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The theoretical derivation of the phonon anomalous dispersion relation,
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p2), predicts that 
 is positive and therefore that the four-phonon process
is the dominant scattering, thus contradicting experimental results of phonon lifetime in
neutron scattering and of speci�c heat measurements. We show that this discrepancy
between theory and experiment concerning the stability of phonon spectrum is overcome
when we treat the gas of phonon excitations in 4He as an ideal deformed bosonic gas.
When this model is compared with data from 4He speci�c heat measurements for T < 1K,
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data.
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1 Introduction

The phenomenon of super
uidity, which is the ability of a liquid to 
ow through narrow
capillaries without any friction, was discovered by Kapitza [1]. It appears in liquid Helium
[1, 2] bellow the �-point, which is the temperature where it undergoes a second order phase
transition (T� = 2:18 K) [3].

The super
uid properties of 4He are well described by Landau theory [4].In this theory,
which is based on a quantum liquid concept, the super
uidity in 4He follows from phonon
and roton excitations [5]. Even for very low temperatures (below 1 K), the phonons
present an anomalous dispersion given by

!ph = c0p(1 � 
p2) ;

where c0 is the sound velocity. This dispersion relation was theoretically derived from a
hydrodynamic Hamiltonian [6]: through a self-energy calculation using the lowest order
perturbation theory, the constant 
 was estimated to be positive. The positivity of 

implies that the three-phonon process is not allowed and therefore the four-phonon process
would be the dominant scattering. This is in disagreement with experimental results.
On one side, a negative 
 is obtained (for most values of the pressure) in 4He speci�c
heat measurements [7, 8]. Besides, experimental data of phonon lifetime in scattering of
neutrons show that the phonon spectrum is unstable, that is, the three-phonon process
does occur [9].

In 4He, phonon excitations are dominant in the lowest part of the dispersion curve [4].
As the momentum approaches p0=~ = 1:9A�1, the rotons contribution becomes more and

more relevant. Their dispersion is given by !rot(p) = � +
(p � po)2

2�
, where

�

kB
= 8:6 K

and the e�ective mass of the roton m = 0:15 mHe. For temperatures not too close to the
�-point, the gas of elementary excitations is treated as an ideal bosonic gas. The phonon
gas obeys Bose-statistics and the minimum roton energy is high enough so that the rotons
follow Boltzman distribution.

The purpose of this paper is to present a model where the discrepancy between theory
and experiment concerning the stability of the phonon spectrum in 4He is overcome [10].
We show that treating the gas of phonon excitations as an ideal deformed bosonic gas,
we �nd positive values for 
, but due to the in
uence of the deformation parameters, the
phonon spectrum is unstable (in accordance with the experimental data). These results
are obtained by comparing our model with data from 4He speci�c heat measurements [8]
and we reproduce, within 5% of accuracy, the curves resulting from least squares �ts of
those data.

A deformed ideal bosonic q-gas is a system that generalizes the ideal boson gas using a
set of independent q-oscillators [11, 12], which are objects that satisfy deformedHeisenberg
algebra, instead of the standard bosonic oscillator. Deformed Heisenberg algebras are non-
trivial generalizations of the Heisenberg algebra through the introduction of one (or more)
[13] deformation parameters such that the non deformed case is recovered for a special
limit of the parameter (s). It is worth to note that q-oscillators can be interpreted as usual
quantum oscillators presenting a particular type of non-linearity [14]. Moreover, a special
class of deformed algebra, called \quasi-triangular Hopf algebras" in the mathematical
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literature [15], presents an interesting connection with q-oscillators: the q-analogue of
classical Lie Algebras [16, 17], which are examples of quasi-triangular Hopf algebras,
can be realized in terms of q-oscillators [11, 18]. Finally, interesting systems possessing
deformed symmetry algebras have been found in several areas of physics [19{21].

Most of the literature on the ideal boson q-gas refers to a representation of a q-
oscillator algebra that we call \fundamental representation" [22]. Di�erent representations
characterized by a parameter �0 have been obtained [23]. Recently, the consequences
of using such inequivalent representations on an ideal q-gas were discussed and �0 was
interpreted as a \background e�ect" [22]. This parameter is crucial to construct our ideal
q-gas model for the phonon spectrum in 4He [10].

This paper is organized as follows: in section 2 we review the ideal q-gas in its fun-
damental representation (�0 = 0); in section 3 we extend to the (�0 6= 0) inequivalent
representations; in section 4 we present our model for the phonon spectrum in 4He and
�nally, in section 5 we compare it with data on CV measurements of 4He and present our
conclusions.

2 Ideal q-gas in the \fundamental representation"

One calls bosonic q-oscillators (or deformed Heisenberg algebra) [11, 12] the associative
algebra generated by the elements a; a+ and N satisfying the relations

[N; a+] = a+ ; [N; a] = �a (2.1)

aa+ � qa+a = q�N ;

where the deformation parameter q 2 IR. Note that a and a+ are generalizations of the
usual annihilation and creation operators and that the standard algebra is recovered in
the limit q! 1.

It is possible to construct the representation of relation (2.1) in the Fock space F
generated by the normalized eigenstates jni of the number operator N as

aj0i = 0; ; N jni = njni ; ; n = 0; 1; 2 � � � (2.2)

jni =
1q
[n]!

(a+)nj0i ;

where [n]! � [n] � � � [1]; [n] = (qn � q�n)=(q � q�1) and [n]! n as q! 1.
In F one can express the deformed oscillators in terms of the standard bosonic ones

b; b+, which obey the usual Heisenberg algebra,

bb+ � b+b = 1 ; N = b+b ; (2.3)

as [24]

a =

 
[N + 1]

N + 1

!1=2

b ; a+ = b+
 
[N + 1]

N + 1

!1=2

; (2.4)
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and it can easily be shown, using (2.3), that

aa+ = [N + 1] ; a+a = [N ] : (2.5)

It is well known that the SU(2) algebra

[J0; J�] = �J� ; [J+; J�] = 2J0 (2.6)

can be realized �a la Jordan Schwinger through the use of a pair of creation and annihilation
operators as

J+ = b+1 b2 ; J� = b+2 b1 ; J0 =
1

2
(N1 �N2) =

1

2
(b+1 b1 � b+2 b2) : (2.7)

It was shown by Biederharn and Macfarlane that the appropriate objects to realize SUq(2)
(the deformed SU(2) algebra),

[J0; J�] = �J� ; [J+; J�] = 2[J0] (2.8)

are the q-oscillators. In fact, considering a pair of independent q-oscillators a1 and a2,
one realizes SUq(2) �a la Jordan Schwinger as [11]

J+ = a+1 a2 ; J� = a+2 a1 (2.9)

J0 =
1

2
(N1 �N2) 6=

1

2
(a+1 a1 � a+2 a2) :

Further, with

n1 = j +m ; n2 = j �m ; (2.10)

one can realize the jj;mi basis of SUq(2) by means of the above q-oscillators as:

jj;mi = jn1ijn2i =
(a+1 )

j+mq
[j +m]!

(a+2 )
j�mq

[j �m]!
j0i : (2.11)

As expected, in the q! 1 limit the non-deformed algebras are recovered.
We are interested in real q > 1 deformed q-oscillators. We note that in the q ! 1

limit for n � 2; [n]!1 and as a result when q =1 Fock space

jni =
1q
[n]!

(a+)nj0i ;

is reduced to a fermionic one since jni vanishes for n � 2 [25].
Let us consider an ideal deformed system described by the Hamiltonian [27, 25, 26]:

H =
X
i

!ia
+
i ai =

X
i

!i[Ni] ; (2.12)

where ai; a
+
i and Ni are interpreted respectively as annihilation, creation and occupation

number operators of particles in level i, with energy !i, which satisfy the algebra (2.1)
and commute for di�erent levels.
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The grand canonical partition function is:

Z = Tr exp[��(H � �N)] = exp(��
) ; (2.13)

where T is the temperature, kB is the Boltzmann constant, � = (kBT )�1 and N;N =X
i

Ni, is the total number operator; � is the chemical potential and 
 is the grand

canonical potential. For the above system Z factorizes and the grand canonical potential
is given by a sum over single level partition functions [26]


 = �
1

�

X
i

lnZ0
i (!i; �; �) ; (2.14)

where

Z0
i (!i; �; �) =

1X
n=0

e��(!i[n]��n) : (2.15)

The system is enclosed in a large �-dimensional volume V and as in the usual pro-
cedure, the sum over levels is replaced by an integral over the ~p-space. With the energy
spectrum of each q-particle obeying the dispersion law

!i ! 
p� ; (2.16)

the general expression for the grand canonical potential (2.14) is


 =
�V

h��

Z
d�p ln

1X
n=0

e��(
p
�[n]��n) ; (2.17)

for � = 1(2) one recovers the ultrarelativistic (non-relativistic) case, with 
 = 1(1=2m).
Integrating over the angular variables, de�ning the new variable � = �
p� and inte-

grating (2.17) by parts, we �nally have


 = �
����

�( �
�
+ 1)�

Z
1

0
d� ��=�

1X
n=0

[n]zne�[n]�

1X
n=0

zne�[n]�
; (2.18)

where z = e�� is the fugacity. The thermal wavelength �; ��� =
��=2�( �

�
+1)

�( �
2
+1)h�(�
)�=�

, is the

relevant expansion parameter in the thermodynamic functions.
The pressure P = �


V
and the density n = @P

@�
jT;V for the q-oscillator in �-spatial

dimensions and energy spectrum given by (2.16) are then

P (T; z) = kT���Yq(z) (2.19a)

n(T; z) = ���yq(z) ; (2.19b)
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where

Yq(z) =
1

�( �
�
+ 1)

Z
1

0
d� ��=�

1X
n=0

[n]zne�[n]�

1X
n=0

zne�[n]�
(2.20a)

yq(z) = z@zYq(z)

=
1

�( �
�
+ 1)

Z
1

0
d� ��=�

2
66664

1X
n=0

[n]nzne�[n]�

1X
n=0

zne�[n]�

�

 
1X
n=0

[n]zne�[n]�
! 

1X
n=0

nzne�[n]�
!

 
1X
n=0

zne�[n]�
!2

3
777775 : (2.20b)

We can see numerically that for high q (which, means q > 3) [25, 26, 28], the series in
functions Yq(z) and yq(z) can be approximated by their �rst three terms (n = 0; 1; 2):

Yq(z) �=
1

�( �
�
+ 1)

Z
1

0
d� ��=�

"
ze�� + (q + q�1)z2e�(q+q

�1)� + � � �

1 + ze�� + z2e�(q+q�1)� + � � �

#
; (2.21a)

yq(z) �=
1

�( �
�
+ 1)

Z
1

0
d� ��=�

"
ze�� + 2(q + q�1)e�(q+q

�1)� + � � �

1 + ze�� + z2e�(q+q�1)� + � � �
(2.21b)

�
(ze�� + (q + q�1)z2e�(q+q

�1)� + � � � )(ze�� + 2z2e�(q+q
�1)� + � � � )

(1 + ze�� + z2e�(q+q�1)� + � � � )2

#
:

Similarly, to the ideal gas, in the high temperature limit, the fugacity z is small
compared to one; performing the integrations and keeping terms up to the third order in
z, we obtain

P =
���

�
z[1 + F1z + F2z

2 +O(z3)] ; (2.22)

and

n = ���z[1 + 2zF1 + 3z2F2 +O(z3)] ; (2.23)

where the coe�cients F are given by:

F1 =
�1

2
�
�
+1

+
1

(q + q�1)�=�
; (2.24a)

F2 =
1

3
�
�
+1
�

1

(1 + q + q�1)�=�
: (2.24b)
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Inverting (2.23) and substituting into (2.22), we �nd the virial expansion of the deformed
gas [25, 26, 29]:

P =
n

�

"
1 �

 
�1

2
�
�
+1

+
1

(q + q�1)�=�

!
(n��) + 2

�
1

2
2�
�
+1
+ (2.25)

�
1

3
�
�
+1
�

2

(2 + 2q + 2q�1)�=�
+

1

(1 + q + q�1)�=�

!
(n��)2 + � � �

#
:

For lower temperatures, if n is kept constant, n�� increases and so does z. When z
reaches 1, the temperature T attains its critical value T q

c , de�ned by

n��
c = yq(1) ; (2.26)

which can be expressed as:

T q
c =


��=�(�
2 + 1)h�n�=�

k��=2��=�( �
�
+ 1)y

�=�
q (1)

: (2.27)

From (2.15) we see that the ground state (!i = 0) is not a�ected by the deformation.
Therefore, the series in (2.20) will only converge if z < 1 and � has to be non-negative as
in the usual ideal gas. Also, when T ! 0, there will be an accumulation of particles in this
state: Bose-Einstein condensation is present in this deformed system [28]. Comparing Tc
to the critical temperature for non-deformed gases of the same density n, one �nds

T q
c

Tc
=

 
2:61

yq(1)

!�=�

: (2.28)

In the vicinity of T q
c we have to take into account the zero-point energy and single out

its contribution in (2.20). Therefore the expressions for P and n become:

P (T; z) = ��1���Yq(z) ; (2.29a)

n(T; z) =
1

V

z

1 � z
+ ���yq(z); (2.29b)

where the �rst term on the right-hand side of (2.29.b), which is due to the contribution
of the zero energy, is relevant only for T � T q

c . In this region z remains equal to one, as
in the usual case.

The speci�c heat per mole CV is de�ned as

CV = V
@~e

@T

�����
n

; (2.30)

where ~e is the energy density (internal energy per volume) and V the molar volume. From
the thermodynamic de�nitions of ~e and of the entropy density one has

~e = n�� �
@P

@�

�����
�

� P ; (2.31)
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with P given by (2.29.a). It is easy to �nd that

~e =
�

�
P ; (2.32)

a generalization of the standard result for q = 1.
To obtain CV one has to compute @T ~ejn � (@~e=@T )jn which from (2.32) can be obtained

in the two regimes from

P (T ) = ��1���Yq[z(T )] T > Tc (2.33)

P (T ) = ��1���Yq(1) T � Tc :

Now, for T > T q
c ,

@T ~ejn =
�

�

�
�

�
+ 1

�
k���Yq(z) +

�

�
kT��Y 0

q (z)@Tzjn ; (2.34)

where Y 0

q (z) = @zYq(z). From yq(z) = ��n,

@T zjn = �
�

�

��T�1n

y0q(z)
: (2.35)

Substituting (3.35) in (3.34) one gets

CV

k
=

�

�

�
�

�
+ 1

�
(��n)�1Yq(z)�

�
�

�

�2 yq(z)

zy0q(z)
: (2.36)

Also, for T < T q
c ,

CV

k
=

�

�

�
�

�
+ 1

�
(��n)�1Yq(1) : (2.37)

Clearly equations (2.36) and (2.37) also generalize the usual q = 1 ideal bosonic gas
speci�c heat.

It is seen from above that for �
�
> 1 a deformed q-gas has the Bose-Einstein conden-

sation phenomenon with the speci�c heat exhibiting a sort of �-point discontinuity. The
critical temperature being higher than for the bosonic ideal gas, we see that the presence
of deformation favours the Bose-Einstein condensation phenomenon.

3 Ideal q-gas in the inequivalent (�0 6= 0) representa-
tions

We show now the consequences of choosing di�erent representations of a q-oscillator
algebra on a system which generalizes the ideal quantum boson gas [22, 23, 30].

Let us consider the deformed algebra (2.1). Assuming that a; a+ are mutually adjoint,
N = N+ and the spectrum is non-degenerate, representations of algebra (2.1) in a Hilbert
space H were built [23].
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Denoting the normalized basis vectors by jn >, for q > 1 (which is the case we shall
be interested) the following representations were obtained [23]:

a+jn > = q��0=2[n+ 1]1=2jn+ 1 >;

ajn > = q��0=2[n]jn� 1 >; (3.1)

N jn > = (�0 + n)jn > ;

where �0 is a real free parameter which goes to zero when q ! 1. When �0 = 0, N is
interpreted as the usual particle number operator for the state jn >. This is not anymore
the case for �0 6= 0 [22]; its eingenvalue is interpreted as the sum of the number of particles
n, in the state jn >, plus a background e�ect �0. The operator N̂ = N ��0 is the number
operator, N̂ jn >= njn >, for the representations in (3.1) characterized by �0.

For q > 1, as �0 is the lowest bound of the spectrum of N , it classi�es inequivalent
representations of the algebra (2.1) [22]. In fact, it can be easily veri�ed that

C = q�N([N ]� a+a) (3.2)

is a Casimir operator for the algebra (2.1) and in the representation (3.1) one has

Cjn >= q��0[�0]jn > : (3.3)

As (3.2) is di�erent from zero only for q 6= 1, one sees from (2.4) that when q = 1, �0 is
necessarily zero.

Let us now consider an ideal deformed system described by the Hamiltonian

H =
X
i

!i a
+
i ai =

X
i

!i([Ni]� qNiCi) (3.4)

where Ni is an operator that can be interpreted as the number operator of particles in
levels i when �0 = 0. ai, a

+
i and Ni satisfy algebra (2.1) and commute for di�erent levels.

In the grand canonical partition function (2.14), we have now

Z0
i (!i; �; �) =

1X
n=0

e��(!iq
��0 [n]��n) : (3.5)

When �0 is assumed to be the same for all levels i, we obtain the low density virial
expansion:

P = n
�

h
1� q��0d=�

�
� 1

2d=�+1
+ 1

(q+q�1)d=�

�
(n^d)

+q�2�0d=�2
�

1
22d=�+1

� 1
3d=�+1

� 2
2d=�(q+q�1)d=�

+ 1
(1+q+q�1)d=�

�
(n^d)2 + � � � ] : (3.6)

When the energy spectrum of the q-particles obeys the dispersion law (2.16), the pres-

sure P and the density n are given by (2.19) and (2.20), where now ^��q =
��=2�( ��+1)

�( �
2
+1)h� (�
q)�=�

is the modi�ed thermal wavelength with 
q = q��0
. Also, in the low temperature regime,
when the fugacity z ! 1 the temperature attains its critical value T q

c ,

T q
c =


q��=�
�
�
2
+ 1

�
h�n�=�

k��=2��=�
�
�
�
+ 1

�
y
�=�
q (1)

; (3.7)
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and (2.28) becomes here

T q
c

Tc
=

 
2:61

yq(1)

!�=�

q��0 : (3.8)

Similarly to the �0 = 0 case, the basic equations are

P (T; z) = ��1 ^��q Yq(z) (3.9)

and

n(T; z) =
1

V

z

1� z
+ ^��q yq(z) ; (3.10)

the �rst term on the right-hand side of (3.10), which is due to the contribution of zero
energy, is relevant only for T � T q

c . In this region z remains equal to one, as in the
standard case. For �0 = 0, (2.27), (2.28) and (2.29a and b) are recovered.

The speci�c heat per mole CV , (2.36) and (2.37), is then

CV =k =
�

�

�
�

�
+ 1

�
(^�

qn)
�1Yq(z)�

�
�

�

�2 yq(z)

zy0q(z)
; T > T q

c ; (3.11a)

CV =k =
�

�

�
�

�
+ 1

�
(^�

qn)
�1Yq(1) ; T < T q

c : (3.11b)

It is interesting to observe that the presence of the parameter �0, which characterizes the
di�erent representations of the q-oscillators algebra (2.1), changes the shape of the speci�c
heat CV in (3.11) but leaves the \�-point discontinuity" invariant [22]. We remark also
that as in the \fundamental" representation (�0 = 0), the q-gas presents Bose-Einstein
condensation but now the critical temperature depends on the representation under con-
sideration.

4 A deformed model for phonons in 4He

We propose now that the phonons in 4He are described by a q-gas and take for the phonon
gas the Hamiltonian (3.4), that is,

H =
X
i

!ia
+
i ai =

X
i

!i
�
[Ni]� qNiC

�
; (4.1)

As � = 0 for phonons [31], our canonical potential is


 = �
1

�

X
i

ln
1X
n=0

e��!iq
�i
0 [n] : (4.2)

We will now abandon the assumption that �i0 is the same for all levels i. We propose
then a di�erent �i0 for each level such that in the continuum limit [10]

�i0 ! �0(p) =
�2

�
p2 =

p2=2m

E�
; (4.3)



{ 10 { CBPF-NF-025/96

where q = e�. As �o is dimensionless, the algebraic constant � has dimensions [�] =
gr�1cm�1 sec. Besides, it appears in (4.3) an energy scale E�. We take it as E� = kBT�,
where T� = 2:18K is the �-point temperature for 4He, and m = m4He. The choice of T�
seems the most natural, as super
uidity in 4He only happens below this temperature. It
is as natural to choose m = m4He since we have the non-relativistic classical dispersion
law for �0(p).

We take for the phonon the anomalous dispersion relation, that is [6],

!i ! !(p) = c0(1 � �p2) ; (4.4)

where c0 is the sound velocity and � is some dimensional constant to be determined latter.
Therefore, our energy-momentum relation for the phonon in 4He is

!ph(p) = q�0(p)!(p) = e�
2p2c0p(1 � �p2) ; (4.5)

for small phonon momenta it can be expanded as

!ph(p) = c0p(1 � (�� �2)p2 � (��2 �
1

2
�4)p4 + (�6 � ��4)p6 + � � � : (4.6)

This relation is to be compared with the small momenta ad-hoc phonon dispersion relation
usually found in the literature [6{8], that is,

!ph(p) = c0p(1 � 
2p
2 � 
4p

4 + � � � ) ; (4.7)

where the 
0s are free parameters that are determined in measurements of 4He speci�c
heat. We are thus presenting an algebraic interpretation for dispersion relation (4.7).
From (4.5) and (4.6) we see that the presence of deformation alters the usual anomalous
phonon dispersion relation.

In order to obtain the canonical potential in the continuum limit, we follow the pro-
cedure of section 2 and substitute (4.6) in (4.2); we get


 = �
V

h3�

Z
d3p ln

X
e�c0p(1�(���

2)p4�(��2� 1

2
�4)p4+��� ) : (4.8)

For low temperatures, we can expand the exponential and the logarithm in the integral
of (4.8). Then, de�ning a new variable y = �c0p, we have for the pressure,

P =
4�

�4h3c30

"
!(3)

3
�
!(5)

�2
+
(4b2 � b4)

�4
!(7) +

(�55b32 + 30b2b4 � 3b6)

�6
!(9) + � � �

#
;
(4.9)

where

!(m) =
Z

dyym
�1

X
n

[n]e�y[n]

X
n

[n]e�y[n]
(4.10)

and

b2 =
�2 � �

c20
; b4 =

�4=2 � ��2

c40
; b6 =

�6=3 � ��4

2c60
: (4.11)
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Finally, from (2.30) and substituting (4.9) in (2.32), the low temperature q-phonon speci�c
heat per mole is

Cphonon
V;q = ~AT 3 + ~BT 5 + ~DT 7 + ~GT 9 + � � � ; (4.12)

where

~A =
2k4BV

�2~3c30
!(3) ; ~B =

15k6B(� � �2)V

�2~3c50
!(5) ; ~D =

28k8B
�
7
2
�4 + 4�2 � 7��2

�
V

�2~3c70
!(7)

~G =
15k10B (�81�6 + 110�3 + 243��4 � 270�2�2)V

2�2~3c90
!(9) : (4.13)

5 Comparison with experimental data and �nal com-

ments

In this section we show that using for A, B and D values experimentally determined by
�tting the low temperature phonon speci�c heat

Cph
V = AT 3+BT 5 +DT 7 + � � � (5.1)

with measured speci�c heat data of 4He at the temperature range 0:14 K � T � 0:86 K,
[8], our model leads to unstable phonons for all the analysed values of the pressure [10].
In that temperature range, we take the 4He total molar speci�c heat

CV = Cph
V;q + Croton

V ; (5.2)

with Cph
V;q given by and (4.12) and (4.13). The rotons contribution to the total speci�c heat

is negligible for almost the whole analysed temperature range (0:14 K � T � 0:86 K) [8].
Therefore we will take the usual (non-deformed) roton molar speci�c heat,

Croton
V =

2V m1=2p20�
2

(2�)3=2~3k1=2B T 3=2

�
1 + kBT=� +

3

4
(kBT=�)2

�
e��=kBT ; (5.3)

where � is the energy gap, p is the position of the energy minimum and m is the e�ective
mass of the roton. Equation (5.2) is then

CV = ~AT 3 + ~BT 5 + ~DT 7 + ~GT 9 + � � �+

2V m1=2p20�
2

(2�)3=2~3k1=2B T 3=2

�
1 + kBT=�+

3

4
(kBT=�)2

�
e��=kBT : (5.4)

We compare (5.4) with the data of analysis 2 in reference [8]. As the T 7 coe�cients
present very large errors for the samples 10-16, we restrict our analysis to the samples
6-10. Taking for the coe�cients ~A; ~B and ~D in (5.4) the least-squares �ts of the measured
speci�c heat data for samples 6-10 in analysis 2 (and ~G = 0), we obtain q; �; � and c0; �,
c0 and � are determined from the three �rst relations (4.13), but as a consequence of
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assumption (4.3), the deformation parameters q and � are not independent. Therefore q
is determined from

ln q = 2m4He�
2kBT� : (5.5)

These results are listed in Table I.We see that the values of q increase with the pressure
and that the values of c0 are almost 5% lower than the directly measured sound velocities
[9]. We remark that our q-phonon model has interesting properties. Besides reproducing
the experimental results of 4He CV measurements, the parameters have an algebraic
nature and are not introduced ad-hoc as in the usual model. Its greatest advantage is
that it reconciles the theoretical prediction [6] for the anomalous dispersion of phonons
with the unstable character of phonon spectrum in 4He [7{9]. Indeed, inspection of Table
I shows that � is always positive, but the coe�cient of p3 in dispersion relation (4.6), that
is, (�� �2), is always negative.

Let us now take the total molar speci�c heat (5.4) and consider non-zero values for
~G. From the de�nition (4.13), we see that it is given in terms of the parameters �; �
and c0 which are completely determined once ~A; ~B and ~D are known. We have then a
\theoretical" ~GT , which is calculated from the c0, � and � determined from ~A, ~B and
~D. Therefore, considering terms up to T 9 in our Cph

V expansion is crucial to prove the
consistency of our model. In fact, we �nd di�erent sets of values of �; � and c0 such
that the \theoretical" values ~GT are equal to the \experimental" ones, ~GE, that is, those
values of ~G obtained by �tting the theoretical CV (5.4) with the curves resulting from
least-squares �ts of CV measured data for samples 6-10 in analysis 2 [8] within 5% of
accuracy.

In Tables II and III we show sets of parameters for which ~GT = ~GE . Table II lists three
di�erence sets for sample 6 in analysis 2 [8] and Table III, a set of parameters for each of
samples 7-10 in analysis 2 [8]. We see that the c0 values are then more in accordance with
the experimental ones. In Figs. 1 and 2, we compare the curves obtained in our model
with the ones resulting from least-squares �ts of CV data for samples 6-10 in analysis 2
[8]. The curves in Fig. 1 correspond to the four di�erent sets of parameters for sample 6
shown in Table II and those in Fig. 2, to the sets of parameters for samples 6-10 listed in
Table III. In Fig. 3, we show the deviation from Greywall's experimental values Cexp in
the CV values predicted in our model, for samples 6-10 in analysis 2 [8] (see Table III).
We note that it was recently shown that the speci�c heat calculated from Tsallis statistics
[32] also presents good results when compared with experimental data [33].

An intriguing question remains: why 4He super
uid excitations should be considered
as deformed objects? There have been interesting indications that the continuum descrip-
tions of physical quantities breakdown both in a convergent 
uid [34] and, more recently,
in super
uid 4He [35]. As a similar mechanism has been observed in connection with
deformed algebras [36] we believe that this is the underlying reason why our approach
applies so well to 4He super
uid. Finally, we recall that the roton contribution, which
starts to be relevant for T > 0:6 K, becomes dominant for T � 1 K. Therefore, we
believe that in order to have a good model for temperatures closer to the �-point it will
be necessary to deform the roton as well.



{ 13 { CBPF-NF-025/96

Acknowledgements

The authors thank C. Tsallis for helpful suggestions.



{ 14 { CBPF-NF-025/96



{ 15 { CBPF-NF-025/96



{ 16 { CBPF-NF-025/96



{ 17 { CBPF-NF-025/96



{ 18 { CBPF-NF-025/96



{ 19 { CBPF-NF-025/96



{ 20 { CBPF-NF-025/96



{ 21 { CBPF-NF-025/96



{ 22 { CBPF-NF-025/96



{ 23 { CBPF-NF-025/96



{ 24 { CBPF-NF-025/96



{ 25 { CBPF-NF-025/96



{ 26 { CBPF-NF-025/96



{ 27 { CBPF-NF-025/96



{ 28 { CBPF-NF-025/96

Sample ~A=104 ~B=104 ~D=104 V c0=104 �=1038 �
(erg=mol K4) (erg=mol K6) (erg=mol K8) (cm3) (cm=sec) (gr�2cm�2sec2) (gr�1

6 84.42 -49.8 83 27.5790 2.2854 2.1 1
7 69.3 -36.10 67 26.9650 2.4177 2.7178 1
8 57.77 -25.4 49 26.4240 2.5501 3.0873 2
9 49.85 -18.8 38 25.9760 2.6625 3.3821 2
10 43.44 -13.0 25 25.2000 2.7739 3.3206 2

Table I - Values of c0; �; � and q resulting from the least-square �ts of the speci�c heat
data with the expression CV = ~AT 3 + ~BT 5 + ~DT 7 + Croton

V , for samples 6-10 in
analysis 2 of ref. [8]; the roton data are those of [8].
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Sample ~A=104 ~B=104 ~D=104 ~G=104 V c0=104 �=10
(erg=mol K4) (erg=mol K6) (erg=mol K8) (erg=mol K10 (cm3) (cm=sec) (gr�2cm

6 84.42 -49.8 83 0 27.579 2.2854 2.
6 80 -15 59 -27.2 27.579 2.3250 2.97
6 82 -11 23 -9.76 27.579 2.3272 1.83
6 81 -15 51 -26 27.579 2.3182 2.72

Table II - In the upper row, we repeat the values of table I for sample 6. In the lower
ones, we have three sets of values of c0; �; � and q obtained taking for ~A; ~B; ~C and
~G (see relations (4-12) and (4-13)) values that reproduce, within 5% of accuracy,
the curves resulting from least-squares �ts of the speci�c heat data [8] with the
expression CV = AT 3+BT 5+DT 7+Croton

V . These values are such that ~GT = ~GE ,
where ~GT is given by the last relation (4.13).
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Sample ~A=104 ~B=104 ~D=104 ~G=104 V c0=104 �=10
(erg=mol K4) (erg=mol K6) (erg=mol K8) (erg=mol K10 (cm3) (cm=sec) (gr�2cm

6 80 -15 59 -27.2 27.579 2.3250 2.97
7 66 -16 67 -46 26.965 2.4546 3.84
8 57 -9 37 -11.3 26.424 2.5631 3.42
9 48 -4 26 -35.82 25.976 2.6992 3.55
10 43 -7 21 -9.31 25.568 2.7847 3.44

Table III - Values of c0, �, � and q obtained taking for ~A; ~B; ~D and ~G values that
reproduce within 5% of accuracy the curves resulting from least-squares �ts of CV

data [8] with the expression CV = AT 3 + BT 5 + DT 7 + Croton
V . These values are

such that ~GT = ~GE, where ~GT is given by the last relation (4.13).
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