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ABSTRACT

We study numerically the asymmetric map x'=1-e--a.|x|21 (i=%,2
respectively, correspond to x>0 and xs0). The dtahdard logistic-
like equation is recovered for a,=a,, Z,*2,32 and g,=c,=0. Three
types of asymmetry are studied, Aam 1y lhoge concerning the am-
plitude (a,=a ), the exponent (z,#2,) and a possiblie discontinui
ty (e =e,). Tge well known perio&- gubling road to chaos is topo
Yogicd 11 unmodified in the two first cases, but in the last one
the scenario is complietely new ("gap road to chaos"). Chaos is
now attained through sequences of ‘inverse cascades. Various new
features are observed concerning the phase-diagrams, Liapunov
and uncertainty exponent, number of attractors, multifractality,
among others.

Key-words: Poputation dynamiés; Chaas; Bynamﬁ§a1 Systems.
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1. INTRODUCTION

Chaotic evolution of a dynamical system is a field that aroused
a great interest in the last decade. Mayl, in 1976, showed the
rich behavior that a nonlinear finite-differences equation can
present, through a simple model for the population dynamics.In
the model the death rate of a given biological population Xg 412
in generation t+1, is assumed to vary linearly with the popula-
tion x, (associated with generation t). Such dynamics are de-
scribed by the logistic eqguation, xt+1uxt(1-xt) which, through
a trivial changement of variables, can be rewritten a follows

Xy, * f(xt) = 1-ax,? (1)

where the interesting behavior appears for x ¢ {~1,1]) and

a e [0,2]: See Fig. 1{a). This equation, in spite of its sim-
plicity, displays a surprisingly rich mathematical structure.
For certain values of the control parameter a, the long-time
sequence {xt} is a cycle, and for others it is chaotic. There
exists many situations, others than in population Biology,where
the logistic equation applies. For example, in Genetics, Epidem-
iology, Economics, etc. In Physics, it appears in many branches,
such as fluid mechanicsz, chemical systems3, laser physics4 and
others.
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1. (a) Logistic map, (b) a-evolution of the attractor and of the (c)

Fig.
Liapunov exponent.
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A fixed poiht x* of the mapping is defined by x*=f(x*).
Such a point is said to be stable, unstable or "marginally”
stable, if |f'(x*)] is less, greater or igual to the unit, re-
spectively. For the logistic map, for a<a1=0.75. there is only
one stable point. Just above the value a, this point becomes
unstable and there appears instead a new attractor, namely a
cycle of period two. This process is called pitchfork bifur-
cation. Thecycle remains stable until a increases up to a2=1.25,
where another bifurcation appears and we have now a four-cycle.
This bifurcation process will continue until a*=1.401155... 1is
reached. Above a* we see the chaotic regime, where odd cycles
and aperiodic attractors are present,as well.The behavior of
the attractor as function of a is depicted in Fig. 1(b).

As shown by Grossmann and Thomae, by Feigenbaum and by
Coullet and Tressers, the sequence {ak}'where bifurcations oc-
cur, converges geometrically at a rate given by

5, ket 5 o 4.6692... (2)
Ak+173

for large values of k. This is_an universal exponent, in the
sense that it depends only on the quadratic shape of f(x) at
the extremum.

In the chaotic zone there are infinite periodic win-
dows, with period doubling bifurcations governed by (2). Metro
polis, Stein and Stein6 discovered a universal behavior in the
sequence of these windows for single hump one-dimensional maps.

The chaotic regime is characterized by a high sensitiy
ity on the initial conditions (value of x,). The Liapunov ex-
ponent A provides a quantitative measure of this dependence
(1<0 corresponds to periodic orbits, and A>0 corresponds to
chaotic motion; A vanishes on every pitchfork bifurcation).The
Liapunov exponent is defined through

N-1
x = 1im 1§ 1n{dfix) (3)
N+ N t=0 dx X=Xy
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In Fig. 1{c) we display » as a function of a for the map gov-
erned by (1). In the chaotic region we can see intervals with
negative A exponent, corresponding to the periodic windows.The
largest of them is the period three window.

The aim of the present paper is to study the dynamical
behavior of a map with an asymmetry introduced at the extremum.
Until now, little effort has been dedicated to: asymmetric
maps7'12.‘Experimenta1 systems are now appearing which present
this type of dynamics (see [11] for laser cavity and [12] for
forced nonlinear oscillators}, and therefore the study of such
maps becomes increasingly relevant,

We will generalize the logistic map as follows:

T-gq-ay[xg }21 3F x>0

xt+1 = f(xt)E (4)

F 4 .
1'52"a2'xt’ 2 if XSU

The well known continuous symmetric case (E1=€2=0, a,=a,za and
z1=zzsz) presents the same qualitative behavior of the z=2 case
(logistic equation). The convergence rates of the §'s in these
maps, are a monotonously increasing function of z21 13,

For sake of simplicity,'we shall proceed by modifying
one type of parameter (the a's, the z's and the €'s) at a time,
We shall therefore consider three cases, namely, case I (a,zaz,
2,=2,32 and e1=52=0).case 11 (a1=a2§a, 2.z, and e1=52=0), and
case I]1 (a1=a2§a, 2,=2,%2 and e1¢52). Some features of these
maps, such as phase-diagrams, attractors, Liapunov exponents,
uncertainty exponent, multifractality, and others will be
studied in the following sections.

2. AMPLITUDE ASYMMETRY (CASE I}

In this case , the scenario of pitchfork bifurcations is
preserved. Nevertheless, the set {8,} presents an oscillia-
tory behavior between two fixed vaIues7. Let us now mention at
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this point that preliminary numerical work10 suggested that Gk

approaches a single value, namely that of the symmetric case.
The present high accuracy calculations show that this is not
so, but rather exhibit the oscillatory behavior first studied
by Arneodo et a1’. We have represented in Fig. 2(a) for z,=2,=2
and c1=92=0, the (a1.a2) critical lines which generalize a*
(first entrance into chaos) and aM {value of a above which at-
tractors disappear). In Fig. 2(b) we show,for k large enough,
the osciltlatory behavior of the set {ék} as function of az*
over the curve a; of Fig. 2(a). Observe that in a = 1.401155,
a1*=a2*, therefore the two values of Gk coincide, and reproduce
the well known value 4.6692...

e, S,.
I ‘ 30
(a) | | {b)
e
20

Fig. 2. (a) Special cuts of the "first entrance into chaos” and "finite-at-
tractor-disappearance” hypersurfaces in the a,,a, space for z,=z,=2 and

€ =52=0. (b) values of 6, , for k>>1 as function Gf a.*, ca1cuiat d over the
Tlne * of (a). The numeFica1 results for the asymptgtic values are roughly
reproduced by 6m=3.3a2* and 6@;7/&2*.

8l
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3. EXPONENT ASYMMETRY (CASE II)

In this case the route to chaos is via period-doubling. In Fig.3
we have represented the a-dependence of the attractor and of X
for a typical case, namely (zi,z )={(2,4). The accumu]at1on point
of the first period-doubling cascade is a*=1.6414 and a =2. A
strongly different behavior appears as already not1ced9. in the
set {5k}: the Gk's do not converge for increasing k, but proceed
in oscillatory fashion between two asymptotic lines, one of them
being divergent. In Fig. 4 we have presented our results as well
as the numerical ones obtained in Ref. 9. This behavior was also
exhibited experimental]y‘z. Above a* (chaotic region), the rel-
ative sizes of the various windows are quite different from
those of the Z,=2, prototype. However the sequence of high-order
windows is the same of the symmetric case, since this map sat-
isfy the conditions required in [6].

tetyed
LR Rl
Lt
F AL
feose B!

Fig. 3. {a) Asymmetric map, (b) a-evolution of the attractor and of the {c)
Liapunov exponent for (21'22) =(2,4), with a4=a,%a and e1=52=0
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Fig. 4. Evolution of the successive ratios {Gk} for the z,=2,=2 prototype
and for the case Il (z,=z,).

. - DISCONTINUOUS MAPS (CASE III)

4.1, Evolution of the attractor: invense cascades

This is the most interesting case. We observed that a new uni-
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versal road to chaos is associated with this type of maps’0'14.
In Fig. § we have represented, for z,=2,=2 and (51'52)=(0~°)'
(0.1,0) and (0,0.1), the dependence of a and a™ (values of a
respectively above which and below which finite attractors dis
appear) as function of x,. The Fig. 6 shows the a-dependence

of the attractor for a typical case (51,52)=(0,0.1). In this .
example, after a standard pitchfork bifurcation we see the ap-
pearance of sequences of inverse cascades ("inverse" refers to
the fact that a must decrease in order to approach the accumu-
lation point) in arithmetic progression, initially mixed

Mz

e £#D1, €0
I ‘| =0 .!|=0.l
T HT 0

Fig. 5. Diagram of the "finite-attractor-disappearance” for z1=zz=2-

Er 080l
0" U!'l.l
4" L2

(a)

/ =1 T as \\ %

Fig. 6. (a) Discontinuous map and (b) a-evolution of the attractor for
(51.52)=(0.0.1), zl=32=2 and x4=0.5.
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with pitchfork bifurcations. The first cascade is ...14+12+10
8+6+4, which accumulates on a=1. Immediately above this cascade
we observe a couple of standard pitchfork bifurcations. Fur
ther on a new inverse cascade appears as follows:...25+21+17~+
13+9 and then again a pitchfork bifurcation into period 18.
Then another inverse cascade appears as follows:...76+58+40~22.
After this cascade, no other standard pitchfork bifurcations
are observed, but instead new inverse cascades are present:
...70+48326, and then ...108+82+56, and then ...142+86+30,
etc. A rule is observed : Within each window, the periods grow
arithmetically by adding the first element of the previous win
dow, namely the element immediately below its accumulation
point. In fact, we have a very rich fine structure. We observe
that between any two consecutive elements of a cascade there
is another inverse cascade whose periods grow with the rule
mentioned above. For example, between the elements 40 and 22
of the third cascade, the cascade ...102+62+22 exists. Between
the elements 102 and 62 of this cascade, we have the following
one ...266+164-62, and so on. The new elements of ap-furcation
appears discontinuously like tangent bifurcations.However,they
do not present intermittency, since the iterated function
fF(f(...f(x))) presentssquare corners which cross the x'=x bis-
sectrix. See an example in Fig. 7. Every new element of a

Fig. 7. Plot of f2(x) for
a=1.03, (e,,ez)=(0,o.1).
21=zz=2 and 'x,=0.5.
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p-furcation appears at the neighbourhood of the attractor that
exists just below its accumulation point. In Fig. 8 we show an
example to clarify this point. Therein, we see the cascade
18+14+10 and between the elements 14 and 10, the cascade ...38»
24,10 is depicted (dashed lines).

Fig. 8. Schematic example of the inverse cascade ...18+14+10 and the “inter
mediate" inverse cascade ...38+24+10. The figure is out of scale.

We have represented in Fig. 9 the evolution of the attrac
tor, for a typical case, as a funtion of the size of the gap
and of a. Such phase-diagram will be refered hereafter as bunch
04§ bananas. Initially, let us fix ¢, and vary a. We see the
behavior described above: inverse cascades of attractors whose
periods grow arithmetically and accumulate on values of a, im-
mediately below which appear cycles whose periods precisely are
the corresponding adding constants. Futhermore, between any
two bananas we always have another banana. The same kind of be
havior is observed by fixing a and varying e, (or e,, or both,
with e1=82). The accumulation points of the cascades in turn
accumulate (for increasing a if (E1.€2) are fixed) on a point
which is the entrance to chaos. In other words, we have (pre-
sumably) an infinite number of accumufation points where there



CBPF-NF-025/88

t‘l

LT

0.0%}-

period of the attractor. Fo =0 we‘recover the well known period-doubling

Fig. 9. Phase-diagram for z}=zz=2, ez=0 and Xxo=0.5The number indicates the
£
sequence. 1

is no chaos (negative Liapunov exponents), as this only emerges
at the accumulation point of the accumulation points.

For fixed (51,52) a given banana exists between a mini-
mal value ar and a maximal value ar.ﬂithin a given cascade of
bananas (whose sequence is noted with k=1,2,3...) we verify

m m m mZq
lag - ap,ql v lagy - 2l (5)
as well as
m m m mZz
la} - all v lajq - 2al™ (6)
for k large enough. The same law holds for {a:}, for all cas-
cades, for all values of (51,52),such that eqe,, in the pres-

ence or absence of higer order terms in Eq. (4), and also if we
fix a and vary (51,52).
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4.2. Length of the cycle

For each cascade, the length of the k-th stable cycle as func-
tion of the parameter a can be determined as follows. If we de
note B as the adding constant of the cascade and &, the length
of the k-th cycle, we have

where A is a natural number. Using Eq. (5), we obtain

—B 1 'In—-—1———+£n (8)
In{zy) LR T

Ekm
where £, is an integer number. Analogously, if we use Eq. (6)
we obtain a relation identical to Eq. (8), but with a -a_ re-
placing a -3, - To the best of our knowledge, this is the
first time such type of law is exhibited within the formalism
of chaos. In Fig. 10 we show the behavior of £ as function of
a*-a for a typical case. |

ing!
400 448 jﬁ‘
s_ \‘ -
272", - 304
128 aus 52
4 32 ’,.f"'
' ‘24 -
16' -
z_ L"ﬂ""
4 _JL,/"
2"
D é 4[ IG .8 _5 .]n[g'.;]

Fig. 10. Plot of 1n(£) as function of In{a*-a) for (e4,€,)=(0,0.1), 2,72,=2
and x,=0.5,and of the asymptaticbehavior for the logi tic case{dashed Ti%e)
The numbers indicate the length of the cycle.
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4.3. Capacity dimension of the attractor at the accumufation
point of a cascade

In section 4.1 we mentioned that all new elements of a cascade
appear near the elements of the attractor immediately below that
cascade, on which they accumulate. If we denote aiq) the g-ele-
ments of the k-th attractor of a given cascade (q<£k; increas-
ing q denotes approach to the accumulation point), the follow-
ing laws are observed

lxéq) 3 x'((q+1)| " |x£q-1) } x£Q)|z1 (9)

or equivalently
. o0 - -] z :
|x£q) - xé )I " Ixéq 1) -x& )| 1 (10)

"for q and k large enough. These laws enable us to ca]cu]ate.the
capacity dimension of the attractor at the accumulation point
of any cascade. The capacity dimension of a set is defined as

d - 1in 1n Nle)
¢ e+0 In (1/¢) (11)

where N{ec) is the minimal number of segments (for unidimension-
al cases) needed to cover the set. If we adopt es[xﬁ1)-x£2)1z1,
then N{e)=q, hence dc=0. In contrast, for continuous symmetric
maps the capacity dimension of the attractor at the accumula-
tion point of the cascades is a non integer number, between 0
and 1, for finite z (e.g., for 2=2, dczﬂ.537). To avoid confu-
sion, it is worthy to recall here that chaos within the gap
road only appears at the accumulation point of the accumulation
points; at the entrance of chaos non trivial dimensionalities

are exhibited as discussed in section 4.7

4.4, Crnossover to the perdiod-doubfing scenanrndio

The number of pitchfork bifurcations in the discontinuous maps
is a function of the size of the gap. It increases when the
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size of the gap decreases. For example, for (51.52)-(0,0.0001)
we observe six pitchfork bifurcations (mixtured with inverse
cascades), whereas for (51,ez)=(0,0.1) there are only three
pitchfork bifurcations. In the a-evolution of the attractor a
cycle which results from a pitchfork bifurcation can reappear
further on: See cycle of size two in Fig., 10. This cycle disap-
pears at the value ad=(1-e1)"z1 and at ar=(1—e1)/(1-ez)z1 it
reappears. To be more precise, these values are slighty modi-
fied according to the attractor towards which the sistem
evolves, which in turn depends on the initial value x,, as dis-
cussedin section 4.6, The reappearance of the cycle with peri-
od two can even happen above the first entrance into chaos. For
example, the map with (51,52)-(-0.1,0.1) first enters into chaos
at a*=1.23, whereas ars1.358. Notice that for €q=€,%E (continu-
ous map), we have ad=ar=(1-e1)1'z1, a fact which clearly illus-
trate how the crossover to the period-doubling scenario occurs.
A similar study can be made for cycles with period 4,8, etc.

4.5, Liapunov exponent

In Fig. 11 we present the a-evolution of the Liapunov exponent
for a typical case (51.52)=(0,0:1). The first entrance into
chaos in this case occurs at a*=1.5447414, We see in Fig. t1(c),
which is an amplification of Fig. 11(b), remarkable features:
(i) the stucture is roughly self-simitar, (ii) the “fingers”cor
responding to high periods are very narrow., For a given cascade
they monotonously become narrower and shift towards negative
values of A, thus exhibiting (presumably) infinitely Large perdi
ods with no chacs. The highest and largest finger of each cas-
cade corresponds to the lowest period of that cascade; if we
consider increasingly large lowest periods, the topsof the fin-
gers approach A=0, and dfive the systems into chaos, (iii)
changements of periods occur for A+-=, in remarkable contrast
with changements of periods in the perioddoubling road, which
occur at x=0.
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4.6. Uncentadintly exponent

Continuous one-dimensional maps presenting an unique extremum
have at most one finite attractor, which is independent on the
initial condition. In maps with a gap at the extremum we verify
that this picture is modified. In such cases, more than one fi-
nite attractor {typically two attractors) appear when we Cross
from one banana (see Fig. 9) to a neighbouring one (we observed
this in several crossings, it might happen in all of them). The
attractor which is chosen depends on the initial value x,. Two
examples are presented in Fig. 12(a) for a=1.3 {a=1.540344); the
black and white regions are euclidean (dimensionality Del1) where
as the border-set between them is a fractal with capacity dimen
sion d. The uncertainty exponent15 o, is given by au=D—d. The
system 1is said to present {inaf-sifate sensitivity or non-
sensitivity according be Dsdu<1 or au=1. To calculate a, we
consider, in the interval of x, corresponding to finite attrac-
tor(roughly [-1,1]), N randomly chosen values {typically N=10*).
We then choose ¢ (say 10°* and below) and check whether both
attractors starting from xote coincide with that of x,:;if not,

that value of x, is said unceatainty. We note ﬂlthe total number
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of uncertainty points. The uncertainty ratio Nu/N varies.

as €Y. We  find a,=0.85 (0,0.22) for a=1.3 (ax1.540344).
Numerical experiments based on forth and back varia-

tions of a might present hysteresis according to the initial

value xo retained for the various steps. In Fig. 12(b) we exhib

it a cycle of hysteresis. The system is "prepared” initially

with Xxo=0 and a=1.3, which drives the system to a cycle with

period two. Futher on, after some iterations

the control pa-
rameter a 1is

tuned to a=1.2 with an initial condition x=0.8971,
then the limiting cycle now has period four. After some jtera-
tions the system is brought back to a=1.3 with an initial con-

dition a=-0.1703. We observe that the period in this situation

ijs not any more two, but eight. This hysteresis phenomenon can
help ‘the experimental jdentification of the gap road to chaos.

a » 1.540344

%
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Fig. 12. (a) Basins of attraction and (b) hysteresis cycle for typical val

Les. of a and (e, ,¢,)=(0,0.1) and z,=2,=2. In (a), for a=1.3(a=1,540344) the
black and white }eggons correspond iotycTeswith period 8 and 2 (25 and 21).



CBPF-NF-025/88

18-

4.7. Muttifractality

The attractor at the accumulation point of the bifurcations goy
erned by Eq.(1) is a complicated object. The probability of
distribution of its points is non uniform, a reason for which
this object is called almuzziﬁaacta£16. The formalism used to
study multifractals consists in covering the attractor with
boxes, indexed by i, of size 11 and assume that the probabili-
ty density scales like pi«li“ , in the limit 1.,+0. The charac-
terization of a multifractal is through the function fla),
which is the dimension of the set of boxes which share a given
index a. Through a Legendre transformation, f(a) is related to
the generalized dimensions D 7. The minimal and maximal val
ues of o respectively coincide with D_ and D__; the maximal
value of fla) coincides with the Hausdorff dimension Do. The
attractor of the discontinuous map at the first entrance into
chaos also is a multifractal. In Fig. (13) we present f(a) for
the case (51,52)=(D,0.1). Its shape isdifferent (more square-
like) from that obtained without gap (period-doubling road to
chaos), and the values we obtain are Do20.95, D_=0.45 and
D_.=5.7.

18]

Fig. 13. Multifracta) function f(a) for (e1,ez)=(0,0.1), z1=22=2 and x,=0.5
(chaos appears at a*=1,5447414).
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5. CONCLUSIONS

We have verified that the period-doubling scenario for one-di-
mensional one-extremum maps is strongly modified if an asymmet
ry is introduced at the extremum. Amplitude asymmetry (a,=2,)
and exponent asymmetry (21’22) do not alter the bifurcation se-
quence, but introduces remarkable numerical differences while
approaching the first entrance to chaos. The unique tendency
associated with the set {Gk} disappears. By far, the more in-
teresting case occurs for discontinuous maps (e1=ez). Sequences
of inverse cascades in arithmetic progression are observed in
the evolution of the attractor. There is no chaos at the accu-
mulation point of these cascades, which appears only at the ac
cumulation point of the accumulation points. Several other un-
usual fatures were found at the phase-diagram, Liapunov and un
certainty exponents, multifractality, among others. This behay
jor presents universality and can be considered as a new road to
chaos.

We acknowledge with pleasure very fruitful suggestions
by H.W. Capel, M. Napiorkowski, as well as interesting remarks
by A. Coniglio, E.M.F. Curado , H.J. Herrmann, B.A. Huberman
and J.P. van der Weele. We are indebted to P. Coullet and C.Tres
ser for calling our attention on Ref. 7.
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