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Abstract

The present work proposes a discussion on the self-energy of charged particles in
the framework of nonlinear electrodynamics. We seek magnetically stable solutions
generated by purely electric charges whose electric and magnetic fields are com-
puted as solutions to the Born-Infeld equations. The approach yields rich internal
structures that can be described in terms of the physical fields with explicit analytic
solutions. This suggests that the anomalous field probably originates from a mag-
netic excitation in the vacuum due to the presence of the very intense electric field.
In addition, the magnetic contribution has been found to exert a negative pressure
on the charge. This, in turn, balances the electric repulsion, in such a way that
the self-interaction of the field appears as a simple and natural classical mechanism
that is able to account for the stability of the electron charge.
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1 INTRODUCTION

By adopting a nonlinear approach to electrodynamics, in a previus work we have found that an
electric charge at rest generates a regular magnetostatic field [1]. The present work investigates how
nonlinearity can be used to reveal the presence of an intrinsic angular momentum and to explain the
mechanism that holds the electric charge together, ensuring its stability. That finding is very interesting
since a classical nonlinear electrodynamics approach to describe the field interaction has naturally led to
the electronic spin. In addition a second major result is presented. The calculations have shown that the
field interacts with itself creating a negative pressure in the charge that is strong enough to prevent it
from bursting. Such finding could be a solution to the historical problem of electron stability. We also
point aou that the non-linearity may be the key to the understanding of a number of microscopic effects
[2].

It still remains to be found if Maxwell’s field equations are to be considered approximations of a
more general nonlinear electrodynamical theory. The most physically unpleasant aspect of Coulomb’s
law is its singularity, that may lead to unbounded field strengths inside charges and thus to an infinite
self-energy. Since extremely high electrostatic field strengths are to be found in the vicinity of elementary
charges, such regions cannot be accurately described by linear electrodynamics and thus are likely to be
associated to departures from Coulomb‘s law predictions.

This paper is outlined as follows. In the First Section, we briefly describe the Born-Infeld (B-I)
Electrodynamics[3][4][5] magnetostatic field solution and we set a correlation with experimental data
for the electron. In addition, it includes the calculation of the classical angular momentum due to the
intrinsic field and compares it with the value predicted for the quantum spin of the electron. The Second
Section describes the calculation of the field pressure produced by the anomalous magnetostatic field.
Finally, the Third Section summarizes the main conclusions and our Final Considerations.

2 ANGULAR MOMENTUM FROM FIELD

SELF INTERACTION

This section briefly describes the solution to the Born-Infeld equations for a standstill electron as
well as the calculation of its intrinsic angular momentum.

According to the standard linear electrodynamics, the presence of a standstill electric charged particle
creates an electric field only regardless of its strength. However, according to nonlinear electrodynamics,
anomalous effects may also occur due to self-interactions of the fields. The accurate description of high
field intensities in the vicinity of an electric charge requires the use of a nonlinear approach. Born-Infeld
Electrodynamics has been found to be adequate to describe the fields of a charged particle under such
extreme condition.

Considering a static point-like electric charge at the origin, the solution to the first Maxwell equation−→∇ · −→D = eδ(−→x ), with e as the elementary charge, is the electric induction
−→
D = e

4πr2 r̂, that is singular
like the solution from a linear theory. If the magnetostatic sector is allowed to become excited by
intense electrostatic fields, the Born-Infeld constitutive relation ensues. Under the assumption that the
induced magnetostatic field is always less than the maximum field strength b, the Born-Infeld relationship
simplifies, although leaving a residual influence of the electric sector:
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Also, the Maxwell equations
−→∇ · −→B = 0 and

−→∇ × −→
H =

−→
0 will complete the set of equations needed to

describe the fields. Considering the radial and polar components to be dependent on the radius and the
polar angle, the solution for the magnetic field polar component of

−→
H can be written as [1]:
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Hθ(r, θ) = A
f(x)
r3

sin(θ). (3)

The dimensionless function, f , called ”form function”, describes the transition from the linear to the
nonlinear regime and its asymptotic limit is constant:

f(x) =
x2

0.3234

{√
xP

1/4
1/4

(√
1 + x4

)
− κx

}
r→∞−→ 1. (4)

The function P
1/4
1/4 (z) is the associated Legendre function of first kind and κ(≈ 0.82217) is the constant

that ensures Hθ to vanish when r approaches infinity. Far away from the electric charge, r � ro, Hθ

becomes a genuine magnetic dipole moment field given by:

Hθ r→∞−→ A

r3
sin(θ) (5)

Dimensionally, the constant A has units of a magnetic dipole so that equation (5) describes the
macroscopic view of an intrinsic magnetic dipole moment for the charge considered. Thus, in order to
obtain a more realistic solution, the constant A can be assumed to correspond to the intrinsic electron
magnetic dipole moment, that is very close to the value of Bohr’s Magneton, µBohr = 9.27× 10−24JT−1,
in the MKS System. Such assumption is needed so that we can bring input to our proposal.

Using the constitutive relation (2), with Bj � b, the magnetic induction can be set equal to [1]:

Bθ(r, θ) =
Hθ(r, θ)√

1 +
−→
D2

b2

=
µBohr

r3

x2f(x)√
1 + x4

sin(θ). (6)

Once the field structure has been determined, the angular momentum associated with the stationary
electric charge can be calculated. It is produced by the interaction between the electric and the magnetic
fields, which generates an intrinsic angular momentum given by:

−→
L =

∫
−→x ×

(−→
D ×−→

B
)

d3−→x . (7)

It must be highlighted that both fields inside integral (7) are generated by the point-like electric
charge. Thus the magnetostatic induction,

−→
B , is to be regarded as a product of the nonlinearity only.

The simple assumption that the intense electric field caused by the electric charge at rest can excite the
magnetostatic sector and yield an intrinsic field angular momentum is completely ruled out in any linear
approach.

Back to equation (7), only the axial component will be present due to symmetry considerations and
allowing

−→
L to be projected on the axial dipole axis, the integral becomes:
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This integral can be evaluated and written in compact form for Born-Infeld parameters and natural
constants. Defining

γ =
∫

f(x)dx√
1 + x4

= 1.18,

and the B-I radius, recalculated by Born and Schrödinger [7] as:

ro � 2.618 × 10−14m,

then the axial component can be written as:

Lz =
2
3

(
γ
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)
(eµoµBohr) � 0.556 × 10−34Js. (9)
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This value for the spin of the electron, obtained on purely classical grounds, departs about 5% only
in comparison with the prediction from Quantum Mechanics, �/2. It is driven by the nonlinearity. Inside
the first parenthesis are the B-I parameters while enclosed in the second one are natural constants. No
mechanical rotation or other kind of translation has been considered in order to generate

−→
L , so that the

angular momentum appears naturally, as a remarkable consequence of the self-interaction of the fields.
The importance of this result lies not only in its numerical value, but in how the charge produces its
intrinsic angular momentum, interpreted here as the spin of the charged particle.

The net result of this section is that the interaction between the electric sector and the magnetic
sector generates a spin.

3 THE ELECTRIC CHARGE STABILITY

This section tackles the delicate issue concerning the stability of the electric charge. We present
here the details of our claim: the field self-interaction is responsible for the electric charge stability.

The dynamical properties of the electromagnetic field are described by the energy-momentum tensor,
T µν . Among its components, T rr is of particular interest because it expresses the radial force per unit
area. In terms of Born-Infeld Lagrangian, LBI , T ij [6] is written as:

T ij = −EiDj − HiBj + δij
{
LBI +

−→
H · −→B

}
. (10)

Only the T rr-component is of interest, since the others will not contribute to the radial pressure:

T rr = −ErDr + LBI + HθBθ. (11)

Integrating its projection over axial dipole axis, it becomes, in MKS System:∫
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surface
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The constants, εo and c, in (12), are the vacuum electric permittivity and speed of light, respectively.
The term εob

2 is the characteristic field pressure and its module is about 1025N/m2. This is a very high
pressure. Considering the hemisphere area, 2πr2

o , where the integration will be performed, the intensity
of that particular force is in the order of 10−2N . In addition, the function P (x) expresses the competition
between the outward electrical repulsion and the inward magnetostatic pressures acting on the spherical
surphace. The last term, inside P (x), is due to the self interaction of the magnetostatic field. In its
absence, the pressure becomes purely repulsive, regardless the sign of the electrical charge. In contrast,
its presence promotes a drastic change. All calculations were carefully performed in MKS units system.
The balance between forces is depicted in Figure 1 for a hemisphere. It clearly shows the change in sign
of the net pressure as well as the drastic changes in its magnitude.

Closing this section the following list summarizes the major nonlinear
electrodynamics effects and their causes.

Effect Cause
Anomalous Magnetostatic Fields ⇒ Extremely High Electrostatic Field
Intrinsic Angular Momentum (Spin) ⇒ Electric and Magnetic Field Interaction
Charge Stability ⇒ Magnetostatic field Self-Interaction
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Figure 1

4 FINAL CONSIDERATIONS

The results presented illustrate how accurately non-linearity can represent physical phenomena.
However, in spite of the apparent self-consistency of this work, it must be stressed that it would be
premature to claim that it actually presents a legitimate description of Nature. The fact that the intrinsic
angular momentum of the electron, its spin, could be predicted with a deviation of about 5% only, suggests
that predictions for the net pressure are consistent. In other words, the stability of the electronic charge
may be described in terms of the self-interaction of the magnetostatic fields. In the present paper,
it has been proven that a nonlinear self-interaction mechanism can explain the stability of the charge
distribution. Even if it yields some considerable difference with respect to mesurable value, we believe
that, qualitatively, it is relevant to understand (classically) how self-interaction and stability are related.
This is a lesson we can implement in the framework of Yang-Mills theories.

A further step may be taken at this point. Expression (13) can be rewritten as a function of electronic
spin

−→
L and thus be differently interpreted. Setting µBohr

ro
= 3Lz

2γeµo
from (9), and inserting it in (13), yields

a connection between the pressure and the spin. Difining u(x) and v(x) as:
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leads to
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P (x) = u(x) + v(x)L2
z . (14)

It can be easily seen that the term v(x)L2
z guarantees the stability of the electric charge. It must

then be concluded that the presence of spin is necessary to ensure the integrity of the elementary charged
particle and that a spinless (truly) elementary charged particle is not expected to exist. This result is in
perfect agreement with the fact that no spinless charged (trully elementary) particle has been discovered
so far. However, the Minimal Supersymmetric Standard Model (MSSM) predicts the existence of two
charged spinless Higgs bosons, in disagreement with the approach proposed here. On the other hand,
such particles have not been detected yet and still remain as a theoretical possibility. There is also the
possibility that, once they are found (at LHC, for instance), they turn out to be composite structures
and not genuinely elementary particles.
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