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Abstract

The di�usion equation of cosmic-ray nucleons is exactly integrated using the successive

approximation method for a general distribution of the primary component, and taking

into account the rising with energy of the nucleon-air nuclei cross-section.

The interaction probability law for the nucleon in the atmosphere is obtained as a

consequence of the respective di�usion equation. If the nucleon-air nuclei cross-section

rises logarithmically, this probability law assumes a binomial form, and for the constant

cross-section it is purely poissonian.

We also compared our calculated nucleon intensity with the measured at sea-level: a

good consistency is obtained with an average inelasticity coe�cient around 0:60.
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1 Introduction

It's a well know fact that if we suppose that the inelasticity coe�cient, k, and the

nucleon-air nuclei interaction mean-free path, �, are constants, then a nucleon that makes

\n" interactions in traversing a depth x of the atmosphere, will have its energy reduced

from E0 =
E

(1 � k)n
to E. So, the elementary energy contribution of the primary spectrum

to the x level di�erential energy intensity is given by G(E0)dE0 = G

 
E

(1 � k)n

!
dE

(1� k)n
.

Besides, G. Brooke et al(1) assuming, a priori, that the probability of a nucleon to make

n interactions is given by the Poisson distribution law, Pn(x) = e�x=�
(x=�)n

n!
, obtained

for the total 
ux at depth x the following expression

F (x;E) =
1X
n=0

Pn(x)G(E0)=(1 � k)n

F.M. Castro(2) derived the same expression integrating the di�usion equation of nucle-

ons using the successive approximation method without any hypothesis on the collision's

probability law, which resulted so to be poissonian.

In a similar way and using the same successive approximation method we solved ex-

actly the nucleon di�usion equation supposing that the nucleon-air nuclei interaction

mean-free path decreases with energy but the nucleon elasticity is still constant. In

this case the interaction probability law is non-poissonian. Assuming, a logarithmic

parametrization for the nucleon-air nuclei cross-section in the form � = �0(1+a lnE=TeV )

we obtained a binomial distribution.

We compared also our calculated nucleon 
ux with the measured at sea-level for dif-

ferent values of the inelasticity coe�cient.

We estimated the e�ect of the rise of the nucleon-air nuclei cross-section of the type

�(E) = �0(1 + a lnE=TeV ) on the exponent of the energy nucleon spectrum with the

increase of the atmospheric depth. Here this power index rises non linearly with increase

of the atmospheric depth.

2 Nucleon Di�usion Equation

The di�usion equation for nucleons in the atmosphere can be written as

@F (E; x)

@x
= �

F (E; x)

�(E)
+

(E=�; x)

�(E=�)�
(2.1)
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where the nucleon elasticity, � is still constant but the interaction mean free path, �(E)

decreasing with energy.

The equation (2.1) must be integrated with the boundary condition, F (O;E) = G(E),

where G(E)dE stands for the di�erential energy spectrum of nucleons at the top atmo-

sphere, (x = 0).

Let us put

F (x;E) = e�x=�(E)y(x;E) (2.2)

with this substitution, equation (2.1), and its initial condition become

@y(x;E)

@x
=

e��(E;�)x

��(E=�)
y(x;E=�) (2.3)

and

y(0; E) = G(E) (2.4)

where

�(E; �) =

 
1

�(E=�)
�

1

�(E)

!
(2.5)

The di�erential equation (2.3) with (2.4) is equivalent to the following single integral

equation

y(E; x) = G(E) +
1

��(E=�)

Z x

0
e��(E;�)ty(E=�; t)dt (2.6)

In order to solve equation (2.6), we use the following successive approximations:

y0(E; x) = G(E) (2.7)

and

yn(E; x) = G(E) +
1

��(E=�)

Z x

0
e��(E;�)tyn�1(E=�; t)dt (2.8)

The approximation of order n order n is

yn(E; x) = G(E) +
nX

j=1

G(E=�j)

�j�(E=�)�(E=�2) � � � �(E=�j)
�

�
Z x

0
dtne

�tn�(�;E) �
Z tn

0
dtn�1e

�tn�1�(�;E=�) � � �

� � � =
Z t2

0
dt1e

�t1�(�;E=�n�1) (2.9)
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which can be compactly rewritten as

yn(E; x) = G(E) +
nX

j=1

"j(E)G(E=�j)

�j
�j (x; �(E; �)) (2.10)

where

�j(E) =
nY

j=1

1

�(E=�j)
(2.11)

and �j(x; �(E; �)) represents the multiple integral

�j(x; �(E; �)) =
Z x

0
dtne

�tn�( 1
�(E=�)�

1
�(E) ) �

Z tn

0
dtn�1e

�tn�1�

�
1

�(E=�2)
�

1
�(E=�)

�

� � �
Z t2

0
dte

�t1�

�
1

�(E=�n)�
1

�(E=�n�1)

�
(2.12)

and the approximation of order n for the function F (x;E) is

Fn(x;E) =

2
4G(E) + nX

j=1

�j(E)�j(x; �(E; �))
G(E=�j)

�j

3
5 e�x=�(E) (2.13)

3 Nucleon-air Nuclei Interaction Probability Law

The total nucleon 
ux, F (x;E), can also be expressed in the following way,

F (x;E) =
1X
n=0

Pn(x;E0)
G(E0)

�n
(3.1)

where Pn(x;E0) is the probability that a nucleon with energy E0=�
n at x = 0 interacts

n times down to the depth x and it assumes di�erent forms for di�erent dependences of

the interaction length with energy.
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Figure 1: Inelastic cross-sections of p-air. Data are from (3) for N, (4) for �, (5) for

�, (6) for � and (7) for �. Four lines are drawn for a =0.04, 0.06, 0.08 and 0.10 in the

formula � = 300(1 + a lnE=TeV ).

In Figure 1, the cross-sections of inelastic interactions between protons and air are plotted

against energy. Data are from air shower experiments [3{6] and from accelerator exper-

iments [7]. For the latter, �(pp) or �(�pp) were converted to � (p-air) by the empirical

formula of Hillas [8].

Several functional forms have been proposed to �t the behaviour of rising cross-section,

among which we adopt the following one in our calculation

� = �0(1 + a lnE=") (3.2)

In �gure 1, three cases of the logarithmically energy-dependent cross-section are shown

by full lines for a guide.
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In this case, the expressions (2.10) and (2.11) take the forms

�j(E) = �(�)j
�(Z(E) + j + 1)

�(Z(E) + 1)
: (3.3)

and

�j(x; �(�)) =
1

j!

 
1 � e��(�)x

�(�)

!j

where

Z(E) =
1 + a ln(E=")

�(�)�0
;

�(�) =
a

�0
ln =�

and
1

�(E)
=

1

�0
(1 + a lnE=") ; �0 = 80g=cm2

Thus, the approximation of order n (2.12) becomes

yn(x;E) = e�x=�(E)

8<
:G(E) +

nX
j=1

(1� e��(�)x)j

j!

�(Z + j + 1)

�(Z + 1)

G( E
�j
)

�j

9=
; (3.4)

As described in the appendix, this partial sum converges absolutely and uniformly to

the solution of the integral equation (2.6) as

y(E; x) = lim
n!1

yn(E; x) (3.5)

The di�erential nucleon 
ux at a depth x with energy between E and E + dE is

F (x;E) =
1X
n=0

e�x=�(E0�
n) �(Z + n + 1)

n!�(Z + 1)

�
1 � e��(�)x

�n
(3.6)

Thus, we get immediately the di�erential intensity at the atmospheric depth, x, with-

out any hypotheses on the collision's probability distribution, which results to be the

binomial,

Pn(E0; x) = e�x=�(E0�n)
�(Z + 1 + n)

n!�(Z + 1)

�
1 � e�(�)x

�n
(3.7)
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Figure 2: Nucleon-air nuclei interaction probability law at x = 540g=cm2. Solid curve

represents the Poisson distribution law for � = 80g=cm2 (constant) and the broken curves

the binomial distribution for �(E) = 80(1 + 0:06 lnE=TeV ).

Figure 3: Nucleon-air nuclei interaction probability law at x = 1030g=cm2. Solid curve

represents the Poisson distribution law for � = 80g=cm2 and the broken curves the bino-

mial distribution for �(E) = 80(1 + 0:06 lnE=TeV ).
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Figure 2 and Figure 3 shows the nucleon-air nuclei interaction probability law plotted

against the number of interactions (n) for two di�erent atmospheric depth, x = 540g=cm2

x = 1030g=cm2 . These �gures show a comparison of our solution (expression 3.8) with

the Poisson Distribution obtained for the case of the nucleon interaction length constant.

We notice from the �gures that as the primary energy increases the mean value of the

nucleon interactions in the atmosphere increases. For the case of the Poisson distribution

this value is constant, independent of energy. Both distributions are normalized
1X
n=0

Pn(E0; x) = 1 ; for a �xed E0 : (3.8)

In the usual Grigorov approximate solution, Pn(E0; x) can be written as

Pn(E0; x) =
e�x=�(E0�n)

n!

 
x

�(E0�n)

!n

(3.9)

assuming constant elasticity. This expression is a Poissonian Distribution, where the

mean-free path of a nucleon at depth x is dependent of the energy. The sum Pn(E0; x)

at a given value of E0 is smaller than unity, which results in lower interaction probability

and higher nucleon number ours.

4 Comparison With Experimental Data

In order to make a comparison with the nucleon 
uxes measured at sea level(10) we

need to take into account the primary cosmic-ray 
ux in addition to the cross-section.

At the top of the atmosphere, protons share the majority of incoming cosmic-ray parti-

cles, but the number of nuclei cannot be negligible in order to study the nucleon 
ux.

Bhattacharyya(11) analysed experimental data of balloon-borne experiments and reported

the nucleon 
ux at the top the atmosphere to be 2.237 E�2;7 (cm2:st:GeV=nucleon)�1.

Thus, for the primary nucleon 
ux of the form

G(E) = N0E
�(
+1) (4.1)

our solution (3.7) becomes

F (X;E) = N0E
�(
+1)e�x=�(E)(1� �)�(Z+1) (4.2)

with

� = �

�
1� e��(�)x

�
(4.3)
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Figure 4: Di�erential nucleonic intensity sea level. Data are from (10) (�; 0). Three lines

are drawn for di�erents values of the inelasticity coe�cient: (� � � � �) for < K >= 0.5,

( ) for < K >= 0.6 and (����) for < K >= 0:7.

Figure 4 shows the comparison of our solution (4.2) with the nucleon 
uxes measured at

sea-level(10). Three curves of the mean value of nucleon inelasticity coe�cient, < K >=

0:5; 0:6 and 0:7 are also drawn in the �gure. We see that the curve < K >= 0:6 gives a

good agreement with experimental data.

Using the approximation ln(1��) ' ��, we derived from our solution (4.2) the power

index 
0 at the atmospheric depth x, as


0 = 
 +
ax

�0
+
�
(1� �ax=�0)

ln �
(4.4)

From the usual and compact Grigorov approximate solution(9) which has been widely

accepted and used in the �eld;

F (X;E) = N0E
�(
+1)e�x=L(E) (4.5)
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with

L(E) =
�(E)

1� < �
 >
(4.6)

the power index 
0 is obtained as


0 = 
 +
ax

�0
�
ax

�0
�
 (4.7)

If the nucleon interaction mean free path is constant, the exponent 
0 is also constant

and independent of the atmospheric depth. We have


0 = 
 (4.8)

for the case �(E) = �0

Figure 5: Power index of the nucleon spectrum against atmospheric depths. Five lines

are drawn: The dashed-dotted line represents the expresssion (4.8), the dashed lines 1

and 2 represent the expression (4.7) for < K >= 0.5 and 0.6 respectively and the full

lines 3 and 4 represent the expression (4.4) for < K >= 0.5 and 0.6 respectively.
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Figure 5 shows the variation of the power index 
0 with atmospheric depth in case of


 = 1:7, a = 0:06, and �0 = 80g=cm2. The dashed-dotted line represent the expression

(4.8), the dashed lines 1 and 2 represents the expression (4.7) for< K >= 0.5 and < K >=

0.6 respectively and full lines 3 and 4 represents the expression (4.4) for < K >= 0.5 and

< K >= 0.6 respectively. We notice from the �gure that the power index derived from

our solution becomes larger at deeper atmospheric depths than the others two.

5 Discussions and Conclusions

We have solved the di�usion equation of cosmic-ray nucleons analytically and exactly

taking into account the rising cross-section of the form �0(1 + a lnE=TeV ). We ob-

tained further the binomial distribution law for the nucleon-air nuclei interactions as a

consequence of the respective di�usion equation. In the case of constant cross-section,

the function �(�) is zero and the Pn(E0; x) is purely poissonian and independent of the

primary energy, E0.

Through a comparison of our solution with di�erential nucleon 
uxes measured at sea

level, we have found that the mean value of inelasticity, 0; 60, gives a good agreement.

But, is important to observe that a change of the dependence with energy of the nucleon

interaction lengths and the inclusion of an elasticity distribution largely a�ects the nucleon


ux.

We show also that the rise of the inelastic cross-section of the type �(E) = �(1 +

a lnE=TeV ) up to energies 107GeV lead to an increase of the exponent of the nucleon

spectrum with increase of the atmospheric depth and to a softening of the nucleon inten-

sity. The power index rises non linearly with the increase of the atmospheric depth and

rises quicker than the derived from the Grigorov approximate solution.
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Appendix

Convergence of yn(E;n)

The function G(E) is supposed to be continuous, positive and bounded (G(E) < M)

for E > 0. Thus we have

jyn(E; x)j �M
nX

j=0

�(Z + 1 + j)

�(Z + 1)j!
�j

whereM is a positive constant and � =
(1� e��x)

�
. The right-hand side of this expression

is the partial sum of order n of the expansion M(1 � �)�(Z+1) with convergence radius

� = 1 when j�j < 1. In this manner the partial sum yn(E; x) represented in (3.5) converges

absolutely and uniformly to the solution (3.6). The function y(X;E) is continuous, in the

closed set T whose points satisfy the conditions E > 0 and e��x > 1� �.
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