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Abstract

We evaluate the amplitude of the Larmor frequency component of the scanning tun-
neling microscope current induced by a single resonating spin, in a model in which the
tunneling barrier is modulated via spin-orbit interaction. From Kramer's theorem fol-
lows however, that the barrier height modulation cannot have Larmor components and
such components in the current are caused by its non-linear dependence with the barrier
height. We obtain an e�ect which is �ve orders of magnitude smaller than that reported
by Y.Manassen et. al.[Phys.Rev.Lett.,62, 2531,1989].
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1 Introduction

The spin precession of single paramagnetic centers in a constant outside magnetic �eld
can modulate the current of the scanning tunneling microscope (STM) with the Larmor
frequency. This has been reported in the case of surfaces of partially oxidized Si(111)
[1]. To explain the e�ect, mechanisms based on the spin-orbit interaction were proposed
[2, 3]. Sachal and Manassen [2] proposed a mechanism in which the dangling bond of
the paramagnetic center, when excited by the tunneling electrons in the presence of a
magnetic �eld, produces a charge distribution that oscillates with the Larmor frequency.
These charge variations induce a time dependent dipole moment, which locally changes
the potential barrier between the sample and the tip of the STM, thus modulating the
tunneling current. In this paper we evaluate the Larmor frequency component of the
tunneling current using a model based on the ideas of Ref.[2]. We show, on the basis
of general considerations about time reversal invariance, that the electric dipole moment
induced by the resonating electron cannot have Larmor frequency components. As a
consequence, in this model, the current modulation with Larmor frequency follows from
the non-linear dependence of the current on the barrier height. We obtain a result which
is �ve orders of magnitude smaller than that reported.[1]

2 Model

Following Ref. [2], we consider a paramagnetic center of type Pb [4, 5] constituted by a
localized hole at the site of a trivalent Si defect [5], which can be thought as an acceptor,
in a crystal �eld of three other Si atoms. The latter build the basis of a tetrahedron of
which the former is the vertex. The z-axis is taken along the axis of the tetrahedron
perpendicular to the Si surface. The crystal �eld has C3v symmetry.

The system is described by the Hamiltonian [2]

H = �+ �(~L � ~S) + �B(~L + ge~S) � ~H (1)

where � = �0:0017 eV is the spin-orbit coupling for the 3p orbitals of Si [6], �B is the Bohr

magneton, and ge is the free electron gyromagnetic factor. ~S is the hole spin operator, ~L
its orbital angular momentum operator and ~H an external magnetic �eld with direction
de�ned by the angles �, � :

Hx = H0 cos(�) sin(�) (2)

Hy = H0 sin(�) sin(�) (3)

Hz = H0 cos(�): (4)

The crystal �eld � is taken to be 100� [2]. We consider a reduced Hilbert space of
eight states which are a representation of the C3v symmetry[2, 7]

j0; �i = R(r)(BjSi +AjPzi)� (5)

j0; �i = R(r)(BjSi +AjPzi)� (6)
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jj; �; (�)i = R(r)
1p
3
(AjSi �BjPzi+ exp i'j jP+i + exp�i'j jP�i)[�; (�)] (7)

with jSi = Y 0
0 (�; '), jPzi = Y 1

0 (�; '), jP+i = �Y 1
1 (�; '), jP�i = Y �1

1 (�; '), where
Y m
l (�; ') are the spherical harmonics and '1 = 00, '2 = 2400 and '3 = 1200. �(�)

stands for the spin eigenfunction with z component 1/2 (-1/2). � is measured from the
z-axis and ' is the azimuthal angle measured from the x-axis which is taken on the base
of the tetrahedron through one Si.

The paramagnetic center is supposed to have a fraction A2 = (1 � B2) = 0:88 of
jPzi symmetry [5]. The radial part of the wave function is taken to be hydrogenoid,
R(r) = 1p

r3
0
�
e�r=r0, with a radius r0 corresponding to a hole with e�ective mass m�

belonging to an acceptor in a medium of dielectric constant � [8]. The Hamiltonian (1)
was diagonalized in the basis of functions (5-7) for H0 = 180 G, � = 600 and � from 00 to
900 in steps of 150. The resulting eigenfunctions are denoted by 	j;
, where j = 0; � � � ; 3
labels the Kramer doublets, 
 = 1; 2 their components and �h!j;
 are the corresponding
energies. The energy spectrum and the �eld dependent g-factors conform with those of
Ref.2.

During its scanning, the paramagnetic center is assumed to be somehow perturbed by
the tunneling electrons in such a way that the crystal �eld vanishes [2]. The Hamiltonian
(1) was once more diagonalized with � = 0 and the corresponding eigenfunctions denoted
by 	;

j;
. When the perturbation suddenly ceases, and the crystal �eld has recovered
its initial value � = 100�, the hole is supposed to be left in a state which is a linear
combination of the lowest doublet wave functions

1p
2
[	;

0� +	;
0�]: (8)

This corresponds to a spin perpendicular to the z-direction. To calculate the subsequent
time evolution of the hole initial state, Eq.(8), this is developed in the basis 	j;
:

1p
2
[	;

0� +	;
0;�] =

X
j;


Aj;
	j;
: (9)

The coe�cients Aj;
 were calculated for the values of ~H mentioned above. The time
dependent wave function is given by

	(r; t) =
X
j;


Aj;
	j;
(r)e
�i�h!j;
 : (10)

For simplicity, the potential barrier that determines the tunneling current between the
tip and the surface is supposed to have translational symmetry parallel to the surface and
to be of square shape, with height

V =
(wt + ws)

2
(11)

where wt and ws are the work functions of the metallic tip and the Si surface.
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The surface density of electric dipole moment

Dz(x; y; t) = jej
Z
1

�1

dz	�(~r; t)z	(~r; t) (12)

induced by the paramagnetic center modi�es locally the work function of the Si surface
by the amount [9]

�ws(x; y; t) =
jej
�
Dz(x; y; t); (13)

here, e is the electron charge.
To further simplify the calculation we replace the local work function variation �ws(x; y; t)

by its average over the area S = �r20 of the paramagnetic center:

�wave
s =

1

S

Z
1

�1

dxdy�ws(x; y; t) =
e2

�r20�

3

2
r0G(�; �); (14)

where G(�; �),which is of the order of �=�, results from the angular integrations. Within
the model of an acceptor [8], this can be written in terms of the ionization energy �E =
e2=2�r0 = 0:3eV of the hole [5]. Then, the change in the barrier height becomes

�V =
�wave

s

2
=

3

2�
�E �G(�; �): (15)

The tunneling current is proportional to exp[�
q
2mV=�h2d], where d is the distance

between the surface and the tip. For �V � V we can write for the relative change of the
current

�I

I0
=
p
2mV

d

�h

�V

2V
+
1

2
(2mV )

d2

�h2

�
�V

2V

�2
+ � � � : (16)

The time dependence of the �rst term does not contain Larmor frequency components.
�V is proportional to the matrix elements

Z
	�

j;;
;z	j;
d
3r; (17)

which vanish for j = j;. This follows from the time reversal symmetry of the electric
dipole operator ez and Kramers theorem [10]. Only very large frequencies corresponding
to energy di�erences �h(!j;
 �!j; ;
;) for j 6= j;, of the order of the spin-orbit splitting, are
present in �V . Thus the leading terms with Larmor frequency are contained in (�V )2

which involves di�erences of those large frequencies.
Table 1 shows �I=I for � = 600 and several values of �. To calculate �I=I we useq

2mV d2=�h2 = 3:6 which results from the estimated values V = 4eV , d = 3:5�A and m
equal to the free electron mass.

3 Conclusions

It is remarkable that the modulation of the tunneling barrier induced by the resonat-
ing spin through the spin-orbit interaction has not Larmor components. This is due to
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Table 1: Larmor components of the relative tunneling current �I=I for several directions
of the magnetic �eld.

� �I=I

0� 0

15� 9:57� 10�8 cos(!Lt)� 5:80� 10�8 sin(!Lt)

30� 4:01 � 10�7 cos(!Lt) + 5:10� 10�7 sin(!Lt)

45� 3:76� 10�6 cos(!Lt)� 1:93� 10�6 sin(!Lt)

60� 3:63 � 10�7 cos(!Lt)

75� 1:21 � 10�6 cos(!Lt)

90� 0

Kramer's theorem which requires vanishing matrix elements for time reversal invariant
operators (like the electric dipole moment) within a Kramer's doublet. �I=I has Larmor
components , however, because the current I is a non linear function of the barrier height
and frequency di�erences come into play.

The Larmor component of the ratio �I=I has a maximum at � = 450 and it vanishes
for � = 00 and � = 900. Thus, in this model,there is no e�ect when the �eld is applied
along the axis of the paramagnetic center. It could happen that in the experiment this
axis is tilted with respect to the �eld (which is applied normal to the surface). Even
so, the maximum of �I=I, at � = 45�, is still �ve orders of magnitude smaller than the
experimental value reported for an applied �eld of 180G. Thus, in our view an explanation
of these STM observations on a center with Kramer's doublets is not possible. In case
that the observation is not an experimental artifact, completely di�erent centers which
do not have Kramer's degeneracy might be considered.
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