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Abstract

We reexamine the possibility of the detection of the cosmic topology in nearly at hyperbolic
Friedmann-Lemâ�tre-Robertson-Walker (FLRW) universes by using patterns repetition. We
update and extend our recent results in two important ways: by employing recent observa-
tional constraints on the cosmological density parameters as well as the recent mathematical
results concerning small hyperbolic 3-manifolds. This produces new bounds with conse-
quences for the detectability of the cosmic topology. In addition to obtaining new bounds,
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ogy on the uncertainties in the observational values of the density parameters.
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1 Introduction

Within the framework of standard cosmology, the universe seems to be well described by a
locally homogeneous and isotropic Robertson-Walker (RW) metric

ds2 = �c2dt2 +R2(t) f d�2 + f2(�) [ d�2 + sin2 � d�2 ] g ; (1)

where t is a cosmic time, f(�) = � ; sin� ; or sinh� ; depending on the sign of the constant
spatial curvature (k = 0;�1), and R(t) is the scale factor. However, a RW metric does not
uniquely specify the underlying RW spacetime manifold M4, which can be decomposed into
M4 = R �M . In traditional treatments of cosmology, the 3-space M is usually taken to be
one of the following simply-connected spaces: Euclidean E3, spherical S3, or hyperbolic space
H3. However, given that the simply-connectedness of our space M has not been established
by cosmological observations, our 3-space may equally well be any one of the possible quotient
(multiply connected) manifolds M = fM=�, where � is a discrete group of isometries of the
covering space fM acting freely on fM . The action of � tessellates the covering space fM into
identical cells or domains which are copies of what is known as fundamental polyhedron. An
immediate observational consequence of a nontrivial topology (multiple-connectedness) of the
3-space M is that the sky may show patterns repetition, i.e. multiple images of either cosmic
objects or spots on the cosmic microwave background radiation, such as circles in the sky.

Questions of topological nature, such as whether we live in a �nite or an in�nite universe
and what its shape may be are among the fundamental open questions that modern cosmology
needs to resolve. These questions go beyond the scope of general relativity (GR), since as a
(local) metrical theory GR leaves the global topology of spacetime undetermined.

Given the wealth of increasingly accurate cosmological observations, specially the recent
observations of the cosmic microwave background radiation (CMBR [1, 2], these questions have
become particularly topical (see, for example, [3] { [5]). It is therefore usually assumed that
despite our present-day inability to predict the topology of the universe, it will become detectable
as our observations become more accurate.

An important outcome of the recent observations has been to suggest that the universe is
almost at (see, e.g., [1, 2] and [6] { [8]). This has motivated the recent study of the question
of detectability of the cosmic topology in such nearly-at FLRW universes [9] { [11]. Here
we update and extend our works [9, 10] by employing recent observational constraints on the
cosmological density parameters as well as the recent mathematical results concerning small
hyperbolic 3-manifolds. In addition, we also �nd a concrete example of sensitive dependence of
the detectable set of topologies on the observational bounds on the density parameters.

2 Undetectability Indicators

Regardless of our present-day inability to predict the topology of the universe, its detection
and determination is ultimately expected to be an observational problem. Recent studies have
however shown that the near-atness of the universe, deduced from the recent analysis of ob-
servations data, may make the task of the detection of a possible nontrivial topology of the
universe rather diÆcult [9] { [11]. More precisely, it has been shown that if one uses patterns
repetition, increasing number of nearly at spherical and hyperbolic possible topologies for the
universe become undetectable as 
0 ! 1 [9, 10].

The study of the possible non-trivial topology of the spatial sections M requires topological
indicators which could be put into correspondence with observations. An intuitive starting point
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is the comparison between the horizon radius and suitable characteristic sizes of the manifoldM .
A suitable characteristic size of M , which we shall use in this paper, is the so-called injectivity
radius rinj (radius of the smallest sphere `inscribable' in M), which is de�ned in terms of the
length of the smallest closed geodesics `M by

rinj =
`M
2

: (2)

Using rinj we can de�ne the indicator [9]

Tinj =
rinj
�obs

: (3)

Now, in any universe for which Tinj > 1, every source in the survey lies inside a fundamental
polyhedron ofM , no matter what the location of the observer is within the manifold. As a result
there would be no repeated patterns in that survey and every method of the search for cosmic
topology based on their existence will fail | the topology of the universe is undetectable with
this speci�c survey. Now in practice, di�erent surveys may be (and are often) employed. There
are three main surveys that can be used in the search for repeated patterns in the universe:
namely, clusters of galaxies, containing clusters with redshifts of up to zcluster � 0:3; active
galactic nuclei (mainly QSO's and quasars), with a redshift cut-o� of zquasar � 6; and maps of
the CMBR with a redshift of zcmb � 1100. The crucial point is that the undetectability, based
on the employment of the above indicator (3), will be survey dependent. The latter survey, with
zcmb � 1100 corresponding to the redshift of the surface of last scattering, however, has a unique
place in practice, as it is in e�ect a limiting survey with the deepest depth. Thus the quotient (3)
computed with zcmb gives the lowest observational bound in practice for the indicator Tinj. At
a theoretical level, on the other hand, an absolute lower bound is given by the indicator de�ned
in terms of the horizon radius,

T hor
inj =

rinj
�hor

: (4)

The undetectability which arises from the condition T hor
inj � 1 is obviously survey indepen-

dent , and when this inequality holds no multiple images (or patterns repetition) will arise from
any survey, including, of course, CMBR. Thus, any method for the search of cosmic topology
based on the existence of repeated patterns will fail | the topology of the universe is de�nitely
undetectable in such cases.

It is worth emphasizing that the indicator Tinj is useful for the identi�cation of cosmological
models whose topology is undetectable through methods based on the presumed existence of
multiple images, for when Tinj � 1, the whole region covered by a speci�c survey lies inside a
fundamental polyhedron of M . However, without further considerations, nothing can be said
about the detectability when Tinj < 1. In fact, in this case, even if the radius of the depth
of a given survey is larger than rinj , it may be that, due to the location of the observer, the
whole region covered by the speci�c survey would still be inside a fundamental polyhedron of
M , making the topology undetectable. This is the case when the smallest closed geodesic that
passes through the observer is larger than 2�obs.

In section 4 we shall use T hor
inj and the indicator Tinj to examine the detectability of set of

small hyperbolic universes in the light of the most recent observations.
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3 Hyperbolic 3-manifolds

In this section we shall briey recall some relevant facts about hyperbolic 3-manifolds which will
be usefull in the following section. We note in passing that in line with the usual mathematical
practice in investigations of hyperbolic manifolds, we shall use the curvature radius as the unit
of length.

Despite the enormous advances made in the last few decades, there is at present no complete
classi�cation of hyperbolic 3-manifolds. However, a number of important results have been
obtained. Here we shall briey recall a number of results concerning closed orientable hyperbolic
3-manifolds which will be useful for our purposes in this work:

1. Mostow's rigidity theorem [12], which ensures a rigid connection between geometrical quan-
tities and topological features in hyperbolic 3-manifolds. Thus once the topology is spec-
i�ed, all metrical quantities, such as the volume and the lengths of their closed geodesics
are topological invariants for a given 3-manifold. We note, however, that the volume alone
does not uniquely specify the 3-manifold, and consequently there are topologically distinct
hyperbolic 3-manifolds with the same volume.

2. Compact orientable hyperbolic 3-manifolds constitute a countable in�nity of countably in-
�nite number of sequences, ordered according to their volumes. Moreover, a �xed sequence
has an accumulation of compact manifolds near a limiting volume set by a cusped manifold,
which has �nite volume, is non-compact, and has in�nitely long cusped corners [13].

3. According to a result of Thurston [13], there exists a hyperbolic 3-manifold with a minimum
volume. This has very recently been shown by Agol [14] to be greater than 0:32095,
improving an earlier bound (0:28151) by Przeworski [15];

4. Closed orientable hyperbolic 3-manifolds can be constructed and studied with the pub-
licly available software package SnapPea [16] (see also [17]). The compact manifolds are
constructed through a so-called Dehn surgery which is a formal procedure identi�ed by
two coprime integers, i.e. winding numbers (n1; n2). SnapPea names manifolds accord-
ing to the seed cusped manifold and the winding numbers. So, for example, the smallest
hyperbolic manifolds is named as m003(�3; 1), where m003 corresponds to a seed cusped
manifold, and (�3; 1) is a pair of winding numbers.

5. There is a census by Hodgson and Weeks [16, 18] containing 11031 orientable closed hy-
perbolic 3-manifolds ordered by increasing volumes. Besides the volumes, it also provides
other information, such as the solution type, the length of shortest closed geodesic and the
�rst fundamental group. The smallest (volume) manifold in this census (Weeks' manifold)
has volume Vol(M) = 0:94271, and is conjectured to be the hyperbolic 3-manifold with
minimum volume. But, as was mentioned above, the best current estimate for the vol-
ume V of the smallest closed hyperbolic orientable 3-manifold is that it lies in the range
0:32095 < V � 0:94271.

6. Clearly, there is a lower bound on the lengths of geodesics in any �nite set of small
volume closed orientable hyperbolic 3-manifolds. More importantly, according to a very
recent theorem of Hodgson and Kerckho� [19] the shortest geodesic in closed orientable
hyperbolic 3-manifolds with volume less than 1.7011 must have length greater than 0:162,
corresponding to a lower bound on rinj of 0:081. We recall that there are 19 manifolds
in Hodgson and Weeks census with volume smaller than 1:7011. We also note that the
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closed census intentionally excludes all manifolds containing geodesics of length less than
0:300, which means that the lower bound of 0:081 may in fact correspond to a larger set of
manifolds. It is worth noting that this is an important improvement on the lower bound
of 0:09 due to Przeworski [15] which we used in our previous work [10]. That bound was
established for a set of manifolds with volumes less than 0.94274, which only contained
one known manifold, namely the Weeks' manifold.

4 Detectability and observations

A combination of recent independent astrophysical and cosmological observations seems to in-
dicate that we live in an accelerating FLRW universe with nearly flat spatial sections (with

0 ' 1), which contains about � 30% dark matter, close to � 70% dark energy together with a
small amount of baryonic matter of the order of few percent (see, for example, references [1, 2]
and [6] { [8]).

In the light of these observations, we assume that the universe can be locally described by a
FLRW metric (1), and that the matter content of the universe is well approximated by dust of
density �m plus a cosmological constant �. The Friedmann equation is then given by

H2 =
8�G�m

3
�
kc2

R2
+
� c2

3
; (5)

where H = _R=R is the Hubble parameter and G is Newton's constant. Introducing 
m = 8�G�m
3H2

and 
� �
8�G��
3H2 = � c2

3H2 , and letting 
 = 
m +
�, equation (5) gives

H2R2(
� 1) = kc2 : (6)

From Eq. (6), for hyperbolic models (
0 < 1), the redshift-distance relation in units of the
curvature radius, R0, reduces to [9]

� (z) =
q
j1� 
0j

Z z

0

h
(1 + x)3
m0 +
�0 � (1 + x)2(
0 � 1)

i�1=2
dx ; (7)

where the subscript 0 denotes evaluation at present time. The horizon radius �hor is de�ned
by (7) for z =1. Written in this form the redshift-distance relation is very convenient for the
study of hyperbolic universes, since the curvature radius is used as the unit of length.

To begin with, we recall that the chances of detecting the topology of a nearly at compact
universe from cosmological observations become smaller as �hor ! 0 (�hor � R0). Thus as a
�rst step in studying the constraints on detectability we consider the horizon radius function
�hor(
m0;
�0) given by (7) with z = 1, for a typical �xed value 
m0 = 0:37, which is the
middle value of the bounds on 
m0 , obtained recently [2] by combining measurement of the
CMBR anisotropy (BOOMERANG-98, MAXIMA-1 and COBE DMR) together with supernovae
Ia (SNIa) and large scale structure (LSS) observations. Figure 1 shows the behaviour of �hor
as a function of 
�0 for this �xed value of 
m0 . Clearly, the limiting case of at universes
(
0 = 1) corresponds to the point at which the curves touch the horizontal axis. This �gure
clearly demonstrates the rapid way �hor drops to zero in a narrow neighbourhood of the 
0 = 1.
From the observational point of view, this shows that the detection of the topology of the nearly
at hyperbolic universes becomes more and more diÆcult as 
0 ! 1, a limiting value favoured
by recent observations.

To obtain more quantitative information, we employ the indicator Tinj to examine the de-
tectability of cosmic topology of hyperbolic universes with nontrivial topologies. Given the
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Figure 1: The behaviour of the horizon radius �hor in units of curvature radius, for FLRW
models with �m and � as a function of the density parameters 
� for 
m = 0:37, which is the
middle value for 
m . This �gure shows clearly the rapid way �hor falls o� to zero for nearly
at hyperbolic universes, as 
0 = 
m0 + 
�0 ! 1. The vertical represents �hor, while the
horizontal axis gives 
� .

existence of more recent estimates of the cosmological density parameters, we shall update and
extend our previous results by considering, in addition to the hyperbolic sub-interval given by
Bond et al. [20]:


0 2 [0:99; 1) and 
�0 2 [0:63; 0:73] (8)

the hyperbolic sub-interval consistent with a more recently bound on the density parameters
given by Ja�e et al. [2]


0 2 [0:98; 1) and 
�0 2 [0:62; 0:79] : (9)

To make a comparative study, we consider each set of these bounds in turn. Using the
hyperbolic sub-interval (8), one can calculate from (7) the largest values of �obs in this interval.
For zmax = 6 one �nds �max

obs = 0:20125, while for zmax = 1100 (CMBR) one �nds �max
obs =

0:33745. Thus, using quasars up to zmax = 6 , FLRW hyperbolic universes with the density
parameters in (8) have undetectable topologies if their corresponding injectivity radii are such
that rinj � 0:20125 . Similarly, for the same hyperbolic sub-interval, using CMBR, the topology
of hyperbolic universes with rinj � 0:33745 is undetectable. Further, for zmax =1; the largest
value of �obs in the sub-interval (8) is �hor = 0:349247, so the topology of hyperbolic universes
with rinj � 0:34924 is de�nitely undetectable regardless of depth of the survey. In Table 1 we
have summarized the restrictions on detectability imposed by the hyperbolic sub-interval (8)
on the �rst seven manifolds of Hodgson-Weeks census, where U denotes that the topology is
undetectable by any survey of depth up to the redshifts zmax = 6 (quasars) or zmax = 1100
(CMBR) respectively. Thus using quasars, the topology of the �ve known smallest hyperbolic
manifolds, as well as m009(4,1), are undetectable within the hyperbolic region of the parameter
space given by (8), while only topologies m007(3,1) and m009(4,1) remain undetectable even if
CMBR observations are used. This shows clearly how detectability depends concretely on the
survey used.
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M rinj quasars cmbr

m003(-3,1) 0.292 U |

m003(-2,3) 0.289 U |

m007(3,1) 0.416 U U

m003(-4,3) 0.287 U |

m004(6,1) 0.240 U |

m004(1,2) 0.183 | |

m009(4,1) 0.397 U U

Table 1: Restrictions on detectability of cosmic topology originated from the sub-interval (8) for the �rst
seven manifolds of Hodgson-Weeks census. Here U stands for undetectable using catalogues of quasars
(up to zmax = 6) or CMBR (zmax = 1100).

Considering now the second hyperbolic sub-interval (9), one can again calculate from (7)
the largest values of �obs in this interval: for zmax = 6 one has �max

obs = 0:313394, while for
zmax = 1100 (CMBR) one �nds �max

obs = 0:538276. Thus, using quasars up to zmax = 6 ,
FLRW hyperbolic universes with the density parameters in (9) have undetectable topologies if
rinj � 0:313394 . Similarly, for the same hyperbolic sub-interval, using CMBR, the topology
of hyperbolic universes with rinj � 0:538276 is undetectable. Further, for zmax = 1; the
largest value of �obs in the sub-interval (8) is �hor = 0:557832, so the topology of hyperbolic
universes with rinj greater than this value is de�nitely undetectable regardless of the depth of
the survey. The restrictions on detectability imposed by the hyperbolic sub-interval (9) on the
�rst seven manifolds of Hodgson-Weeks census can again be reexamined. Using this sub-interval
we �nd a very di�erent picture from that summarized in Table 1, namely that in this case, using
quasars, only two topologies [m007(3; 1) and m009(4; 1) ] would be undetectable whereas using
CMBR none of topologies of these seven manifolds (universes) would be undetectable. Table 2
summarizes the restrictions on detectability imposed by the hyperbolic sub-interval (9) on the
�rst seven manifolds of Hodgson-Weeks census.

M rinj quasars cmbr

m003(-3,1) 0.292 | |

m003(-2,3) 0.289 | |

m007(3,1) 0.416 U |

m003(-4,3) 0.287 | |

m004(6,1) 0.240 | |

m004(1,2) 0.183 | |

m009(4,1) 0.397 U |

Table 2: Restrictions on detectability of cosmic topology originated from the sub-interval (9) for the �rst
seven manifolds of Hodgson-Weeks census. Here U stands for undetectable using catalogues of quasars
(up to zmax = 6) or CMBR (zmax = 1100).

The results in Table 2 together with those in Table 1 make transparent that a variation
of 1% in the total density parameters 
0 (0:99 ! 0:98), for 
�0 2 [0:62; 0:79] , which would
have no signi�cant consequences in the geometrical (dynamical) features of the universes, would
crucially change the detectability of cosmic topology.

One can also reexamine, in the light of the new bounds (9), what is the region of the
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parameter space for which a given set of topologies are undetectable. To this end we note that
for a given topology (�xed rinj) and for a given survey up to zmax, one can solve the equation

�obs(
;
�) = rinj ; (10)

which amounts to �nding pairs (
;
�) in the density parameter plane for which Eq. (10) holds.
Consider now the set of the 19 smallest manifolds of the Hodgson-Weeks census in conjuction

with the hyperbolic region (9) and the eqs. (7) and (10). The manifold in this set with the lowest
rinj(= 0:152) is m003(�5; 4) . Figure 2 gives the solution curve of equation (10) in the 
0 { 
�0

0.996

0.997

0.998

0.999

1

0.6 0.65 0.70 0.75 0.80 0.85

r_inj  =  0.045

r_inj  =  0.081

r_inj  =  0.152

Figure 2: The solution curves of �obs = rinj , as plots of 
0 (vertical axis) versus 
�0 (horizontal
axis), for rinj = 0:045 (upper curve),rinj = 0:081 and rinj = 0:152 (lower curve). A survey with
depth zmax = 1100 (CMBR) was used in all cases. The dashed rectangular box represents the
relevant part, for our purposes, of the hyperbolic region (9) of the parameter space given by
recent observations. The undetectable regions of the parameter space (
0;
�0), corresponding
to each value of rinj, lie above the related curve.

plane for rinj = 0:152 and rinj = 0:081, where a survey of depth zmax = 1100 (CMBR) was
used.z This �gure also contains a dashed rectangular box, representing the relevant part (for
our purposes here) of the recent hyperbolic region (9). For each value of rinj undetectability
is ensured for the values of cosmological parameters (region in the 
0 { 
�0 plane) which lie
above the corresponding solution curve of (10). Thus considering the solution curve of (10) for
rinj = 0:081, one �nds that all closed orientable hyperbolic manifolds (universes) with volumes
less than 1:0711, for example, would have undetectable topology, if the total density 
0 turned
out to be higher than � 0:9994. Similarly, considering the solution curve of (10) for rinj = 0:152,
for example, one �nds that the topology of none of the 19 smallest manifolds of the census would
be detectable, if 
0 turned out to be higher than � 0:9974.

zThis �gure updates Figure 1 of in [10] two regards: �rst it employs a more recent hyperbolic sub-interval
of the cosmological density parameters [2]; second it uses the most recent lower bound on the length of shortest
closed geodesic in closed orientable hyperbolic 3-manifolds [19]. Note that as opposed to the manifolds considered
in [10] which could contain only Weeks' manifold, now there are at least 19 manifolds.
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5 Conclusions

Motivated by the recent observational results indicating that the universe is nearly at, we
have employed the recent analyses of the observational constraints on the cosmological density
parameters, together with recent mathematical results concerning small hyperbolic 3-manifolds,
to examine the possibility of detecting the topology of nearly at hyperbolic universes by using
patterns repetition. In this way we have updated and extended our recent results, which has
resulted in new bounds on detectable topologies.

In addition we have also found that small changes in the cosmological density parameters
of the order a few percent are suÆcient to radically e�ect the detectability of the topology of
small hyperbolic universes. This result, which is essentially the consequence of the rapid way
the horizon radius �hor falls o� to zero for nearly at hyperbolic universes, is of great potential
importance, as it demonstrates concretely how small changes in the observational bounds on
the cosmological density parameters could have important consequences for the question of
detectability of the cosmic topology.
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