + (r�y�)(r��) + 2m(�y+�+ ��y���)

o
; (25)

3The am �eld is the real part of Bm, since we are assuming Bm=am+iAm. Also, as ' is a Dirac
spinor, it can be written in terms of two Majorana spinors in the following manner: '=��ib�.

4The adjoint and charge-conjugated spinors are de�ned by  = y0 and  c=�C T , repectively,
where C=�y. The -matrices we are using arised from the dimensional reduction to D=1+2 are:
m=(�x; i�y;�i�z). Note that for any spinorial objects,  and �, the product  � denotes  a�a.
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where the superspace measure we are adopted is dv̂�d3x̂d2� and the Berezin integral is taken as R d2�=�1
4
@@.

Our �nal conclusion is that the massive Abelian N=1 super-QED2+2 coupled to a self-dual super-
multiplet as proposed in ref.[10], shows interesting features when an appropriate dimensional reduction
is performed. The dimensional reduction �a la Nishino we have applied to our problem becomes very
attractive, since, after doing some truncations to avoid non-physical modes, N=1 super-Chern-Simons
coupled to a parity-preserving matter sector (super-�3QED) is obtained as a �nal result.
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