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Abstract

We show that there are significant conceptual differences between QM and QFT
which make it difficult to view QFT as just a relativistic extension of the principles
of QM. The root of this is a fundamental distiction between Born-localization in
QM (which in the relativistic context changes its name to Newton-Wigner local-
ization) and modular localization which is the localization underlying QFT, after
one liberates it from its standard presentation in terms of field coordinates. The
first comes with a probability notion and projection operators, whereas the latter
describes causal propagation in QFT and leads to thermal aspects.

Taking these significant differences serious has not only repercussions for the phi-
losophy of science, but also leads to a new structural properties as a consequence of
vacuum polarization: the area law for localization entropy near the the causal local-
ization horizon and a more realistic cutoff independent setting for the cosmological
vacuum energy density which is compatible with local covariance.
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1 Introductory remarks

Ever since QM was discovered, the conceptual differences between classical theory and
QM have been the subject of fundamental investigations with profound physical and
philosophical consequences. But the conceptual relation between QFT and QM which is
at least as challenging and rich of surprises has not received the same amount of attention
and scrutiny. Apart from some admirable work on the significant changes which the theory
of measurements must undergo in order to be consistent with the structure of QFT [1], I
am not aware of in-depth attempts, although physicists occasionally investigated special
problems as e.g. the issue of Bell states in local quantum physics (LQP1) [2] or the
important relations between causal disjointness with the existence of uncorrelated states
and the issue of statistical independence [4].

On the other side one should mention that some spectacular misunderstanding of
conceptual properties in passing from QM to LQP led to incorrect results about alleged
violations of the velocity of light remaining a limiting velocity in the quantum setting (the
famous Fermi Gedankenexperiment) which, as a result of a publication in Phys. Lett. [5]
and a simultaneous article in Nature on the prospects of time machines, created quite a
stir at the time and led to a counter article [6]. Since the LQP presentation of the Fermi
Gedankenexperiment is one of the strong motivations for non-experts to engage with its
conceptual setting and therefore has a high pedagogical value in the present context, it is
natural that it will obtain some space in this article.

The reader who expects an axiomatic setting for a new LQP-based approach to the
measurement issue will be disappointed; before one does something ambitious like this
one must take stock of the conceptual problems and this can only be achieved by going
somewhat beyond the present ”shut up and calculate” attitude. But let me emphasize
again that there is no difference in content between QFT and LQP. I use LQP instead of
QFT whenever I think that something may not be found in the standard textbooks, and
this is certainly the case with some of the material in this paper. There is of course one
recommendable exception, namely Rudolf Haag’s book ”Local Quantum physics”; but in
a fast developing area of particle physics two decades (referring to the time it was written)
is a long time.

The paper consists of two main parts, the first is entirely dedicated to the exposi-
tion of the differences between QM and LQP, whereas the second deals with thermal
consequences of vacuum polarization caused by causal localization.

The first part starts with a subsection on direct particle interactions (DPI), a frame-
work which incorporates all those properties of a relativistic theory which one is able to
formulate solely in terms of particles (most of them already appearing in the S-matrix
work of E.C.G. Stückelberg). However the enforcement of the cluster factorization prop-
erty (the spatial aspect of macro-causality) in DPI requires more involved arguments; it is

1We use this terminology instead of QFT if we want to direct the reader’s attention away from the
textbook Lagrangian quantization towards the underlying principles [3]. QFT (the content of QFT
textbooks) and LQP deal with the same physical principles but LQP is less comitted to a particular
formalism (Lagrangian quantization, functional integrals) and rather procures always the most adaequate
mathematical concepts for their implementation. It includes of course all the results of the standard
perturbative Lagrangian quantization but presents them in a conceptually and mathematically more
satisfactory way. Most of the subjects in this article are outside of textbook QFT.



CBPF-NF-025/07 2

not automatic as in nonrelativistic QM, and as a result DPI does not allow a second quan-
tization presentation. Most particle physicists seem to be unaware of its existence and
tend to believe that a relativistic particle theory, which is consistent with macro-causality
and has a Poincaré-invariant S-matrix, must be equivalent to QFT2.

Since the ideas which go into its construction are important for appreciating the con-
ceptual differences of relativistic QM to QFT, we will at least sketch some of the arguments
showing that DPI theories fulfill all the physical requirements which one is able to formu-
late about relativistic particles, as Poincaré covariance, unitary and macro-causality of
the resulting S-matrix (which includes cluster factorization). In contradistinction to non-
relativistic mechanics for which clustering follows trivially from the additivity of pair-(or
higher-) particle potentials, and also in contradistinction to QFT where the clustering is
a rather straightforward consequence of locality and the energy positivity, the implemen-
tation in the relativistic DPI setting is much more subtle and this is related to the lack of
a second quantization reformulation of multi-particle interactions. The important point
in the present context is that there exists a quantum mechanical relativistic theory which
implements interaction without using fields in which the S-matrix is Poincaré invariant
and fulfills macro-causality.

In this way one learns to appreciate the fundamental difference between quantum theo-
ries which have no maximal velocity and those which have. DPI only leads to finite velocity
propagation for asymptotically large time-like separations, so the causal propagation is
valid only in the sense of asymptotically large timelike distances between asymptotically
separated Born-localized events. Saying that DPI is macro- but not micro-causal implies
that it cannot be used to study properties of local propagation over finite distances; the
incorrect contradiction against the Fermi-Gedankenexperiment mentioned before resulted
from ignoring this conceptually important point.

At the root of this difference is the existence of two very different concepts of localiza-
tion namely the Born localization which is the only localization for QM, and the modular
localization which is the one underlying the locality notion in QFT and which is relevant
for causal propagation over finite distances. The justification and understanding of this
terminology will be one of the main points of the present paper. Whereas QM only knows
the Born localization, QFT requires both, Born-localization for (the wave functions of)
particles before and after a scattering event, and modular localization in connection with
fields and local observables3. Without Born localization and the associated projectors,
there would be no scattering theory leading to cross sections and QFT would loose its most
prominent observables and become just a mathematical playground. In contradistinction
to QM and DPI, in QFT there is no way in which in the presence of interactions the no-
tion of particles at finite times can be saved. The statement that an isolated relativistic
particle cannot be localized below its Compton wave length refers to the (Newton-Wigner
adaptation of the) Born localization. These structural limitations do not exclude that a
QFT phenomenon may present itself like in QM in the sense of FAPP (for all practical

2The related folklore dictum one finds in the literature is: relativistic quantum theory of particles +
cluster factorization property = QFT. Apparently this goes back to S. Weinberg.

3Particles are objects with a well-defined ontological status whereas (composite) fields form an infi-
nite set of coordinatizations which generate the local algebras. Modular localization is the localization
property which is independent of what field coordinatization has been used.
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purposes) as this statement about the Compton wave length being a limit in a FAAP
sense. The question when the QM setting can be applied in QFT problems in the FAAP
sense is, similar to the problem of validity of quasi-classical approximations in QM, a
highly artistic and complex issue.

The first part also contains a section which focusses on the radical difference between
the Newton-Wigner (NW) localization (the name for the Born localization adapted to
the relativistic particle setting) and the localization which is inherent in QFT, which
in its intrinsic form, i.e. liberated from singular pointlike field coordinatization, will be
referred to as modular localization [7][8][11]. The terminology has its origin in the fact
that it is backed up by a mathematical theory within the setting of operator algebras
which bears the name Tomita-Takesaki4 modular theory, although, within the setting of
thermal QFT, physicists independently discovered various aspects of it [3]. Its relevance
for causal localization was only spotted a decade later [10] and the appreciation of its use
in problems of thermal behavior at causal- and event- horizons and black hole physics had
to wait another decade.

The last section of the first part shows the enormous conceptual distance between
QM and LQP by presenting the world of LQP as the result of relative positioning of a
finite (and rather small) number of monads within a Hilbert space. Here we are using
the terminology introduced by Leibniz in a philosophical context. In fact it turns out
that the LQP adaptation of this setting goes even somewhat beyond what Leibniz had
in mind when he imagined physical reality arising from interrelations between monads
with spacetime serving as ordering device for the monads (in the present particle physics
context monads are copies of the unique hyperfinite type III1 factor algebra) which is the
abstract form of quantum matter substrate. In other words the full physical content of
LQP i.e. the material substrate together with Minkowski spacetime symmetry is encoded
into the relative positioning of a finite number of monads in a Hilbert space. The algebraic
structure of QM, relativistic or not, has no such monad structure; the global algebra as
well as all Born-localized subalgebras are always of type I which is either the algebra
of all bounded operators B(H) in a Hilbert space (in case of irreducible ground state
representations) or multiples or tensor products thereof.

The second part addresses two important astrophysical consequences of vacuum polar-
ization, the first section deals with localization entropy and recalls its area proportionality
which is a more recent result [47][48]. We will explain why entanglement in QFT is very
different from the better known entanglement in quantum mechanics. The second subsec-
tion also contains some new remarks about the cosmological constant problem. In both
cases these results of LQP cast serious doubts on whether what was hitherto perceived
to be the interface between LQP and QG has been placed correctly. In particular it is
questionable that the thermal aspects of black holes, in particular the area proportionality
of entropy, need the inference of QG instead of being fully understood in terms of QFT
in CST.

Another fact which corroborates the necessity for change in thinking comes from the
fact that the prohibitively large value for the vacuum energy, which has been erroneously

4Tomita was a Japanese mathematician who discovered some properties of the theory in the first half
of the 60s, but it needed a lot of polishing in order to be accepted by the mathematical community, and
this is where the name Takesaki entered.
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attributed to QFT, is in reality based on the level occupation in relativistic QM. The stan-
dard estimate, which led to the cosmological constant problem, violates local covariance
(local diffeomorphism equivalence) which is one of QFT in CST most cherished principles.
We indicate how a calculation without cutoff and in agreement with local covariance may
look like. With this critical comments I am in good company. In a paper by Hollands
and Wald [12] such critical thinking even entered the title of their article: Quantum Field
Theory Is Not Merely Quantum Mechanics Applied to Low Energy Effective Degrees of
Freedom.

2 The interface between quantum mechanics and quan-

tum field theory

Shortly after the discovery of field quantization in the second half of the 1920s, three
viewpoints about its content and purpose emerged. There were those who pointed out that
particles were already ”quantum” ever since Heisenberg’s discovery of quantum mechanics,
and therefore there is no sufficient reason for quantizing their quantum description a
second time. On the opposite side was Pascual Jordan, who, following de Broglie, not
only almost single-handedly created QFT (against his critics from the first group), but
also defended the (in those days) radical point of view that electromagnetism as well as
matter must be described by a unified formalism of quantum fields. Dirac’s position was
somewhere between these extremes in that quantum theory should mean quantizing a true
classical reality5 reflected his conviction that quantization denotes quantizing the classical
description which is wave-like for classical electromagnetism and corpuscular for classical
particles; thus rejecting the field quantization for massive particles for which no classical
wave reality exists (only in the 50s he fully embraced field quantization).

The unified quantized wave field point of view of Jordan finally won the argument, but
there is some irony in the fact that the idea of antiparticles entered QFT through Dirac’s
hole theory and not through Jordan’s field quantization. It was also the hole theory in
which the first perturbative QED computations (which entered the textbooks of Heitler
and Wenzel) were done before it was recognized that this setting was not really consistent.
This insight only surfaced when it was found out that the hole formalism is unsuitable
for problems involving renormalization in which vacuum polarization plays the essential
role. The latter had been discovered already in the 30s by Heisenberg [13] in connection
with states obtained by applying composites of free fields (as conserved currents) to the
vacuum. Shortly afterwards Furry and Oppenheimer [14] studied perturbative interactions
of Lagrangian fields and noticed to their amazement that the perturbatively interacting
Lagrangian field applied to the vacuum created inevitably some ”stuff” in addition to the
expected one-particle state. Unlike the case of composite free fields, the number of the
particles/antiparticles in that state increases with perturbative order, pointing towards
the fact that one has to deal with infinite polarization clouds. It is these (at first sight
innocent looking) interaction-induced polarization clouds which, as will be shown in the

5Jordan’s extreme formal positivistic point of view allowed him to quantize everything which fitted
into the classical Lagrangian field formalism independent of whether it had a classical reality or not.
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subsequent sections, separate QM from LQP in a conceptually dramatic way. In fact these
polarization clouds are more characteristic of LQP than the actual creation of particles
in scattering processes which is usually cited as the main distinction between LQP and
QM. This is because the DPI setting can be generalized to incorporate particle creation
through scattering [19], whereas vacuum polarization is a rather direct consequence of
quantum field theoretic localization which is incompatible with QM.

2.1 Direct particle interactions, relativistic QM

In the following we address the question why, inspite of the mentioned inconsistency of
attempts at particle theories as the hole theory, there can be at all a consistent relativistic
particle theory. By this we mean a quantum theory of interacting particles which fulfills all
physical requirements which one can formulate solely in terms of particles; this includes
in addition to unitary representation of the Poincaré group also macro-causality, but
certainly not micro-causality which has no place in a particle-based theory would force us
away from a pure particles setting.

A positive answer was given in terms of Coester’s direct particle interactions (DPI)
where direct means ”not field-mediated”. This idea was first formulated in the non-trivial
context of 3-particle systems [15] and then generalized (in collaboration with Polyzou [16])
to arbitrary high particle number. As a pure relativistic particle theory without vacuum
polarization, it turns out to have no natural second quantization setting. But on the other
hand it fulfills all properties which are expressible in terms of particle concepts without
the use of fields. In particular these theories fulfill the cluster separability properties
of the associated Poincaré invariant unitary S-matrix which no particle-based S-matrix
approach was able to implement before, neither that of Heisenberg nor that of Chew’s
bootstrap approach and also not the dual model/string approach.

It has been known since the early days of particle physics that an interacting relativistic
2-particle system of massive particles (for simplicity of equal mass) is simply described
by going into the c.m. system and modifying the mass operator in the following way

M = 2
√
p2 +m2 + v, H =

√
P 2 +M2 (1)

The interaction v may be taken as a local function in the relative coordinate which is
conjugate to the relative momentum p in the c.m. system; but since the scheme does not
lead to local differential equations, there is not much to be gained from such a choice.
One may follow Bakamjian and Thomas [17] and choose the Poincaré generators in such a
way the interaction does not affect them directly apart from the Hamiltonian.. Denoting
the interaction-free generators by a subscript 0 one arrives at the following system of
two-particle generators

�K =
1

2
( �X0H +H �X0) − �J × �P0(M +H)−1 (2)

�J = �J0 − �X0 × �P0

where the Wigner canonical spin J commutes with �P = �P0 and �X = �X.0 and Wµ =
εµνκλP

νMκλ is the Pauli-Lubanski vector which is useful for the covariant description
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of spin. We leave the check that the commutation relations of the Poincaré generators
result from the above definitions together with the canonical commutation relations of the
single particle canonical variable (which furnish a complete irreducible set of operators
in terms of which any operator in the Hilbert space may be written) to the reader. As
in the nonrelativistic setting, short ranged interactions v lead to Møller operators and
S-matrices via a converging sequence of unitaries formed from the free and interacting
Hamiltonian

Ω±(H,H0) = lim
t→±∞

eiHte−H0t (3)

Ω±(M,M0) = Ω±(H,H0)

S = Ω∗
+Ω−

The identity in the second line is the consequence of a theorem which say that the limit
is not affected if instead of M we take a positive function of M as H(M), as long as H0

is the same function of M0. This insures the frame-independence of the Møller operators
and the L-invariance of the S-matrix. Apart from this identity the rest behaves just as
in nonrelativistic scattering theory. As in standard QM, the 2-particle cluster property
is the statement that Ω

(2)
± → 1, S(2) → 1 in the limit of infinite spatial separation of the

centers of wave packets of the two particles. The cluster factorization follows from the
same kind of short range assumption that already assured the validity of the asymptotic
convergence.

The BT form for the generators can be achieved inductively for an arbitrary number
of particles. As will be seen, the advantage of this form of the generators is that in
passing from n-1 to n-particles the interactions simply add and one ends up with Poincaré
group generators for an interacting n-particle system. But for n > 2 the aforementioned
subtle problem with the cluster property arises: whereas this iterative construction in
the nonrelativistic setting complies with cluster separability, this is not the case in the
relativistic context. This problem shows up for the first time in the presence of 3 particles
[15]. The BT iteration from 2 to 3 particles gives the 3-particle mass operator

M = M0 + V12 + V13 + V23 + V123 (4)

V12 = M(12, 3) −M0(12; 3), M(12, 3) =
√
�p2

12,3 +M2
12 +

√
�p2

12,3 +m2

and the M(ij, k) result from cyclic permutations Here M(12, 3) denotes the 3-particle
invariant mass in case the third particle is a “spectator” (which by definition does not
interact with 1 and 2). The momentum in the last line is the relative momentum between
the (12)-cluster and particle 3 in the joint c.m. and M12 is the associated two-particle
mass (invariant energy in the (12) c.m system). As in the nonrelativistic case, one can
always add a totally connected contribution. Setting this contribution to zero, the 3-
particle mass operator only depends on the two-particle interaction v. But contrary to
the nonrelativistic case, the BT generators constructed with M do not fulfill the cluster
separability requirement as it stands. The latter demands that if the interaction between
two clusters is removed, the unitary representation factorizes into that of the product of
the two clusters. One expects that shifting the third particle to infinity will render it
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a spectator and result in a factorization U12,3 → U12 ⊗ U3. Unfortunately what really
happens is that the (12) interaction also gets switched off i.e. U123 → U1 ⊗U2 ⊗U3 . The
reason for this violation of the cluster separability property, as a simple calculation using
the transformation formula from c.m. variables to the original pi, i = 1, 2, 3 shows [16],
is that the spatial translation in the original system (instead of the 12, 3 c.m. system)
does remove the third particle to infinity as it should, but unfortunately it also drives the
two-particle mass operator (with which it does not commute) towards its free value which
violates clustering.

In other words the BT produces a Poincaré covariant 3-particle interaction which is
additive in the respective c.m. interaction terms (4), but the Poincaré representation U
of the resulting system will not be cluster-separable. However, as shown first in [15], at
least the 3-particle S-matrix computed in the additive BT scheme turns out to have the
cluster factorization property. But without implementing the correct cluster factorization
not only for the S-matrix but also for the 3-particle Poincaré generators there is no chance
to proceed to a clustering 4-particle S-matrix.

Fortunately there always exist unitaries which transform BT systems into cluster-
separable systems without affecting the S-matrix. Such transformations are called scatter-
ing equivalences. they were first introduced into QM by Sokolov [18] and their intuitive
content is related to a certain insensitivity of the scattering operator under quasilocal
changes of the quantum mechanical description at finite times. This is vaguely reminis-
cent of the insensitivity of the S-matrix in QFT against local changes in the interpolating
field-coordinatizations6. The notion of scattering equivalences is conveniently described
in terms of a subalgebra of asymptotically constant operators C defined by

lim
t→±∞

C#eiH0tψ = 0 (5)

lim
t→±∞

(
V # − 1

)
eiH0tψ = 0

where C# stands for both C and C∗. These operators, which vanish on dissipating free
wave packets in configuration space form a *-subalgebra which extends naturally to a C∗-
algebra C. A scattering equivalence is a unitary member V ∈ C which is asymptotically
equal to the identity (which is the content of the second line). Applying this asymptotic
equivalence relation to the Møller operator one obtains

Ω±(V HV ∗, V H0V
∗) = V Ω±(H,H0) (6)

so that the V cancels out in the S-matrix. Scattering equivalences do however change the
interacting representations of the Poincaré group according to U(Λ, a) → V U(Λ, a)V ∗.

The upshot is that there exists a clustering Hamiltonian Hclu which is unitarily related
to the BT Hamiltonian HBT i.e. Hclu = BHBTB

∗ such that B ∈ C. is uniquely determined
in terms of the scattering data computed from HBT . It is precisely this clustering of Hclu

which is needed for obtaining a clustering 4-particle S-matrix which is cluster-associated
the S(3). With the help of Mclu one defines a 4-particle interaction following the additive

6In field theoretic terminology this means changing the pointlike field by passing to another (composite)
field in the same equivalence class (Borchers class) or in the setting of AQFT by picking another operator
from a local operator algebra.
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BT prescription; the subsequent scattering formalism leads again to a clustering 4-particle
S-matrix and again one would not be able to go to n=5 without passing from the BT
to the cluster-factorizing 4-particle Poincaré group representation. Coester and Polyzou
showed [16] that this procedure can be iterated and hence one arrives at the following
theorem

Theorem: The freedom of choosing scattering equivalences can be used to convert
the Bakamijan-Thomas presentation of multi-particle Poincaré generators into a cluster-
factorizing representation. In this way a cluster-factorizing S-matrix S(n) associated to
a BT representation HBT (in which clustering mass operator M

(n−1)
clu was used) leads via

the construction of M
(n)
clu to a S-matrix S(n+1) which clusters in terms of all the previously

determined S(k), k < n. The use of scattering equivalences impedes the existence of a 2 nd

quantized formalism.
For a proof we refer to the original papers [16][19]. In passing we mention that the

minimal extension (the one determined uniquely in terms of the two-particle interaction
v) from n to n+1 for n > 3 contains connected 3-and higher particle interactions which are
nonlinear expressions (involving nested roots) in terms of the original two-particle v.This
is another unexpected phenomenon as compared to the nonrelativistic case, although less
surprising from a QFT position.

This theorem shows that it is possible to construct a relativistic theory which only
uses particle concepts, thus bringing to an end an old folklore which says relativity +
clustering = QFT. Whether one should call this DPI theory ”relativistic QM” is a matter
of taste, it depends on what significance one attributes to those scattering equivalences.
But in any case it is a relativistic S-matrix setting which goes beyond the prior attempts
by Heisenberg who missed out on the cluster factorization. In this context one should also
mention that Chews S-bootstrap never tried to implement clustering and of course none
of these important properties have been checked in the dual model/string theory. Taking
into considerations the sophistication one needs in order to implement macrocausality in
a particled based theory outside the micro-causal setting of QFT, the possibility that a
multiparticle S-matrix constructed according to the prescriptions of string-theory by some
stroke of luck fulfills these requirements is smaller than finding a needle in a haystack;
but maybe it is possible to modify string theory so that it complies with them.

Coester and Polyzou also showed that this relativistic setting can be extended to
processes which maintain cluster factorization in the presence of a finite number of cre-
ation/annihilation channels, showing, as mentioned before, that the mere occurrence of
particle creation is not characteristic for QFT. Different from the nonrelativistic Schroedinger
QM, the superselection rule for masses of particles which results from Galilei invariance
does not carry over to the relativistic setting, which therefore is less restrictive.

Certain properties which are automatic consequences of locality in QFT and can be
expressed in terms of particles as TCP symmetry, the existence of anti-particles, the
spin-statistics connection, can be added ”by hand”. Other properties which are on-shell
relics of locality which QFT imprints on the S-matrix and which require the notion of
analytic continuation in on-shell particle momenta as the crossing property, cannot be
implemented in the QM setting of DPI.
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2.2 First brush with the intricacies of the particles-field prob-
lems in QFT

QFT, apart from free fields QFT, in contrast to QM (Schrödinger- or relativistic DPI-
QM), does not admit a particle interpretation at finite times. If it would not be for the
asymptotic scattering interpretation in terms of incoming/outgoing particles associated
with the free in/out fields, there would be hardly anything of a non-fleeting nature which
can be measured. In QFT in CST and thermal QFT where this particle concept is missing,
the set of conceivable measurements is very meagre and is essentially reduced to energy-
and entropy- densities as in thermal systems and black hole radiation.

Since the notion of particle is often used in a more general sense than in this paper, it
may be helpful to have an interlude on this topic. By particle I mean an asymptotically
stable object which forms the tensor product basis for an asymptotically complete de-
scription; in other words the particle concept equips the QFT with a (LSZ, Haag-Ruelle)
complete asymptotic particle interpretation7 which imposes a Fock space tensor structure
on the Hilbert space of the interacting system. The physics behind it is the idea that if we
were cobbling the asymptotic spacetime region with counters and monitor coincidences of
localization events, then an n-fold coincidence would remain stable if the far removed local-
ization centers would move freely. QFT achieves this asymptotic completeness structure
through asymptotic Born localization. The particle concept in QFT is precisely applica-
ble where it is needed namely asymptotically and where the non-covariant aspect of an
individual Born (=NW) localization becomes irrelevant (since the asymptotic geometric
relations between counters is described by covariant mass-shell momenta).

Thus the invariant S-matrix has no memory about the reference-system-dependent
Born localization of particle counters. Tying the particle concept to asymptotically stable
counter-coincidences can be traced back to a seminal paper by Haag and Swieca [20].
The Fock representation of free fields is the only model which admits this interpretation
for all times; by passing to inequivalent representations of the underlying CCR or CAR
C∗-algebra the particle interpretation is lost even at asymptotic times.

It is this asymptotic particle structure which leads to the observational richness of
QFT. Once we leave this setting by going to curved spacetime, to QFT in KMS thermal
states representations, or if we restrict a Minkowski spacetime theory to a Rindler wedge
(with the Hamiltonian being the boost operator with its two-sided spectrum), we are
loosing this observational wealth. The restriction to the Rindler world inherits of course
the particle structure of the say free field Minkowski QFT, but this is not intrinsic in the
Rindler sense8 since the Minkowski vacuum is now a thermal state and there is no particle
scattering theory in the boost time in such a thermal situation. Of course there remains
the possibility to measure thermal excitations in an Unruh counter, to use a counter for

7The asymptotic completeness property was for the first time established (together with a recent
existence proof) in a family of factorizing two-dimensional models (see the section on modular localization)
with nontrivial scattering.

8There is of course the mathematical possibility of choosing a groundstate representation for a Rindler
world instead of restricting the Minkowski vacuum. In that case it is not clear whether in the presence of
interactions the exitations above this ground state have the Haag-Swieca asymptotic localization stability
i.e. whether scattering theory applies to such a situation. It would be interesting to (dis)prove the validity
of Haag-Ruelle scattering theory in such a situation.
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observing Hawking radiation or to determine the energy density in a cosmological reference
state (see also last section). But this is done by placing a counter in a thermal medium
associated with a state on a Rindler or Hawking black hole system which measures an
ensemble of excitations which are present in such a (possibly homogeneous) reference
state. Physicists who work on QFT in CST use this more general notion of particles
[24] in the sense of Unruh thermal excitations. But given the impossibility of measuring
quantum fields directly, the question whether there exist any other measurements besides
the thermal radiation measurements remains open. On may use the word particle in any
way one wants as long as one accounts for the observable consequences.

Naive intuition suggests of course that in the ”for all practical purposes sense” one
should be able to use the idealized setting of scattering theory also for non-asymptotic
intermediate settings as long as the curvature does not require a quantum treatment. But
there is presently no concept which makes this vague idea precise (scattering theory in
the flat tangent space?).

Recent developments have led to view QFT in a functorial setting as a functor from
globally hyperbolic Lorentz manifolds to C∗- or operator algebras [25]. In other words the
same abstract matter substrate may be ordered using different spacetime ordering devices.
In this descriptive functorial sense a QFT in CST has an associated Minkowski spacetime
QFT with a particle interpretation in the above sense. But the particle structure requires
the presence of asymptotic regions and precisely that is not covered by the functorial local
relation between the observables belonging to locally isometric regions; i.e. just where
the functorial relation would be needed for transplanting the notion of particles it breaks
down.

One could argue that the observational indigence on the side of particles may be coun-
terbalance by measuring quantum fields directly, but which fields and how? Quantum
fields have, in contradistinction to their measurable classical counterparts, no ”individu-
ality”; they are just coordinatizing local algebras; there are infinitely many of them and
there is no intrinsic hierarchy between elementary and composite besides that of their
superselected charges. One is as good as the other as long as it creates from the vacuum
the correct charge which the particle carries. The main purpose of fields is to interpolate
asymptotic particles and implement the local covariance principle. Even the setting of
nets of local field algebras (which is the field-coordinate-free implementation of the local-
ity requirement) is an ”as if” world of objects. No quantum field theorist will loose time
thinking about ontological aspects of individual operators in a local algebra inasmuch as
no experimentalist insists to know (apart from the sensitivity of his counter) his counter’s
detailed inner workings. The essential aspect for both, the theoretician as well as the
experimentalist, is the localization of events and not the assignment of an event to a par-
ticular field or to a particular brand of counter. In some sense the world of the infinitely
many (composite) pointlike fields is the prize to pay for being able to implement the local
covariance principle in LQP.

Compare the confusing plurality of fields with the simplicity of particles which are
uniquely determined by their Poincaré representation properties9. But without the en-
forcement of the local covariance via a net of local algebras or via generating pointlike

9It will be shown in a later section that modular localization which is the localization concept under-
lying local covariance, is unique despite the plethora of pointlike fields.
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covariant fields it is impossible to understand those subtle properties of the S-matrix which
have been verified in experiments. Each attempt to implement those properties which the
S-matrix inherits from the locality principle directly by hand (i.e. avoiding local nets and
local fields) has ended in failure: Heisenberg’s S-matrix approach, the Chew bootstrap
and in my opinion, despite its popularity, also the dual model/string theory setting. In
fact DPI it is besides QFT the only theory known to date in which the validity of the
minimal requirements on particles and their interaction can be fulfilled.

Our rather detailed presentation10 of the setting of DPI in the previous section serves
exclusively to highlight this significant conceptual difference between (relativistic) QM
and QFT; there was no intention here to proselyte for DPI, although the protagonists of
this setting, who are mathematical nuclear physicists [16], advocate an extended form of
DPI (with creation channels) for medium energy particle phenomenology in energy ranges
where only a few mesons are created.

The conceptual differences between a DPI relativistic QM and QFT are enormous, but
in order to appreciate this, one has to become acquainted with structural properties of
QFT which are somewhat removed from the standard properties and unfortunately have
not entered textbooks; it is the main purpose of the following sections to highlight these
contrasts by going more deeply into QFT.

There are certain folkloric statements about the relation QM–QFT whose dismissal
does not require any conceptual sophistication. For example in trying to make QFT
more susceptive to newcomers it is sometimes said that a free field is nothing more than
a collection of infinitely many coupled oscillators. Although not outright wrong, this
characterization misses the most characteristic property of how spacetime enters as an
ordering principle into QFT. It would not help any newcomer who knows a quantum
oscillator, but has not met a free field before, to construct a free field from those words This
is somewhat reminiscent of equating QM via Schrödinger’s formulation with classical wave
theory. What may be gained for a newcomer by appealing to his computational abilities
acquired in classical electrodynamics is more than lost in the conceptual problems which
he confronts later when facing the subtleties of quantum physics.

2.3 Quantum mechanical Born localization versus covariant lo-

calization in LQP

Let us know come to the main point namely the difference between QM and LQP in terms
of their localization concept. We will use the word Born localization for the localization
probability density of the Schroedinger wave function p(x) = |ψ(x)|2 (or its Newton-
Wigner counterpart).

As a historical curiosity we mention that Born’s original publication [21] does not
deal with localization properties in QM, rather it introduces the probability concept for
a scattering amplitude in the Born approximation, i.e. it preempted the notion of cross
section. Wave function localization in conjunction with probability only entered two
years later starting with a paper by Pauli (without reference to Born’s work); hence Born

10The reason for not just referring to the original papers is that this setting does not seem to be known
outside a small circle of mathematical inclined nuclear physicists.
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localization is Born’s probability rule as extended from scattering theory to the x-space
Schrödinger wave function. Being a bona fide probability, one may characterize the Born
localization in a spatial region R ∈ R3 at a given time in terms of a localization projector
P (R). The standard version of QM and the various settings of measurement theory rely
heavily on these projectors. Without Born localization and the ensuing projectors it
would be impossible to formulate the conceptual basis for the time-dependent scattering
theory.

The adaptation of Born localization to the setting of relativistic particles and their
direct interactions is known under the name Newton-Wigner Localization because these
authors [22] introduced a frame-dependent selfadjoint localization operator and its family
of projections. Its lack of covariance in finite time propagation leads to frame-dependence
and superluminal contributions, which is why the terminology ”relativistic QM” has to be
taken with a grain of salt. However in the asymptotic limit of large timelike separation as
required in scattering theory, the covariance, frame-independence and causal relations are
recovered. With other words one obtains a Poincaré-invariant unitary S-matrix whose DPI
construction guaranties also the validity of all the macro-causality requirements (spacelike
clustering, absence of timelike precursors) which can be formulated in a particle setting
without taking recourse to interpolating local fields. Even though the individual parti-
cle localizations are frame-dependent, the asymptotic relation between two NW events is
given in terms of the geometrically associated covariant on-shell momenta or 4-velocities.
In fact all observations on particles always involve Born-localization measurements. We
will often use the name NW and Born interchangeably for the localization in the rela-
tivistic particle context.

It is not accidental that the increasing popularity of nonlocal and noncommutative
models occurs at a time in which the understanding for the physical relevance on causal-
ity issues has been on a down turn. Instead considerable attention is focussed on math-
ematical technicalities about what is the best way to implement noncommutativity by
using star-products and similar modifications. Practically no consideration is given to the
physically crucial questions of cluster factorization and absence of timelike precursors for
the resulting S-matrix. It seems that these matters which enjoyed a prominence at the
time of Stückelberg and during the heydays of dispersion relations have vanished from
the collective knowledge.

In comparing QM with QFT it is often convenient in discussions about conceptual is-
sues to rephrase the content of QM in terms of operator algebras and states (expectation
value functionals on operator algebras); in this way one also achieves more similarity with
the formalism of QFT where this abstraction becomes important. In QFT the identifica-
tion of pure states with state-vectors of a Hilbert space has no intrinsic meaning and often
cannot be maintained in concrete situations. For the same reasons of achieving a unified
description we use the multi-particle (Fock space) setting instead of the Schroedinger for-
mulation. This multiplicative Fock space setting is not available for DPI, in which case a
comparison of concepts becomes less elegant.

The global algebra which contains all observables independent of their localization is
the algebra B(H) of all bounded operators in Hilbert space. Physically important un-
bounded operators are not members but rather have the mathematical status of being
affiliated with B(H) and its subalgebras; this bookkeeping makes it possible to apply
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powerful theorems from the theory of operator algebras (whereas unbounded operators
are treated on a case to case basis). B(H) is the correct global description whenever the
physical system under discussion arises as the weak closure of a ground state represen-
tation of an irreducible system of operators11. According to the classification of operator
algebras, B(H) and all its multiples are of Murray von Neumann type I∞ whose charac-
teristic property is the existence of minimal projectors (in the irreducible case these are
the one-dimensional projectors belonging to measurements which cannot be refined).

The differences between QM and LQP emerge as soon as one uses localization in order
to provide a physical substructure to B(H). It is well kown that a dissection of space
into nonoverlapping spatial regions i.e. R3 = ∪iRi implies via Born localization a tensor
factorization of B(H) and H

B(H) =
⊗

i

B(H(Ri)) (7)

H =
⊗

i

H(Ri), P (Ri)H = H(Ri)

Hence there is orthogonality between subspaces belonging to localizations in nonoverlap-
ping regions and one may talk about states which are pure in Ri. A pure state in the
global algebra B(H) may not be of the tensor product form but may rather be a superpo-
sition of factorizing states. In that case the reduced density matrix obtained by averaging
outside a region Ri leads to the phenomenon of entanglement. Although one may relate
this quantum mechanical entanglement with the notion of entropy, it is an entropy in the
sense of information theory and not in the thermal sense of thermodynamics, i.e. one can-
not assign a temperature as a quantitative measure of the degree of quantum mechanical
entanglement which results from restricting pure global states. The trivial net structure
of B(H) in terms of the B(H(Ri)) is of a kinematical kind. The quantum mechanical
dynamics through a Hamiltonian shows that the tensor factorization from Born localiza-
tion at one time is almost instantaneously lost in the time-development, as expected of a
theory of without a maximal propagation speed.

The LQP counterpart of the Born-localized subalgebras at a fixed time are the observ-
able algebras A(O) for causally completed (O = O′′, the causal complement taken twice)
spacetime regions O; they form what is called in the terminology of LQP a local net
{A(O)}O⊂M of operator algebras indexed by regions in Minkowski spacetime ∪O = M
which is subject to the natural and obvious requirements of isotony (A(O1) ⊂ A(O2) if
O1 ⊂ O2) and causal locality (the algebras commute for spacelike separated regions).

The connection with the standard formulation of QFT in terms of pointlike fields
is that smeared fields Φ(f) =

∫
Φ(x)f(x)d4x with suppf ⊂ O under reasonable general

conditions generate local algebras. Pointlike fields, which themselves are too singular to be
operators (even if admitting unboundedness), have a well-defined mathematical meaning
as operator-valued distributions. But as mentioned before, there are myriads of fields
which generate the same net of local operator algebras, hence they play a similar role
in LQP as coordinates in modern differential geometry i.e. they coordinatize the net of

11The closure in a thermal equilibrium state associated with a continuous spectrum Hamiltonian leads
to a unitarily inequivalent (type III) operator algebra without minimal projectors.
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spacetime indexed operator algebras and only the latter has an intrinsic meaning. But as
the use of particular spatial coordinates often facilitates calculations, the use of particular
fields with e.g. the lowest short-distance dimension within the infinite charge equivalence
class of fields can greatly simplify calculations in QFT. Therefore it is a problem of
practical importance to construct a covariant basis of locally covariant pointlike fields of
an equivalence class. For massive free fields and massless fields of finite helicity such a basis
is especially simple since the Wick-basis of composite fields still follows in part the logic
of classical composites. This remains so in the presence of interactions in which case the
Wick-ordering gets replaced by the technically more demanding ”normal ordering”. For
free fields in CST and the definition of their composites it is important to require the local
covariant transformation behavior under local isometries [23]. The conceptual framework
for the general case with interactions has also been understood [25]. The different field
coordinates (the analog of the free field and its Wick-composites when interactions are
present) with a cyclic action on a vacuum-like reference state carry the same localization
information as the algebraic net.

After these remarks about the relation of fields in QFT with the local net of LQP, we
now return to the main question namely what changes if we pass from the Born localization
of QM to the causal localization of LQP? The crucial property is that a localized algebra
A(O) ⊂ B(H) together with its commutant A(O)′ (which under very general conditions12

is equal to algebra of the causal disjoint of O i.e. A(O)′ = A(O′)) are two von Neumann
factor algebras i.e.

B(H) = A(O) ∨A(O)′, A(O) ∩ A(O)′ = C1 (8)

But in contrast to the QM algebras the local factor algebras are not of type I and B(H)
does not tensor-factorize in terms of them, in fact they cannot even be embedded into
a B(H1) ⊗ B(H2) tensor product. The prize to pay for ignoring this important fact
and imposing wrong structures is the appearance of spurious ultraviolet divergences. On
the positive side, as will be seen later, without this significant change in the nature of
algebras there would be no holography onto causal horizons, no thermal behavior caused
by localization and a fortiori no area-proportional localization entropy.

In QM a pure state vector, which with respect to a distinguished tensor product basis
in H(R) ⊗H(R\R3) is a nontrivial superposition of tensor-basis states, will be generally
an impure state if restricted to B(H(R)); in the standard formalism (where only pure
states are represented by vectors) it is described by a density matrix. This phenomenon
of entanglement is best described by the information theoretic notion of entropy. On the
other hand each pure state on B(H(R)) or B(H(R\R3)) originates from a pure state on
B(H). The situation in LQP is radically different since the local algebras as A(O) have
no pure states at all ; so the dichotomy between pure and mixed states breaks down and
the kind of entanglement caused by field theoretic localization is much more violent then
that coming from Born-localization (see below).

The situation does not change if one takes for O a region R at a fixed time; in
fact in a theory with finite propagation one hasA(R) = A(D(R)) where D(R) is the

12In fact this duality relation can always be achieved by a process of maximalization (Haag dualization)
which increases the degrees of freedom inside O. A pedagogical illustration based on the ”generalized free
field” can be found in [26]..
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diamond shaped double cone subtended by R (the causal shadow of R). Even if there are
no pointlike generators and if the theory only admits a macroscopically localized net of
algebras (e.g. a net of non-trivial wedge-localized factor algebras A(W ) but trivial double
cone algebras A(O)), the algebras would not tensor factorize i.e. B(H) 	= A(W )⊗A(W ′),
so these properties are not directly related to the singular nature of generating fields. It
turns out that there is a hidden singular aspect in the sharpness of the O-localization
which generates infinitely large vacuum polarization clouds on the causal horizon of the
localization.

Many divergencies in QFT are the result of conceptual errors in the formulation re-
sulting from tacitly identifying QFT with some sort of relativistic QM13, especially in
computations with pointlike localized fields. Conceptual mistakes are facilitated by the
fact that even nonlocal but covariant objects are singular; this is evident from the Kallen-
Lehmann representation of a covariant scalar object

〈A(x)A(y)〉 =

∫
∆+(x− y, κ2)ρ(κ2)dκ2 (9)

which was proposed precisely to show that even without demanding locality, but retaining
only covariance and the Hilbert space structure (positivity), a certain singular behavior
is unavoidable. In the DPI scheme this was avoided because there are simply no pointlike
covariant objects in such a setting; the emphasis there is on generators of the Poicaré
group and invariant global operators as the Møller operators and the S-matrix. In the
algebraic formulation the covariance requirement refers to the geometry of the localization
region A(O) i.e.

U(a,Λ)A(O)U(a,Λ)∗ = A(Oa,Λ) (10)

whereas no requirement about the transformation behavior under finite (tensor, spinor)
Lorentz representations (which would bring back the unboundedness and thus prevent the
use of powerful theorems in operator algebras) is imposed for the individual operators.
The singular nature of pointlike generators (if they exist) is then a purely mathematical
consequence.

We have seen that although QM and QFT can be described under a common mathe-
matical roof (C∗-algebras with a state functional), as soon as one introduces the physically
important localization structure, significant conceptual differences appear. These differ-
ences are due to the presence of vacuum polarization in QFT as a result of causal local-
ization, and they have dramatic consequences; the most prominent ones will be presented
in this and the subsequent sections, as well as in the second part.

The net structure of the observables allows a local comparison of states: two states
are locally equal in a region O if and only if the expectation values of all operators in
A(O) are the same in both states. Local deviations from any state, in particular from
the vacuum state, can be measured in this manner, and states that are indistinguishable
from the vacuum in the causal complement of some region (‘strictly localized states’ [27])
can be defined. Due to the unavoidable correlations in the vacuum state in relativistic

13The correct treatment of perturbation theory which takes into account the singular nature of pointlike
quantum fields may yield more free parameters than in the classical setting, but one is never required to
confront infinities or cut-offs.
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quantum theory (the Reeh-Schlieder property [3]), the space H(O) obtained by applying
the operators in A(O) to the vacuum is, for any open region O, dense in the Hilbert space
and thus far from being orthogonal to H(O′). This somewhat counter-intuitive fact is
inseparably linked with a structural difference between the local algebras and the algebras
encountered in non-relativistic quantum mechanics (or the global algebra of a quantum
field associated with the entire Minkowski space-time) as mentioned in connection with
the breakdown of tensor-factorization (8).

The result is a particular benevolent form of Murphy’s law: everything which is not
forbidden (by superselection rules) to couple is coupled. On the level of particles this is
called nuclear democracy : Any particle whose superselected charge is contained in the
spectrum of fused charges of a cluster of particles can be viewed as a bound state of
that cluster. This renders QFT conceptually much more attractive and fundamental than
QM, but it also contributes to its computational complexity if one tries to access it using
operator or functional methods from QM. Any violation of this law also violates the setting
of QFT, the only known approach to particle physics which is not subject to this law and at
least maintains macro-causality is the before presented quantum mechanical DPI setting.
Whereas the latter has minimal projections (corresponding to optimal observations), this
is not so for the local algebras which turn out to be of type III (the terminology of
Murray and von Neumann); in these algebras every projection is isometrically equivalent
to the largest projector which is the identity operator. Some physical consequences of
this difference have been reviewed in [28].

The Reeh-Schlieder property also implies that the expectation value of a projection
operator localized in a bounded region cannot be interpreted as the probability of detecting
a particle-like object in that region, since it is necessarily nonzero if acting on the vacuum
state. In the context of Born-localization one would refer to the uncertainty relation,
but our later study reveals that the restriction of the vacuum (or any other global finite
energy state) to A(O) is entangled in a much more radical sense namely it has transmuted
into a KMS thermal state at a appropriately normalized (Hawking) temperature14. The
intrinsically defined modular ”Hamiltonian” associated via modular operator theory to
standard pair (A(O),Ωvac) allows a physical interpretation only in those rare cases when it
coincides with one of the global spacetime generators (e.g. the Lorentz boost for the wedge
region in Minkowski spacetime, a conformal transformation for the double cone region in a
conformal theory). This phenomenon has the same origin as the later discussed universal
area proportionality of localization entropy (which is the entropic side of the same thermal
coin associated with modular localization).

There exists in fact a whole family of modular Hamiltonians since the operators in
A(O) naturally fulfill the KMS condition of any standard pair (A(Ǒ),Ωvac) for Ǒ ⊃ O:
how the different modular thermal states physically ”out themselves” depends on which
larger system one wants the operators in A(O) to be associated with, i.e. it depends on
who declares himself to be the observer. The system itself has no preference, it fulfills all
those different KMS properties with respect to all those infinitely many different modular
Hamiltonians simultaneously. In certain cases there is a preferred region and this situation

14The effects we are concerned with are ridiculously small and probably never mearurable, but here
we are interested in principle aspects of the most successfull and fundamental theory and not in FAPP
issues.
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of extreme virtuality caused by vacuum polarization passes to real physics. The interesting
and most prominent case comes about when spacetime curvature is creating a black hole15.
In such a situation the fleeting ”as if” aspect of a causal localization horizon changes to
give room for a more real event horizon. For computations of thermal properties however,
including thermal entropy, it does not matter whether the horizon is a fleeting causal
localization horizon or a ”real” curvature generated black hole event horizon. This leads
to a picture about the LQP-QG interface which is somewhat different from that in most
of the literature; we will return to these issues in connection with the presentation of the
split property in the section on algebraic modular aspects.

A direct comparison with NW-localization can be made in the case of free fields which
are well defined as operator valued distributions in the space variables at a fixed time.
The one-particle states that are NW Born-localized in a given space region at a fixed
time are not the same as the states obtained by applying field operators smeared with
test functions supported in this region to the vacuum. The difference lies in the non-local
energy factor

√
p2 +m2 linking the non-covariant NW states with the states defined in

terms of the covariant field operators. Causality in relativistic quantum field theory is
mathematically expressed through local commutativity, i.e., mutual commutativity of the
algebras A(O) and A(O′).

There is an intimate connection of this property with the possibility of preparing states
that exhibit no mutual correlations for a given pair of causally disjoint regions. In fact, in
a recent paper Buchholz and Summers [4] show that local commutativity is a necessary
condition for the existence of such uncorrelated states. Conversely, in combination with
some further properties (split property [30], existence of scaling limits), that are physically
plausible and have been verified in models, local commutativity leads to a very satisfactory
picture of statistical independence and local preparabilty of states in relativistic quantum
field theory. We refer to [31][32] for thorough discussions of these matters and [28][11]
for a brief review of some physical consequences. The last two papers explain how the
above mentioned concepts avoids the defects of the NW localization and resolve spurious
problems rooted in assumptions that are in conflict with basic principles of relativistic
quantum physics. In particular it can be shown how an alleged difficulty [5][6] with
Fermi’s famous Gedankenexperiment [29] which Fermi proposed in order to show that the
velocity of light is also the limiting propagation velocity in quantum electrodynamics can
be resolved by taking [28] into account the progress on the conceptual issues of causal
localization and the gain in mathematical rigor since the times of Fermi.

After having discussed some significant conceptual differences between QM and LQP,
one naturally asks for an argument why and in which way QM appears as a nonrelativis-
tic limit of LQP. The standard kinematical reasoning of the textbooks is acceptable for
fermionic/bosonic systems in the sense of FAPP, but has not much strength on the con-
ceptual level. To see its weakness, imagine for a moment that we would live in a 3-dim.
world of anyons (abelian plektons, where plektons are Wigner particles with braid group
statistics). Such relativistic objects are by their very statistics so tightly interwoven that
there simply are no compactly localized free fields which only create a localized anyon
without a vacuum polarization cloud admixture. In such a world no nonrelativistic limit

15Even in that case there is no difference whether one associates the localization property with the
outside, inside, or with the horizon of the black hole.
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which maintains the spin-statistic connection could lead to QM, the limiting theory would
rather remain a nonrelativistic QFT, there is simply no Schrödinger equation for plektonic
particle-like objects which carry the spin/statistics properties of anyons. In 4-dimensional
spacetime there is no such obstacle against QM, simply because there exist relativistic free
fields whose application to the vacuum generates a vacuum-polarization-free one-particle
state and the spin-statistics structure does not require the permanence of polarization
clouds in the nonrelativistic limit.

2.4 Modular localization

In the previous sections we mentioned on several occasions that the localization underlying
QFT can be separated from the locality associated with a particular field, in other words
it can be liberated from properties of special field coordinatization. This is achieved by a
marvelous and really impressive theory within the setting of operator algebras which was
independently discovered by mathematicians and physicists in the middle of the 60ies. It
becomes especially accessible (at least for physicists) if one introduces it first in its more
limited spatial- instead of its full algebraic- context. Since it merits more attention than it
hitherto received from the particle physics community, I will present some of its methods
and achievements.

Modular localization of single particle states is a concept that is intrinsically defined
within the representation theory of the Poincaré group. It is determined by the PCT
operator multiplied with a rotation (it is a reflection along the edge of a wedge) and
the generator of the Lorentz boosts associated with the wedge. It has been realized in
recent years by Brunetti, Guido and Longo [7] and with somewhat different motivations
by myself [8], that by appealing to this interpretation of the Tomita involution for wedges
and using the spatial counterpart of Tomita-Takesaki theory [33], it is possible to partially
invert the above procedure of passing from local algebras A(O) to localized state vectors
H(O); namely there is a natural localization structure on the representation space for any
positive energy representation of the proper Poincaré group. Upon second quantization
gives rise to a local net of operator algebras on the Fock space over the representation
Hilbert space.

In the context of Wigner’s description of elementary relativistic systems, the starting
point is an irreducible representation U1of the Poincaré´group on a Hilbert space H1 that
after second quantization becomes the single-particle subspace of the Hilbert space (Fock-
space) H of the field16. The construction then proceeds according to the following steps
[7][34][11]. To maintain simplicity we limit our presentation to the bosonic situation.

One first fixes a reference wedge region, e.g. W0 = {x ∈ Rd, xd−1 > |x0|} and considers
the one-parametric L-boost group (the hyperbolic rotation by χ in the xd−1 − x0 plane)
which leaves W0 invariant as well as the reflection jW0 across the edge of the wedge (i.e.
along the coordinates xd−1 − x0). The Wigner representation U(a,Λ) is then used to
define

∆it = U(0,ΛW0(χ = -2πt)), JW0 = U(0, jW0) (11)

where attention should be paid to the fact that in a positive energy representation any

16The construction works for arbitrary positive energy representations, not only irreducible ones.
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operator which involves a time inversion is necessarily antilinear. A one- parametric
subgroups of geometric origin as ∆it permits an analytic continuation in t in the form of
unbounded densely defined positive operators ∆τ . With the help of such an unbounded
operator we define the unbounded antilinear operator which has still a dense domain

SW0 = JW0∆
1
2
W0

(12)

Using the group theoretical geometric properties one finds that this operator has the
remarkable property of being a closed operator with S2

W0
⊂ 1. Such operators which are

unbounded and yet involutive on their domain occur only in modular theory and are called
Tomita involutions; Tomita discovered them in a vastly more general algebraic context
which will be mentioned later. The idempotency means that S2

W0
has ±1 eigenspaces;

since SW0 is antilinear the +-space multiplied with i changes the sign and hence it suffices
to introduce a notation for just one eigenspace

K(W0) = {domain of ∆
1
2
W0
, SW0ψ = ψ} (13)

JW0K(W0) = K(W ′
0) = K(W0)

′, duality

K(W0) + iK(W0) = H1, K(W0) ∩ iK(W0) = 0

It is important to be aware that, unlike QM, we are here dealing with real subspaces
of the complex one-particle Wigner representation space H1. An alternative which avoids
the use of real subspaces is to directly deal with complex dense subspaces. Introducing the
graph norm of the dense space SW0 the dense complex subspace K(W0)+iK(W0) becomes
a Hilbert space in its own right. The second and third line require some explanation.
The upper dash on regions denotes the causal disjoint (which is the opposite wedge)
whereas the dash on real subspaces means the symplectic complement with respect to
the symplectic form Im(·, ·) on H1. The two properties in the third line are the defining
property of what is called the standardness property of a real subspace; any standard K
permits to define an abstract S

S(ψ + iϕ) = ψ − iϕ (14)

S = J∆
1
2

whose polar decomposition (written in the second line) yields two modular objects, a
unitary modular group ∆it and a antiunitary reflection which generally have however no
geometric significance. The domain of S is the same as the domain of ∆

1
2 namely K+ iK

which in the context of the Wigner theory is determined by group representation theory
only.

It is easy to obtain a net of K(W )′s by U(a,Λ)-transforming K(W0). A bit more tricky
is the construction of sharper localized subspaces via intersections

K(O) =
⋂

W⊃O
K(W ) (15)

This intersection may not be standard, in fact they may be zero. There are three classes of
irreducible positive energy representation, the family of massive representations (m > 0, s)
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with half-integer spin s and the family of massless representation which consists really
of two subfamilies with quite different properties namely the (0, h), h half-integer class
(often called the neutrino, photon class), and the rather large class of (0, κ > 0) infinite
helicity representations parametrized by the continuous-valued Casimir invariant κ. For
the first two classes the K(O) is standard for arbitrarily small O but this is definitely not
the case for the infinite helicity family for which the compact localization spaces turn out
to be trivial17. Their tightest nontrivial localization is a spacelike cone with an arbitrary
small opening angle and after second quantizations (see next subsection) they lead to
semi-infinite spacelike strings.

A different kind of spacelike string-localization arises in d=1+2 Wigner representations
with anomalous spin [35]. The amazing power of this modular localization approach is
that it preempts the spin-statistics connection in the one-particle setting, namely if s is
the spin of the particle (which in d=1+2 may take on any real value) then one finds for
the connection of the symplectic complement with the causal complement the generalized
duality relationK(O′) = ZK(O)′ where the square of the twist operator Z = e2πis is easily
seen (by the connection of Wigner representation theory with the two-point function) to
lead to the statistics phase: Z2 = statistics phase [35]. The fact that one never has to
go beyond string localization (and fact, apart from those mentioned cases, never beyond
point localization) in order to obtain the generating fields for a QFT is remarkable in
view of the many attempts to introduce extended objects into QFT.

It should be clear that modular localization which goes with real subspaces (or dense
complex subspaces) cannot be connected with probabilities and projectors. It is rather
related to causal localization aspects and the standardness of K(O) is nothing else then
the one-particle version of the Reeh-Schlieder property. As will be seen in the next section
it is an important tool in the non-perturbative construction of models.

2.5 Algebraic aspects of modular theory

A net of real subspaces K(O) ⊂ H1 for an finite spin (helicity) Wigner representation can
be ”second quantized”18 via the CCR (Weyl) respectively CAR quantization functor; in
this way one obtains a covariant O-indexed net of von Neumann algebras A(O) acting on
the Fock space H = Fock(H1) built over the one-particle Wigner space H1. For integer
spin/helicity values the modular localization in Wigner space implies the identification
of the symplectic complement with the geometric complement in the sense of relativistic
causality, i.e. K(O)′ = K(O′) (spatial Haag duality). The Weyl functor takes the spatial
version of Haag duality into its algebraic counterpart. One proceeds as follows: For each
Wigner wave function ϕ ∈ H1 the associated (unitary) Weyl operator is defined as

Weyl(ϕ) := expi{a∗(ϕ) + a(ϕ)},Weyl(ϕ) ∈ B(H) (16)

A(O) := {Weyl(ϕ)|ϕ ∈ K(O)}′′
, A(O)′ = A(O′)

17It is quite easy to prove the standardness for spacelike cone localization just from the positive energy
property which is shared by all three families.

182nd quantization is a misdemeanor since it is a functor and has little in common with the artful
parallellism to classical theory called ”quantization”, or in Edward Nelson’s words: (first) quantization
is a mystery, but second quantization is a functor.
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where a∗(ϕ) and a(ϕ) are the usual Fock space creation and annihilation operators of
a Wigner particle in the wave function ϕ. We then define the von Neumann algebra
corresponding to the localization region O in terms of the operator algebra generated by
the functorial image of the modular constructed localized subspace K(O) as in the second
line. By the von Neumann double commutant theorem, our generated operator algebra
is weakly closed by definition.

The functorial relation between real subspaces and von Neumann algebras via the Weyl
functor preserves the causal localization structure and hence the spatial duality passes to
its algebraic counterpart. The functor also commutes with the improvement of localization
through intersections ∩ according to K(O) = ∩W⊃OK(W ), A(O) = ∩W⊃OA(W ) as
expressed in the commuting diagram

{K(W )}W −→ {A(W )}W (17)

↓ ∩ ↓ ∩
K(O) −→ A(O)

Here the vertical arrows denote the tightening of localization by intersection whereas the
horizontal ones denote the action of the Weyl functor.

The case of half-integer spin representations is analogous [34], apart from the fact that
there is a mismatch between the causal and symplectic complements that is taken care of
by a twist operator Z and as a result one has to use the CAR instead of the Weyl functor.
In case of the large family of irreducible zero mass infinite spin representations in which the
lightlike little group is faithfully represented, the finitely localized spaces K(O) are trivial
and the most tightly localized nontrivial spaces are K(C) for C a spacelike cone. As the
core of arbitrarily small double cones shrinks to a point, that of arbitrarily thin spacelike
cones is a covariant spacelike semiinfinite string. The above functorial construction works
the same and the generators of these algebras are singular spacelike semiinfinite string
fields. Point- (or string-) like covariant fields are singular generators of these algebras and
stringlike generators, which are also available in the pointlike case, turn out to have an
improved short distance behavior [11]. They can be constructed from the unique Wigner
representation by so called intertwiners between the canonical and the many possible
covariant (dotted-undotted spinor finite representations of the L-group) representations.
The Euler-Lagrange aspect plays no role in these construction since the causal aspect of
hyperbolic differential propagation are fully taken care of by modular localization.

A basis of local covariant field coordinatizations is then defined by Wick composites
of the free fields. The string-like fields do not follow the classical behavior, already before
introducing Wick composites one has a continuous family of intertwiners between the
unique Wigner representation and the continuously many covariant string interwiners.
Their non-classical aspects are the reason why they have been discovered only recently
and not at the time of Jordan’s field quantization.

In order to avoid confusion with different usage of the same mathematical symbol, let
us temporarily change our notation and write the one-particle operators with small letters
as δ, j, s, serving the capital letters for the second quantized objects ∆, J, S. Using the
standard notation Γ for the second quantization functor one obtains the Tomita Takesaki
theory for the local algebras of the interaction-free local algebra (A(O),Ω) in standard
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position19

HFock = Γ(H1) = eH1 ,
(
eh, ek

)
= e(h,k) (18)

∆ = Γ(δ), J = Γ(j), S = Γ(s)

SAΩ = A∗Ω, A ∈ A(O), S = J∆
1
2

With this we are getting to the core statement of the Tomita-Takesaki theorem which
is a statement about the two modular objects ∆it and J on the algebra

σt(A(O)) ≡ ∆itA(O)∆−it = A(O) (19)

JA(O)J = A(O)′ = A(O′)

in words: the reflection J maps an algebra (in standard position) into its von Neumann
commutant and the unitary group ∆it defines an one-parametric automorphism-group
σt of the algebra. In this form (but without the last geometric statement involving the
geometrical causal complement O′) the theorem hold in complete mathematical generality
for standard pairs (A,Ω). The free fields and their Wick composites are ””coordinatizing”
singular generators of this O-indexed net of algebras in the sense that the smeared fields
A(f) with suppf ⊂ O are (unbounded operators) affiliated with A(O).

In the above second quantization context the origin of the T-T theorem and its proof
is clear: the symplectic disjoint passes via the functorial operation to the operator algebra
commutant and the spatial one-particle automorphism goes into its algebraic counterpart.
The definition of the Tomita involution S through its action on the dense set of states
(guarantied by the standardness of A) as SAΩ = A∗Ω and the action of the two modular
objects ∆, J (18) is part of the general setting of the modular T-T theory; standardness
is the mathematical terminology for the Reeh-Schlieder property i.e. the existence20 of
a vector Ω ∈ H with respect to which the algebra acts cyclic and has no ”annihilators”
of Ω. Naturally the proof of the abstract T-T theorem in the general setting of operator
algebras is more involved.

The important property which renders this useful beyond free fields as a new construc-
tive tool in the presence of interactions, is that for (A(W ),Ω) the antiunitary involution
J depends on the interaction, whereas ∆it continues to be uniquely fixed by the repre-
sentation of the Poincaré group i.e. by the particle content. In fact it has been known
for some [8] time that J is related via scattering theory to the S-matrix with its free
counterpart J0

J = J0Sscat (20)

The physically relevant facts emerging from modular theory can be compressed into the
following statements21

19The functor Γ preserves the standardness which thus passes from one-particle to the Fock space.
20In QFT any finite energy vector (which of course includes the vacuum) has this property as well

as any nondegenerated KMS state. In the mathematical setting it is shown that standard vectors are
”δ−dense” in H .

21Alain Connes would like to see a third spatial decomposition in that list namely the decomposition
of K into a certain positive cone and its opposite. With such a requirement one could obtain the entire
algebra strucure from that of states. This construction has been highly useful in Connes classification of
von Neumann algebras, but it has not been possible to relate this with physical concepts.
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• The domain of the unbounded operators S(O) is fixed in terms of intersections of the
wedge domains associated to S(W ); in other words it is determined by the particle
content alone and therefore of what one usually calls of a kinematical nature. These
dense domains change with O i.e. the dense set of localized states has a bundle
structure.

• The complex domains DomS(O) = K(O) + iK(O) decompose into real subspaces
K(O) = A(O)saΩ. This decomposition contains dynamical information which in
case O = W reduces to the S-matrix (20). Assuming the validity of the crossing
properties for formfactors, the S-matix fixes A(W ) uniquely [9].

The remainder of this subsection contains some comments about a remarkable con-
structive success of these modular methods. For this we need some additional terminology.
Let us enlarge the algebraic setting by admitting unbounded operators with Wightman
domains which are affiliated to A(O) and just take about ”O-localized operators” when
we do not want to distinguish between bounded and affiliated unbounded operators. We
call an O-localized operators a vacuum polarization free generator (PFG) if applied to the
vacuum it generated a one particle state without vacuum-polarization cloud admixture.
The the following two theorems have turned out to be useful in a constructive approach
based on modular theory.

Theorem: The existence of an O-localized PFG for a subwedge causally complete
O ⊂W implies the freeness of the theory.

Theorem: Modular theory for wedge algebras insures the existence of PFGs even in
the presence of interactions (at least if one relaxes the standard domain requirements for
FPGs). Hence the wedge region permits the best compromise between interacting fields
and one-particle states.

Theorem: Wedge localized PFGs with Wightman-like domain properties (”tempered”
PFGs) lead to the absence of particle creation (pure elasic Sscat) which is only possible in
d=1+1 and leads to the factorizing models (which hitherto were studied in the setting of
the bootstrap-formfactor program). The compact localized subalgebra A(O) have no PFGs
and possess the full interaction-induced vacuum polarization clouds.

Some comments will be helpful. The first theorem gives an intrinsic (not dependent
on any Lagrangian or other extraneous properties) local definition of the presence of
interaction although it is not capable to differentiate between different kind of interactions
(which would be reflected in the shapes of interaction-induced polarization clouds). The
other two theorems suggest that the knowledge of the wedge algebra A(W ) ⊂ B(H)
may serve as a useful starting point for classifying and constructing models of LQP in a
completely intrinsic fashion22.

Such a program is well underway in the context of context of the factorizing mod-
els in the third theorem. Tempered PFGs which generate wedge algebra for factorizing
have a rather simple algebraic structure. Their Fourier transforms (rewritten in terms of
momentum space rapidities) Z̃(θ), Z̃∗(θ) obey the Zamolodchikov-Faddeev commutation
relations. Vice versa the formal Z-F computational device for the first time received a pro-
found spacetime interpretation. Conceptualwise they are somewhere between Heisenberg-

22In particular the above commuting square remains valid in the presence of interactions if one changes
O → W.
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and incoming- fields. The simplicity of the wedge generators enable the computation of
a spacetime double cone D affiliated space of operators. In contrast to the standard for-
malism of QFT this sharpening of localization from W to D is done by intersecting two
W operator spaces. The resulting operator space is of the form

A(x) =
∑ 1

n!

∫
dθ1...

∫
dθne

−ix
P

p(θi)a(θ1, ...θn)Z̃(θ1)...Z̃(θ1) (21)

where for the purpose of a compact notation we view the creation part Z̃∗(θ) is written as
the Z̃(θ + iπ) i.e. as the Z on the upper boundary of a strip23. This is similar to the old
Glaser-Lehmann-Zimmermann representation for the interacting Heisenberg field [49] in
terms of incoming free field (in which case the spacetime dependent coefficient functions
turn out to be on-shell restrictions of Fourier transforms of retarded functions), except
that instead of the on-shell incoming fields one takes the on-shell Z operators and the
coefficient functions are the (connected part of the) multiparticle formfactors. As was the
case with the GLZ series, the convergence of the formfactor series has turned out to be an
intractable problem and like many other series in QFT (e.g. the perturbation series) and
one would be well-advised to be prepared for the worst i.e. the divergence of the series.

The main property one has to establish if one’s aim is to secure the existence of a
QFT with local observables, is the standardness of the double cone intersection A(D) =
∩W⊃DA(W ). Based on nuclearity properties of degrees of freedom in phasespace discov-
ered by Buchholz and Wichmann [38], Lechner has found a method within the modular
operator setting of factorizing models which achieves precisely this [39]. For the first
time in the history of QFT one now has a construction method which goes beyond the
Hamiltonian- and measure theoretical approach of the 60s [36]. The old approach could
only deal with superrenormalizable models i.e. models whose basic fields did not have a
short distance dimension beyond that of a free field.

At this point it is instructive to recall that QFT not only has been the most successful
of all physical theories, but in comparison to all other theories in the pantheon of theoret-
ical physics also the most shaky concerning its conceptual and mathematical foundations.
Looking at the present sociological situation it seems that the past success in form of
the standard model has generated an amnesia about this problem. But this issue is not
going away, it is particularly visible in the fact that the perturbative series are divergent;
even in those cases where one was able to establish Borel summability one knows nothing
about the status of the theory without a priori knowledge about its existence. The great
achievement for factorizing models is that one does not only know that these models exist
as QFT, but one also has the explicit form of their S-matrix and formfactors; knowing
that their on-shell observables are analytic around zero coupling it would therefore be
very interesting to study the convergence/resummability status of the off-shell correlation
functions.

The very existence of these theories, whose fields have anomalous trans-canonical
short distance dimensions with interaction-dependent strengths, shows that there is noth-
ing intrinsic about the ultraviolet problems posing an impediment; they are simply the

23The notation is suggested by the the strip analyticity coming from wedge localization. Of course only
certain matrix elements and expectation values, but not field operators or their Fourier transforms, can
be analytic; therefore the notation is symbolic.
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unavoidable price to pay if one enters QFT via the classical quantization parallelism i.e.
the standard approach which worked so well for passing from mechanics to quantum me-
chanics, but needs a lot of repair24 (infinite ”renormalization”) if one ignores the very
singular nature of quantum fields. That the problem-creating singular behavior of fields
may be a description-dependent aspect had already been suspected by the protagonist of
QFT Pascual Jordan who, as far back as 1929, pleaded for a formulation ”without classic
crutches” [40]. The fact that in the above construction of factorizing models one finds
that for most of them there is not even a Lagrangian name illustrated the seriousness of
Jordan’s plea.

Since modular theory continues to play an important role in the physical results of the
two remaining sections, I should be very careful in avoiding potential misunderstandings.
It is very crucial to be aware of the fact that by restricting the global vacuum state to,
a say double cone algebra A(D), there is no change in the values of the global vacuum
expectation values

(Ωvac, AΩvac) = (Ωmod,β, AΩmod,β) , A ∈ A(D) (22)

where for the standard normalization of the modular Hamiltonian25 β = 1. This right
hand side means that the vacuum expectation values, if restricted to A ∈ A(D), fulfill
an addicional property which without the restriction to the local algebra would not hold,
namely the KMS relation

(Ωmod,β, ABΩmod,β) =
(
Ωmod,β, B∆A(O)AΩmod,β

)
(23)

which says that there exists a modular Hamiltonian Hmod with ∆−Hmod , which is different
from the standard translative heat bath Hamiltonian, for which the restricted vacuum is a
thermal equilibrium state at a certain temperature (by analogy the Hawking temperature)
in the setting of the second law of thermodynamics. In fact there is a continuous family
of modular ”Hamiltonians” which are the generators the modular unitaries ∆it

A(O) for
M ⊃ O ⊃ D and hence the same vacuum expectation values have to satisfy a continuous
family of KMS boundary relations. With all this mathematical restrictions being placed
via operator localization onto an innocent looking vacuum expectations value this is an
extremely surprising dynamical feature which goes much beyond the kinematical change
of entanglement as the result of the quantum mechanical division into measured system
and environment. It is this enormous coupling of QFT to the way it is being observed
which makes it apparently very far removed from what one associates with the persistency
properties of a material substance. The monad description in the next section even
strengthens this little known aspect of LQP.

In both cases QM as well as QFT the entanglement comes about by a different ways
of looking at the system and not by changing intrinsic properties, but the thermal entan-
glement of QFT is much more spectacular than the ”cold” (information-theoretic) kind
of entanglement of QM. As we have seen the thermal aspects of vacuum expectations re-
stricted to a fixed subalgebra is a mathematically incredibly rich object with fulfills KMS

24There are of course also more refined methods which respect the singular nature of the fields through-
out [37].

25The modular Hamiltonian lead to fuzzy motions within A(O) except in case of O = W when the
modular Hamiltonian is identical to the boost generator.
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relations with respect to continuous families of modular Hamiltonians. The ontic content
of these observations is quite weak; it is only when the (imagined) causal localization
horizons pass to (real) event horizons through the curvature of spacetime that observers
with a preferential status to the horizon emerge. Not caring about these conceptual as-
pects and only following a ”shut up and compute” attitude26 one may easily be drawn
into a fruitless and protractive arguments as it happened (and is still happening) with
the entropy/information loss issue. These problems are connected to an insufficient con-
ceptual understanding of QFT (identifying it with some sort of relativistic QM), the role
of gravity is that of a mental catalyzer only to place them into the forefront of thinking.

2.6 Building up LQP via positioning of monads in a Hilbert
space

We have seen in the previous section that modular localization of states and algebras is
an intrinsic i.e. field coordinatization independent way to formulate the kind of localiza-
tion which is characteristic for QFT. It is deeply satisfying that it also has an amazing
constructive power.

Definition: (Wiesbrock, Borchers) An inclusion of standard operator algebras (A ⊂ B,Ω)
is ”modular” if (A,Ω) and (B,Ω) are standard and ∆it

B acts like a compression on A i.e.
Ad∆it

BA ⊂ A. A modular inclusion is said to be standard if in addition the relative com-
mutant (A′ ∩ B,Ω) is standard. If this holds for t < 0 one speaks about a -modular
inclusion.

Modular inclusions are very different from the better known Vaughn Jones inclusions
and those associated with the Doplicher-Haag-Roberts theory which characterize internal
symmetries in quantum field theory. The main difference is that the characteristic prop-
erty of the latter is the existence of conditional expectations which modular inclusions
cannot have. The prototype of a conditional expectation in the conventional formulation
of QFT which uses charge-carrying fields is the averaging over the compact internal sym-
metry group with its normalized Haar measure (U(g) denotes the representation of the
internal symmetry group)

A =

∫
dµ(g)AdU(g)F (24)

E : F µ−→ A

i.e. the conditional expectation E projects the (charged) field algebra F onto the (neu-
tral) observable algebra A and such inclusions which do not change the localization are
therefore related to internal symmetries as opposed to spacetime symmetries. Whenever
an inclusion A ⊂ B has a conditional expectation E it cannot be modular. This is the
consequence of a theorem of Takesaki which states that the existence of a conditional ex-
pectation between two algebras (in standard position with respect to the same vector) is
equivalent to the modular group of the smaller being the restriction of that of the bigger.

26With such an attitude one could have assigned a parallel world for each Lorentz frame and lived
happily with Lorentz frames and without Einstein’s relativity principle.
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Since in the above case of a genuine compression the modular group of the smaller cannot
result by restriction from the bigger, there can be no E.

The notion of modular inclusion may be considered a generalization of the situation
covered by the Takesaki theorem. The main aim is to generate spacetime symmetry as well
as the net of spacetime indexed algebras which are covariant under these symmetries. This
is done as follows: from the two modular groups ∆it

B,∆
it
A one can form a unitary group

U(a) which together with the modular unitary group of the smaller algebra ∆it
B leads to

the commutation relation ∆it
BU(a) = U(e−2πta)∆it

B which characterizes the 2-parametric
translation-dilation (Anosov) group. One also obtains a system of local algebras by apply-
ing these symmetries to the relative commutant A′ ∩ B. From these relative commutants
one may form a new algebra C

C ≡
⋃
t

Ad∆it
B(A′ ∩ B) (25)

In general C ⊂ B and we are in a situation of a nontrivial inclusion to which the Takesaki
theorem is applicable (the modular group of C is the restriction of that of B) which leads to
a conditional expectation E : B → C but of course C may be trivial. The most interesting
situation arises if the modular inclusion is standard, in that case we arrive at a chiral
QFT.

Theorem: (Guido,Longo and Wiesbrock [56]) Standard modular inclusions are in
one-to-one correspondence with strongly additive chiral LQP.

Here chiral LQP is a net of local algebras indexed by the intervals on a line with a
Moebius-invariant vacuum vector and strongly additive refers to the fact that the removal
of a point from an interval does not “damage” the algebra i.e. the von Neumann algebra
generated by the two pieces is still the original algebra. One can show via a dualization
process that there is a unique association of a chiral net on S1 = Ṙ to a strongly additive
net on R. Although in our definition of modular inclusion we have not said anything
about the nature of the von Neumann algebras, it turns out that the very requirement
of the inclusion being modular forces both algebras to be hyperfinite type III1 factor
algebras. The closeness to Leibniz’s image of (physical) reality of originating from relations
between monades (with each monade in isolation of being void of individual attributes)
more than justifies our choice of name; besides that ”monade” is much shorter than
the somewhat long winded mathematical terminology ”hyperfinite type III1 Murray-von
Neumann factor algebra”. The nice aspect of chiral models is that one can pass between
the operator algebra formulation and the construction of pointlike fields without having
to make additional technical assumptions27. Another interesting constructive aspect is
that the operator-algebraic setting permits to establish the existence of algebraic nets in
the sense of LQP for all c < 1 representations of the energy-momentum tensor algebra.
This is much more than the vertex algebra approach is able to do since that formal power
series approach is blind against the dense domains which change with the localization
regions.

The idea of placing the monade into modular positions within a common Hilbert space

27The group theoretic arguments which go into that theorem seem to be available for any conformal
QFT.
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may be generalized to more than two copies. For this purpose it is convenient to define
the concept of a modular intersection in terms of modular inclusion.

Definition (Wiesbrock [41]): Consider two monades A and B positioned in such a
way that their intersection A ∩ B together with A and B are in standard position with
respect to the vector Ω ∈ H. Assume furthermore

(A ∩ B ⊂A) and (A∩ B ⊂ B) are ±mi (26)

JA lim
t→∓

∆it
A∆−it

B JA = lim
t→∓

∆it
B∆−it

A

then (A,B,Ω) is said to have the ± modular intersection property (± mi).
It can be shown that this property is stable under taking commutants i.e. if (A,B,Ω)±

mi then (A′,B′,Ω) is ∓mi.
The minimal number of monads needed to characterize a 2+1 dimensional QFT

through their modular positioning in a joint Hilbert space is three. The relevant the-
orem is as follows

Theorem: (Wiesbrock [42]) Let A12,A13 and A23 be three monades28 which have the
standardness property with respect to Ω ∈ H. Assume furthermore that

(A12,A13,Ω) is −mi (27)

(A23,A13,Ω) is +mi

(A23,A′
12,Ω) is −mi

then the modular groups ∆it
12, ∆it

13 and ∆it
23 generate the Lorentz group SO(2, 1).

Extending this setting by placing an additional monade B into a suitable position
with respect to the Aik of the theorem, one arrives at the Poincaré group P(2, 1) [43].
The action of this Poincaré group on the four monads generates a spacetime indexed net
i.e. a LQP model and all LQP have a monad presentation.

To arrive at d=3+1 LQP one needs 6 monads. The number of monads increases with
the spacetime dimensions. Whereas in low spacetime dimensions the algebraic positioning
is natural within the logic of modular inclusions, in higher dimensions it is presently
necessary to take some additional guidance from geometry, since the number of possible
modular arrangements for more than 3 monads increases.

We have presented these mathematical results and used a terminology in such a way
that the relation to Leibniz philosophical view is highly visible.

Since this is not the place to give a comprehensive account but only to direct the
attention of the reader to this (in my view) startling conceptual development in the heart
of QFT.

Besides the radically different conceptual-philosophical outlook on what constitutes
QFT, the modular setting offers new methods of construction. It turns out that for that
purpose it is more convenient to start from one monad A ⊂ B(H) and assume that one
knows the action of the Poincaré group via unitaries U(a,Λ) on A. If one interprets the
monad A as a wedge algebra A = than the Poincaré action generates a net of wedge

28As in the case of a modular inclusion, the monad property is a consequence of the modular setting.
But for the presentation it is more convenient and elegant to talk about monads from the start.
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algebras {A(W )}W∈W . A QFT is supposed to have local observables and if the double
cone intersections29 A(D) turn out to be trivial (multiples of the identity algebra) the
net of wedge algebras does not leads to a QFT. This is comparable to the non-existence
of a QFT which was to be associated via quantization to a Lagrangian. If however
these intersections are nontrivial than the ontological status is much better than that we
would have an existence proof which is much more than a non-converging renormalized
perturbative series of which we do not know if and how it is related to a QFT. There are
of course two obvious sticking points: (1) to find Poincaré-covariant generators of A(W0)
and (2) a method which establishes the non-triviality of intersections of wedge algebras
and leads to formulas for their generating elements.

As was explained in the previous section, both problems have been solved within a
class of factorizing models. Nothing is known about how to address these two points in the
more general setting i.e. when the tempered PFG are not available. Perhaps one should
first test a perturbative version of this program which is expected to incorporate more
possibilities than the perturbation theory based on pointlike fields since wedge-localized
generators are free of those ultraviolet aspects which come from pointlike localization. The
dynamical input in that case would not be a Lagrangian but rather the lowest order (tree-
approximation) S-matrix interpreted as the in-out formfactor of the identity operator.

There is one property of LQP which is indispensable for understanding how the quan-
tum mechanical tensor factorization can be reconciled with modular localization: the split
property.

Definition: Two monads A,B are in a split position if the inclusion of monads
A ⊂ B′ admits an intermediate type I factor N such that A ⊂ N ⊂ B′

Split inclusions are very different from modular inclusions or inclusions with condi-
tional expectations (Jones-DHR). The main property of a split inclusion is the existence an
N -dependent unitarily implemented isomorphism of the A,B generated operator algebra
into the tensor product algebra

A ∨ B → A⊗B ⊂ N ⊗N ′ = B(H) (28)

The prerequisite for this factorization in the LQP context is that the monads commute,
but it is well-known that local commutativity is not sufficient, the counterexample being
two double cones which touch each other at a spacelike boundary [3]. As soon as one
localization region is separated from the other by a (arbitrary small) spacelike security
distance, the interaction-free net satisfies the split property under very general conditions.
In [44] the relevant physical property was identified in form of a phase space property.
Unlike QM, the number of degrees of freedom in a finite phase space volume in QFT is not
finite, but its infinity is quite mild; it is a nuclear set for free theories and this nuclearity
requirement30 is then postulated for interacting theories. The physical reason behind this
nuclearity requirement is that it allows to show the existence of temperature states once
one knows that a QFT exists in the vacuum representation.

The split property for two securely causally separated algebras has a nice physical
interpretation. Let A = A(O), B′ = A(Ǒ), O ⊂ Ǒ. Since N contains A and is contained

29Double cones are the typical causally complete compact regions which can be obtained by intersecting
wedges.

30A set of vectors is nuclear if it is contained in the range of a trace class operator.
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in B (but without carrying the assignment of a localization between O and Ǒ), one may
imagine N as an algebra which shares the sharp localization with A(O) in O, but its
localization in the ”collar” between O and Ǒ is ”fuzzy” i.e. the collar subalgebra is like a
”fog” which does not really occupy the collar region. This is precisely the region which is
conceded to the vacuum polarization cloud in order to spread and thus avoid the infinite
compression into the surface of a sharply localized monad. If we take a sequence of N ’s
which approach the monad A the vacuum polarization clouds become infinitely large so
that no direct definition of e.g. their energy or entropy is possible.

The inclusion of the tensor algebra of monads into a type I tensor product (28) looks
at first sight like a déjà vu of QM tensor factorization, but there are interesting and im-
portant differences. Contrary to naive expectation the finite energy states (this includes
the vacuum and particle states i.e. all states for which the Reeh-Schlieder theorem ap-
plies) of the global theory are thermalized upon restriction to N , i.e. one finds the same
KMS situation as in (23) which of course never happens in QM. Since KMS states on
type I factors are Gibbs states, there exists a density matrix of the Gibbs form with a
”Hamiltonian”. But there is more to it; whereas for monads the modular Hamiltonian has
continuous spectrum (a typical example is the Hamiltonian in the thermodynamic limit
representation) and hence an ill-defined (infinite) value of energy and entropy, this is not
the case for the N -associated density matrix. So the way out is obvious: just imitates the
thermodynamic limit in which a monad (the limiting KMS equilibrium situation in the
standard heat bath setting) is approximated by a sequence of finite volume Gibbs states
for which energy and entropy are finite and only diverge in the ”monad limit”. Indeed
this will be the main idea or the derivation of the entropical area law in the next section.

In the above form the monad-positioning aims at characterizing LQP in Minkowski
spacetime. This begs the question whether there is a generalization to curved spacetime.
A very special exploratory attempt in this direction would be to investigate whether the
Diff(S1) symmetries beyond the Moebius group in chiral theories have a modular origin
in terms of positioning monads relative to reference states. Since the extended chiral
theories which originate from null-surface holography (and not from chiral projections
of a two-dimensional conformal QFT) seem to have great constructive potential, this
question may also be of practical interest. There are indications that this can be done if
one relaxes on the idea of a universal vacuum reference state and allows ”partial vacua”
i.e. modular defined states which have geometric properties only on certain subalgebras
(work in progress).

I expect that by pursuing the algebraization of QFT in CST via the positioning of
monads to its limits one will learn important lessons about the true QFT/QG interface.
A conservative approach which explores unknown aspects of QFT while staying firmly
rooted in known principles seems to be the most promising path in the present situation.
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3 Problematization of the QFT-QG interface

In the previous section we outlined a radical new way of interpreting the conceptual
content of QFT which at the same time is conservative vis-à-vis the underlying phys-
ical principles and in certain cases (of simple vacuum polarization properties of wedge
generators resulting in factorizing models) leads to fully intrinsic constructions of models
in which the umbilical quantization cord with classical physics has been cut. We also
indicated how the positioning of monads could be useful for a better future understand-
ing of the interface between QFT in CST and QG. In this section more light will be
shed on the thermal manifestations of causal localization. In particular two new results
about presently hotly debated topics will be presented namely the universal area law of
localization entropy, which shifts31 the interface between LQP and the elusive QG, and
an intrinsic definition of the energy density in cosmological reference states (vacuum-like
states in cosmological models) in the setting of QFT in CST. This definition respects
the local covariance principle and stands in contrast to estimates which were computed
via level occupation within relativistic QM with a cut-off at the mass m and in this way
led to unreasonably large cut-off dependent values of the cosmological ”vacuum” energy
proportional to m4.

3.1 The universal area proportionality of localization entropy
and consequences for the elusive QG-LQP interface

The fact that the vacuum state restricted to a local algebra A(O) becomes a KMS state
at a fixed modular temperature with respect to the modular Hamiltonian of the standard
pair (A(O),Ω) suggests to ask for the associated entropy. It turns out that localization
entropy for conceptual reasons is hard to calculate directly in the bulk; it is easier to do
this in its holographic projection.

The simplest situation for explanatory purpose is the bulk quantum matter contained
in a wedge W = {|x1| > x0, x⊥ ∈ R2} with half the lightfront as its (upper) horizon
H(W ) = {x− = 0, x+ > 0, x⊥ ∈ R2} ≡ ∂W ⊂ LF (W ) where the lightfront LF (W )
results from the linear extension of ∂W. The net of all wedges arise from this particular
one by the application of Poincaré transformations. In classical causal wave propagation
a spatial regions R ⊂ R3 at a fixed time casts a causal shadow in the sense that data
in R determine the amplitudes in the causal shadow R′′ (the causal completion which
is obtained by taking twice the causal complement in Minkowski spacetime) which is a
double cone region subtended fromR. Subregions in the horizon (i.e. partial characteristic
data) cast in general no causal shadow except when they are of the semiinfinite form

Ha(W ) =
{
x− = 0, x+ > a > 0, x⊥ ∈ R2

} ⊂ H(W ) ⊂ LF (W ) (29)

i.e. if they are two-sided transverse and (at least) one-sided longitudinally (lightray di-
rection) extended.

31This applies only to people who thought that one needs QG in order to understand the area law of
black hole entropy.
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The determination of a classical wave in the bulk region W from characteristic data
on ∂W is a well-known problem in classical hyperbolic wave propagation32; it holds for
the massive as well as massless classical fields, the only exception is a massless d=1+1
propagation where one needs characteristic data on both light rays (the classical analog
of the conformal decomposition into two chiral components). The LQP counterpart of
this property is the equality of operator algebras

A(∂W ) = A(W ) (30)

which is an established fact [55] for free fields and an ”axiomatic” imposition (extended
”causal shadow property”) on LQP. To be sure, one finds mathematical counter examples
in the form of generalized free fields [45], but they have too many degrees of freedom in
order to be physically acceptable.

It is important to realize that, unlike the Cauchy propagation from a spatial region
R, there is no direct relation between characteristic data on finite subregions R ⊂∂W on
the horizon and data in the bulk (no ”causal shadow”). Such a subalgebra, viewed in the
spacetime ordering which is natural to the bulk, spreads over part of W in an algebraic
sense which has no counterpart in the classical theory (it becomes ”fuzzy”).

As it stands the relation (30) contains no information about the local substructures;
holography is the art of obtaining the net structure {A(R)}R⊂LF from the net structure
of the bulk. The direct approach using the global type I algebras with A(LF ) = A(R4) =
B(H) does not work, we need the standardness property of the monads with respect to
the vacuum (euphemistically referred to as the state-operator relation33) in order to get
a hold on the modular localization structure. It will turn out that we need all those W ′s
whose (upper) horizon lies on a fixed lightfront ∂W ⊂ LF. Anticipating the main result
of algebraic lightfront holography we have

Theorem: ([47][48]) The holographic net structure {A(R)}R⊂LF with its 7+1 para-
metric symmetry group is obtained from the subnet of W -algebras in the bulk with ∂W ⊂
LF with the help of forming intersections, unions and applying the 7-parametric subgroup
of the W -subnet consisting of lightlike translations, W-boosts, a 3-parametric transverse
symmetry and the ”translations” of the Wigner little group of the lightray in LF. The 8 th

symmetry is the chiral ”rotation” which together with the lightray translation and the di-
lation (alias boost) represents the Moebius group and expresses the symmetry gain through
holography.

The construction proceeds in several steps. One first constructs the local net in lightray
direction i.e. algebras A(Ia,b × R2) whose longitudinal (lightray) localization region is
the interval [a, b], a, b > 0 and whose transverse localization is as yet unresolved. This is
done by intersecting LF affiliated wedge algebras. Let W again be the x0 − x3 wedge in
Minkowski spacetime which is left invariant by the x0 − x3 Lorentz-boosts. Consider a
family of wedges Wa which are obtained by sliding the W along the x+ = x0 +x3 lightray

32Note that the connection between characteristic data on ∂W and those in the W -bulk is non-local
i.e. the situation is very different from that of the Cauchy propagation from a spatial initial data where
a support restriction of initial data results in a causal shadow restriction.

33This terminology surpresses the important fact that their are domain properties involved which
change together with the localization region. The terminology among mathematical physicists is ”the
Reeh-Schlieder property”.
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by a lightlike translation a > 0 into itself. The set of spacetime points on LF consisting
of those points on ∂Wa which are spacelike to the interior of Wb for b > a is denoted
by ∂Wa,b; it consists of points x+ ∈ (a, b) with an unlimited transverse part x⊥ ∈ R2.
These regions are two-sided transverse ”slabs” on LF and their algebras are obtained
from relative commutants i.e. from intersections

A(∂Wa,b) = A(Wa) ∩ A(Wb)
′ (31)

They have no spacetime interpretation in the bulk, rather they belong to the holograph-
ically LF projection. To get to intersections of finite transverse size one may “tilt” these
slabs by the action of a two-parametric subgroup G2 of the 3-parametric Lorentz subgroup
which leave the lightray invariant; this 3 parametric subgroup appears in the literature
under the name ”Wigner’s little group” and the tilting is done with its two paramet-
ric abelian subgroup of ”translations”. Together with the 3 transverse symmetry the
symmetry of the LF is a 7-parametric subgroup G ⊂ P of the 10-parametric Poincaré
group. It is easy to see that by taking intersection of ∂Wab-localized algebras with their
G2 transformed counterpart

A(∂Wa,b) ∩A(g(∂Wa,b)), g ∈ G2 ⊂ G (32)

one is led to algebras with a finite transverse extension. By repeated application of
intersections and LF transformations one may arrive at rather general shapes of compact
regions. Note the LF is a manifold in which the concept of causal completion trivializes.
By continuing with forming intersections and unions, one can get to finite convex regions
O of a quite general shape.

An alternative method for obtaining holographically projected compactly localized
subalgebras A(O),O ⊂ LF which does not make use of transverse symmetries consists in
intersecting A(∂Wa) with suitable algebras in the bulk which are localized in a tubular
neighborhood of O [55]. This is especially useful for null-surfaces in curved spacetime.

The nontrivial question is now whether this geometrically guided approach can really
be backed up by the construction of a nontrivial net of operator algebras which are indexed
by those regions. Since a subregion on ∂W which either does not extend to infinity in
the x+ lightray direction or lacks the two-sided transverse extension also does not cast
any causal shadow34, one cannot base the nontriviality of algebras A(∂Wa,b) on the causal
shadow property. If this algebra would be trivial (i.e. consist of multiples of the identity),
the motivation for the use of holographic projections as a means to obtain a simpler
description of certain properties would break down and with it the dream of simplifying
certain physical aspects via lightlike holography.

It has been customary in the algebraic approach to add those structural properties
concerning intersections to the “axiomatic” list of algebraic requirements which can be
derived in the absence of interactions and at least can be formulated without contradict-
ing the presence of interaction-induced polarization clouds (which according to previous
section was the intrinsic definition of interaction).

34In the classical setting this means that such characteristic data in contrast to data on ∂W (W
arbitrary) on LF do not define a hyperbolic propagation problem in the ambient spacetime.
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A glance at the holographic properties of the free field shows that lightfront holography
has a nontrivial realization. To see this we construct generators of A(LF ) directly follow-
ing the formal prescription x− = 0 of the old lightfront approach (using the abbreviation
x± = x0 ± x3, p± = p0 + p3 � e∓θ, θ the momentum space rapidity):

ALF (x+, x⊥) �
∫ (

ei(p−(θ)x++ip⊥x⊥a∗(θ, p⊥)dθdp⊥ + h.c.
)

(33)

〈
∂x+ALF (x+, x⊥)∂x′+ALF (x′+, x

′
⊥)

〉 � 1

(x+ − x′+ + iε)2 · δ(x⊥ − x′⊥)

[
∂x+ALF (x+, x⊥), ∂x′+ALF (x′+, x

′
⊥)

] � δ′(x+ − x′+)δ(x⊥ − x′⊥)

The justification for this formal manipulation consists in using the fact that the equiva-
lence class of test function which have the same restriction f̃ |Hm to the mass hyperboloid
of mass m is mapped to a unique test function fLF on the lightfront [46][47]. It only takes
the margin of a newspaper to verify the identity A(f) = A({f}) = ALF (fLF ). But note
also that this identity does not mean that the ALF generator can be used in the bulk
since the inversion involves an equivalence class and does not distinguish an individual
test function in the bulk; in fact a localized test function f(x+, x⊥) on LF has no bulk
localization region whatsoever; this is how fussiness shows up in the traditional field de-
scription. It comes therefore as no surprise that the pointlike field notation on LF leads
to a different singular field although A as well as ALF are both living in the same Hilbert
space; holography, contrary to the formation of the critical limit, of a massive theory
keeps the original (massive) theory and its holographic projection in the same Hilbert
space. The common wisdom that conformality implies zero mass does not apply to chiral
theories because the mass spectrum cannot be computed without knowing the lightlike
momentum associated with the lightlike direction opposite to LF.

We have formulated the algebraic structure of holographic projected fields for bosonic
free fields, but it should be obvious that a generalization to free Fermi fields is straight-
forward.

This idea of taking the holographic projection of individual bulk fields can be gener-
alized to composites of free fields as the stress-energy tensor; the result is always of the
form

[
BLF (x+, x⊥), CLF (x′+, x

′
⊥)

]
= δ(x⊥ − x′⊥)

n∑
k=0

δk(x+ − x′+)D
(k)
LF (x+, x⊥) (34)

where the dimensions of the composites D(k) together with the degrees of the derivatives
of the delta functions obey the standard rule of dimensional conservation; in other words
the fields which feature in this extended chiral theory are chimera between QFT and QM,
they have one leg in QFT and n-2 legs in QM with the chimeric vacuum being partially
a factorizing quantum mechanical state of ”nothingness” and partially the LQP vacuum
which upon localization (in our case to ∂W ) becomes a KMS thermal state with thermal
radiation and entropy.

Lightfront holography is consistent with the fact that except for d=1+1 there are
no operators which ”live” on a lightray since the presence of the quantum mechanical
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delta function prevents such a possibility i.e. the presence of the quantum mechanical
transverse extensions must be taken into account important each lightfront operator must
have a nonvanishing transverse extension35.

The algebraic method via relative commutants (31) leads to a net of observable
(bosonic) algebras on LF.But for (transversely extended) chiral theories the spin is con-
nected with the scale dimension. This is also the case for free fields in the bulk and
accounts for the fact that the net on LF generates the same global algebra as the bulk.
But for interacting theories with anomalous short distance dimension one should expect
that the globalization of the net on LF is smaller than the original algebra, in particular

⋃
O⊂∂W

A(O) � A(∂W ) (35)

H(net(∂W )) ≡
⋃

O⊂∂W

A(O)Ω � H(∂W ) ≡ H(W )

where the second line defines the subspace of the algebraic holographic projection. But
we know from the study of chiral observable algebras that they have many superselection
sectors. In term of pointlike generators this means that there are fields obeying braid group
commutation relations which extend the Hilbert space of the observables and commute
relatively with the observable fields. This leads to the following conjecture about this
holographic extension

Conjecture: (holographic extension) The holographic extension restores the identity

⋃
O⊂∂W

Aext(O) = A(∂W ) (36)

Without the validity of this identity there would be no inverse holography i.e. the re-
constitution of the bulk from its holographic projection. For this the knowledge of and
its 7-parametric symmetry group is not sufficient. However by knowing the action of the
full Poincaré group on A(∂W ) = A(W ) and taking algebraic intersections one is able to
regain the full bulk net.

A supportive argument in favor of this conjecture comes from the attempt to formulate
the lightfront holography directly in terms of the interacting pointlike fields. The only
way to do this is to use the following mass-shell representation which in the 60s became
known under the name Glaser-Lehmann-Zimmermann representation36

A(x) =
∑ 1

n!

∫
dx1...

∫
dxn a(x; x1, ...xn) : Ain(x1)....A(xn) : (37)

A(x) =
∑ 1

n!

∫
Hm

dp1...

∫
Hm

dpn e
ix(

P
pi)ã(p1, ...pn) : Ã(p1)....Ã(pn) :

A(x)LF = A(x)x−=0

35This means in particular that lower bounds [60] in chiral theories for lightlike energy densities averaged
along the lightray can be extended after transverse integration to the holographic projections of higher
dimensional theories.

36The coefficient functions in this representation are mass-shell restrictions of retarded functions which
in turn obey the nonlinear system of GLZ equations [49].



CBPF-NF-025/07 36

The relation between the Heisenberg field and its incoming free limits is very non-local
and therefore it is further away from physical intuition than the algebraic approach.
The second line shows that only the mass-shell restriction of these functions matter; the
momentum space integration extends over the entire mass-shell and the two components
of the mass hyperboloid Hm are associated with the annihilation/creation part of the
Fourier transform of the incoming field. Clearly we can take in this on-shell representation
without creating any problems in addition to the already present convergence problems
which such GLZ formula entail with or without this restriction. Doing this directly in the
Wightman functions would lead to meaningless divergences.

In fact as a result of the close relation of the Zamolodchikov-Faddeev operators to
the incoming fields, the series (21) in terms of the formfactors in factorizing models is
the ideal starting point for a lightfront restriction in the sense of x− = 0. It turns out
that for the (massive) Ising QFT model the infinite sum which represents the dimension
can be done exactly and gives the expected value 1

16
. The calculations is similar37 to [50]

apart from the fact the the critical limit in that work is conceptionally very different
from holography; the critical limit describes another theory in the same universality class
of theories in a different Hilbert space from that of the original theory. In the light of
this result the previous conjecture means that in the algebraic holographic projection one
needs two steps namely the construction of the observable (bosonic) net on LF and its
extension by superselection sectors in order to arrive at the same algebra as that obtained
by holographically projecting pointlike fields directly. This issue requires more work.

Whereas in general the passing from a LQP description in terms of algebraic nets to the
more standard description in terms of generating fields is presently not possible without
making additional technical assumption, the situation is much better in the presence of
conformal symmetries [51]. So the conditions for passing between the algebraic setting
and pointlike generating fields in holography are particularly favorite. For consistency
reasons such fields must fulfill (34) if they are observable fields and corresponding braid
group commutation relations in case they have anomalous scale dimension..

Now we are well-prepared to address the main point of this section: the area law for
localization entropy. The universal presence of a transverse delta function without deriv-
atives in the above holographic commutation relations indicates the absence of transverse
vacuum fluctuations i.e. the holographic projection is ”quantum mechanical” in the trans-
verse direction and quantum field theoretical in lightray direction. Another way to say
the same thing is to talk about a quantum mechanically extended chiral QFT.

The absence of transverse vacuum fluctuations in the holographic projection is also the
consequence of the transverse factorization theorem which goes back to Borchers [52]. Let
Ai ⊂ B(H), i = 1, 2 be two operator algebras with [A1, U(a)A2U(a)∗] = 0 ∀a and U(a) a
translation with nonnegative generator which fulfills the cluster factorization property (i.e.
asymptotic factorization in correlation functions for infinitely large cluster separations)
with respect to a unique U(a)-invariant state vector Ω38. It then follows that the two
algebras tensor factorize: A1∨A2 = A1⊗A2. In the case at hand the tensor factorization

37The holographically computed dimension of the basic field in the Sine-Gordon theory also yields the
same integrals as in the Babujian-Karowski critical limit calculation.

38Locality in both directions shows that the lightlike translates 〈Ω |AU(a)B|Ω〉 are boundary values of
entire functions and the cluster property together with Liouville’s theorem gives the factorization.
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follows as soon as the open regions Oi in A(Oi) i = 1, 2 have no transverse overlap. The
lightlike cluster factorization is weaker (only a power law) than its better known spacelike
counterpart, but as a result of the analytic properties following from the non-negative
generator of lightlike translations it renders the asymptotic factorization to be valid for
all distances. The resulting transverse factorization implies the transverse additivity of
extensive quantities as energy and entropy and their behavior in lightray direction can
then be calculated in terns of the associated auxiliary chiral theory. a well-known property
for spacelike separations.

This result [47][48] of the transverse factorization may be summarized as follows

1. The system of LF subalgebras {A(O)}O⊂LF tensor-factorizes transversely with the
vacuum being free of transverse entanglement

A(O1∪O2) = A(O1) ⊗A(O2), (O1)⊥ ∩ (O2)⊥ = ∅ (38)

〈Ω |A(O1) ⊗A(O2)|Ω〉 = 〈Ω |A(O1) |Ω〉 〈Ω| A(O2)|Ω〉

2. Extensive properties as entropy and energy on LF in the vacuum are proportional
to the extension of the transverse area.

3. The area density of localization-entropy in the vacuum state for a system with sharp
localization on LF diverges logarithmically

sloc = lim
ε→0

c

6
|lnε| + ... (39)

where ε is the size of the interval of “fuzziness” of the boundary in the lightray
direction which one has to allow in order for the vacuum polarization cloud to at-
tenuate and the proportionality constant c is (at least in typical examples) the central
extension parameter of the Witt-Virasoro algebra.

The following comments about these results are helpful in order to appreciate some of
the physical consequences as well as extensions to more general null-surfaces.

As the volume divergence of the energy/entropy in a heat bath thermal system results
from the thermodynamic limit of a sequence of boxed systems in a Gibbs states, the loga-
rithmic divergence in the vacuum polarization attenuation distance ε plays an analogous
role in the approximation of the semiinfinitely extended ∂W by sequences of algebras
whose localization regions approach ∂W from the inside. In both cases the limiting al-
gebras are monads whereas the approximands ate type I ”box” algebras. In fact in the
present conformal context the analogy between the standard heat bath thermodynamic
limit and the limit of vanishing attenuation length for the localization-caused vacuum
polarization cloud really becomes an isomorphism. This is so because long distances are
conformally equivalent to short ones.

This surprising result is based on two facts [47][48]. On the one hand conformal
theories come with a natural covariant discretizing ”box” approximation (one which does
not break all the spacetime covariances) of the thermodynamic limit since the continuous
spectrum translational Hamiltonian can be obtained as a scaled limit of a sequence of
discrete conformal rotational Hamiltonians associated to global type I systems. On the
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other hand it has been known for some time that a heat bath chiral KMS state leading to
a monad representation can always be re-interpreted as the Unruh restriction of a system
in an larger type I world in a vacuum state i.e. as a kind of inverse Unruh effect [53].
Both fact together lead to the above formula for the area density of entropy. In fact using
the conformal invariance one can write the area density formula in the more suggestive
manner by identifying ε with the conformal invariant cross-ratio of 4 points

ε2 =
(a2 − a1) (b1 − b2)

(b1 − a1) (b2 − a2)
(40)

where a1 < a2 < b2 < b1 so that (a1, b1) corresponds to the larger localization interval
and (a2, b2) is the approximand which goes with the interpolating type I algebras.

One expects that the arguments for the absence of transverse vacuum fluctuations
carry over to other null-surfaces as e.g. the upper horizon ∂D of the double cone D. In
this case it is not possible to obtain ∂D generators through test function restrictions. For
zero mass free fields there is however the possibility to conformally transform the wedge
into the double cone and in this way obtain the holographic generators as the conformally
transformed generators of A(∂W ). In order to show that the resulting A(∂D) continue to
play their role even when the bulk generators cease to be conformal, one would have to
prove that certain double-cone affiliated inclusions are modular inclusions. We hope to
return to this interesting problem.

Since the original purpose of holography is identical to that of the ill-fated lightcone
quantization, namely to achieve a simplified description of certain ”short distance aspects”
of QFT, the question arises if one can use holography as a tool for the classification and
construction of QFTs; with other words can one make sense of inverse holography? Know-
ing the local net of the lightfront, one can only obtain part of the local substructure of the
bulk, namely that part which arises from intersecting the LF-affiliated wedge algebras.
The full net is reconstructible if the action of those remaining Poincaré transformations
(which do not belong to the 7-parametric LF symmetry group) is known.

The presence of the Moebius group acting on the lightlike direction on null-surfaces
in curved spacetime resulting from bifurcate Killing horizons [54] has been established in
[56], thus paving the way for the transfer of the thermal results to QFT in CST. This is
an illustration of symmetry enhancement which is one of holographies magics. The above
interaction-free case with its chiral abelian current algebra structure (33) admits a much
larger unitarily implemented symmetry group, namely the diffeomorphism group of the
circle. However the unitary implementers (beyond the Moebius group) do not leave the
vacuum invariant (and hence are not Wigner symmetries). As a result of the commuta-
tion relations (34) these Diff(S1) symmetries are expected to appear in the holographic
projection of interacting theories. These unitary symmetries act only geometrically on
the holographic objects; their action on the bulk (on which they are also well-defined) is
fuzzy, i.e. not describable in geometric terms. This looks like an interesting extension of
the new setting of local covariance [25]

The area proportionality for localization entropy is a structural property of LQP which
creates a challenging contrast with Bekenstein’s are law for black hole horizons. Beken-
stein’s statistical mechanics reading of the area behavior of a certain quantity in classical
Einstein-Hilbert like field theories has been interpreted as a clue on the interface of QFT
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with QG. Now we see that the main support, namely the claim that QFT cannot pro-
duce an area behavior, is not correct. There remains the question whether Bekenstein’s
numerical value via Hawkings’s thermal results is a credible value for quantum entropy.
I do not know any situation where a classical value remained intact after passing to the
quantum theory, except for certain quasiclassical values in case the system is integrable.
QFT gives a family of area laws with different vacuum polarization attenuation parameters
ε and it is easy to fix this parameter in terms of the Planck length so that the value is
compatible with Bekenstein’s. But this amounts hardly to the localization of an interface
between QFT and QG. One advantage of the present method is that instead of a cutoff
which changes the model in a way which conceptually is totally beyond any control, the
attenuation length ε is a quantity which is defined within a given QFT. Whether QG adds
additional degrees of freedom which modify the contribution of localized matter remains
an open problem.

3.2 Vacuum fluctuations and the cosmological constant ”prob-

lem”

If there is any calculation which holds the record for predicting a quantity which comes out
way off the observed mark (by more than 40 orders of magnitudes), it is the estimate for
the cosmological constant based on a quantum mechanical argument of filling oscillator-
like levels of zero point of vacuum energy. This leads to a gigantic mismatch between
quantum mechanics of free relativistic particle and the astrophysical reality; it became
widely known under the name the cosmological constant problem and generated a lot of
commotion (and also led to fantastic ideas as the anthropic principle).

However hardly any quantum field theorists who does not subscribe to the maxim
”compute and shut up” would endorse a calculation which is quantum mechanical (since
consists in simply filling the energy levels above an assumed vacuum state up to a certain
cutoff mass κ which of course should be larger than the physical masses of the theory) and
leads to an energy density which behaves roughly as ρE ∼ κ4 . Such a calculation ignores
the important local covariance principle of QFT in CST and in this way contradicts the
dictum of Hollands and Wald cited at the end of the introduction. Before we pass to a
description of vacuum energy which complies with this principle, it is quite amusing to
mention one consequence of the above large cosmological constant which can be found in
various articles.

Assuming that light at A is emitted in the outmost violet part of the spectrum, we
can ask for the distance from A to B such that at B the red-shifted light has reached the
borderline in the optical infrared spectrum, i.e. we are asking for the length of maximal
visibility in a universe with the vacuum energy calculate in the aforementioned way. The
result is that when standing straight you can hardly see the floor.

This kind of argument is often used as showing that QG is needed to resolve paradoxical
situations of QFT in CST. But the above calculation has hardly anything to do with a
paradoxical situation within QFT in CST which requires the intervention of a yet unknown
QG.

It is instructive to look first at the problem of vacuum energy in Minkowski spacetime.
The standard argument by which one defines the stress-energy tensor as a composite of
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a free field is well known, one starts from an associated bilocal split-point expression and
take the limit after subtracting the vacuum expectation value so that the result agrees
with the Wick-ordered product. The resulting stress-energy tensor has all the required
properties. Its expectation values are well-defined on a dense set of states which includes
the finite energy states. But contrary to its classical counterpart, there is an (unexpected
at the time of its discovery [57]) problem with its boundedness from below since one can
find state vectors on which the energy density T00(x) takes on arbitrarily large negative
values.

This has of course led to worries which affected in particular those general relativists
who knew about the importance of classical positivity inequalities for questions of stability.
It started a flurry of investigations [59] which led to state-independent lower bounds for
fixed test functions T00(f) as well as inequalities on subspaces of test functions. These
inequalities which involve the free stress-energy tensor were then generalized to curved
space time. In the presence of curvature the main problem is that the definition of
Tµν(x) is not obvious since in a generic spacetime39 there is no vacuum like state which is
distinguished by its high symmetry; and to play that split point game with an arbitrarily
chosen state does not seem to be right. But what are the physical principles which could
select the physical stress-energy tensor?

The answer was given some time ago by Wald [58] in the setting of free fields. The
local covariance principle determines the correct energy-momentum tensor up to local
curvature terms (whose degree depends on the spin of the free fields). In fact one can
construct a basis of composite fields so that every member is a locally covariant composite
of the free field such that for the Minkowski spacetime we re-obtain the simpler Wick basis.
The formulation of the local covariance principle uses local isometric diffeomorphisms of
the kind which already appeared in Einstein’s classical formulation and this requires to
consider simultaneously all QFT which share the same quantum substrate but follow
different spacetime ordering principles. In other words, even if one’s interest is to study
QFT in a particular spacetime (Robertson-Walker for the rest of this section), one is
forced to look at all globally hyperbolic spacetimes in order to find the most restrictive
condition imposed by the local covariance principle.

The result is somewhat surprising in that this principle cannot be implemented by
taking the coincidence limit after subtracting the expectation in any of the states of the
theory. Rather one needs to subtract a ”Hadamard parametrix” [24] i.e. a function which
depends on a pair of coordinates and is defined in geometric terms; in fact in the limit of
coalescence it depends only on the metric in a neighborhood of the point of coalescence.
As a result the so constructed stress-energy tensor at the point x depends only on the
gµν in an infinitesimal neighborhood of x. As in the case of Minkowski spacetime it has a
finite value in physical states and the only aspect to worry about is that, as in that case
T00(f), it is not bounded below. In that case the computation which lead to good lower
bounds are somewhat more demanding [60]. Recently this idea was extended in order
to determine states on free fields in the Robertson-Walker model which minimize the
suitably smeared energy density [61]. In this way contact was made with an old concept
of adiabatic vacua introduced by Parker [62][63]. The idea is to use such distinguished

39In a static (time-independent Hamiltonian) universe one could use the ground state as a distinguished
reference state. But our universe is not static.
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extremal states as a substitute for a ground state. The calculation which is still missing
in order to arrive at the energy density in such a cosmologically selected state40 is the
calculation of the of the Hadamard parametrix in a R-W spacetime which is needed for
the energy-momentum tensor. This is the only nontrivial part of such a calculation. In
the cited work on energy inequalities the difficulty of computing Hadamard parametrices
was avoided by studying differences of T00-expectations between two states in which case
the purely geometrically determined Hadamard parametrix cancels out.

Although such a computation has not been carried out at the time of writing, there can
be no doubt that the result would constitute a more credible expression for cosmological
energy density since it is finite without cut-off and, according to the way it was derived,
it complies with the local covariance principle. Taking the version of the model in which
the coupling to the curvature is absent (the ”minimal” model), the result can only depend
on the geometric parameters of the RW metric.

4 Concluding remarks

QFT and QM are two quantum theories which, to say it in somewhat provocative terms,
apart from the notion of algebra and state have not much more in common than �. In
the present work we showed that the reason for this is that both theories are based on
very different localization concepts; whereas QM leads to unrestricted Born localization,
the Born (Newton-Wigner) localization in interacting QFT is restricted to asymptotic
regions. On the other hand the causal propagation over finite distances is governed by
modular localization which only exists in QFT. The opinion that QFT is an extension of
QM is supported by the fact that the quantization formalism, in particular the functional
integral representation via the classical action functional is common to both theories. But
the irony behind this statement is that in QM where the existence of the Euclideanized
Feynman representation can be rigorously established nobody would have the courage to
base a course on it and in QFT where its measure theoretical basis does not go beyond
the canonical struture (finite wave function renormalization, superrenormalizable QFT)
the majority of particle physicists use it to a degree where it has become synonymous
with QFT. What they really use is its metaphorical power; there is presently no other
formulation where one can specify in one line which interaction one wants to consider
and with a lot of artistry hindsight and consistency checks one can produce results whose
correctness can be checked independent of whether they fulfills the original functional
integral representation or not (for strictly renormalizable interactions the answer is nega-
tive). LQP is a reminder that even if one uses those metaphoric methods, one should not
forget that there is another world which roughly speaking corresponds to the operator
formulation of QM which still needs to be developed.

As a consequence entanglement in QM follows the ”cold” information theoretical logic.
By localizing with Born projectors one encounters both entangled and non-entangles
states. On the other hand the quantum field theoretical (modular)localization is totally
intrinsic since there are no pure states on monads. The physical states on the global alge-

40For obvious reasons we have some reservations to follow the usual parlance and use the word ”vacuum
state”.
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bra (finite particle number, in particular the vacuum) upon restriction to a local monad
turn into thermal KMS states with an area proportional entropy. The entanglement from
modular localization is a ”hot” entanglement. The dichotomy pure-entangled does not
exist with monad algebras so if we continue to use the same name ”entanglement” as in
QM, it has to be taken with a grain of salt. theoretics entanglement is inexorably linked
to the thermal aspects of vacuum polarization resulting from modular localization i.e.
there are no localized non-entangled states.

As a consequence this kind of entanglement is much more violent and leads to a
breakdown of the usual an observed system/environment separation on which the modern
measurement theory depends. The split property leading back to tensor-factorizing type
I algebras but it does not quite present a return-ticket into the world of QM. Although on
such tensor factors there exist pure product states, all the physical states on the global
algebra restricted to such a tensor factor are still KMS states described by a Gibbs density
matrix. There can be no problem of localization entropy with information loss because
the information theoretical interpretation is only applicable to cold entropy and last not
least nothing has been done (except changing the vantage point for observation) when
one analyses a state from a local instead of a global algebra.

As it was clearly seen by Rob Clifton there is a lot of unfinished business between
LQP and measurement theory. Even the most accommodating version of measurement
theory, the so-called modal interpretation, runs into rough water with LQP [1]. In fact a
LQP compatible theory of measurement does not yet exist, which is a strange situation
in view of the fact that physicists have over more than 80 years studied the measurement
theory of the less fundamental QM in great detail [64].

The most important message of the present work is that some of the problems of black
hole physics, in particular the so-called information loss problem which led to what L.
Susskind in a particular context once called the ”30 year war” between Hawking’s versus
’tHooft and Susskind’s view on this problem, are more related to an insufficient appre-
ciation of thermal manifestations of modular localization in QFT than with new physics
from QG. There is certainly a contradiction with the information theoretic entropy in QM
but this discrepancy is in no way different than that with the thermal aspects of states
in QFT restricted to observables on null-surfaces. The explanation why these conceptual
problems of QFT were first noticed in black hole physics is that only in this context
of horizons fixed by curvature they loose their virtual nature and turn into in principle
(astrophysically) measurable properties. Nevertheless it is amazing that despite the dis-
covery of vacuum polarization clouds already as far back as 1934 it took this round about
way via Hawking’s computational proof of the thermal properties of black holes to became
aware of the profound differences of localization in QFT from Born localization. Part of
the explanation is that historically QFT was first accessed via Lagrangian quantization
and subsequently by functional integrals i.e. by methods which, being equally valid in
QM, are notoriously blind against properties resulting from modular localization. The
first observance that thermal aspect appear in vacuum QFT upon restriction to wedges
and lead to deep structural property of QFT [10] were made in the same decade in which
Unruh proposed his Gedankenexperiment [66], but only later these studies were united
[65].

For the thermal area law for localization entropy to play a physical role it is important
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to have a situation in which a fleeting (Gedanken) causal horizon is traded with a real
event horizon which only the geometry of curvature can generate. Without this eye-opener
from black hole physics, the thermal aspect of localization in QFT would probably have
remained of interest only to some mathematical physicists. The point I want to stress
here is that up to now these observations point more towards the large areas within QFT
which despite Lagrangian quantization and functional integration remained hidden, rather
than alluding towards a still elusive QG. In fact this paper was written to point out that
some of the aspects (holography, entropic area law) which in the present discussions are
attributed to QG are really belonging to deeper and little known areas of QFT. If the
reader feels that what was presented here is not what he learned from the books, than he
got the main message which is to counteract the demise of a totally unfinished project as
QFT as ”old particle physics” by you know who.

We also saw that vacuum polarization in form of FPG’s represent an ideal intrinsic
indicator for the presence/absence of interactions. In this context I mentioned some recent
results about how modular localization can be used for model construction which shows
that at least some interesting nontrivial low-dimensional non-canonical QFTs have a solid
ontological status. These models also exhibit for the first time the property of asymptotic
completeness and show limitation of the Lagrangian approach; i.e. they confirm the
old suspicion that the world of LQP models with physical (unitary, crossing, invariant)
S-matrices is much bigger than the available baptisms by Lagrangian names. There is
of course some irony in the fact that instead of Chew’s dream of uniqueness via the
S-matrix bootstrap which he proposed against the world of many Lagrangian of QFT,
the bootstrap-formfactor approach to factorizing models leads to even greater plethora of
models than the Lagrangian setting.

Finally we passed to two problems of great current interest namely localization entropy
and cosmological energy density. It was shown that the calculation of localization entropy
is possible thanks to holography onto the lightfront. The result is an area law, and since
this result questions the belief that the Bekenstein area law derived in certain classical
field theories defines an interface of QG with QFT in CST, the problem of localizing the
QFT-QG interface remains open.

There is also the controversial problem about degrees of freedom counting in hologra-
phy; it has been claimed (or postulated) that the cardinality of degrees of freedom in the
holographic projection has to be the same as in the bulk. For holography on null surfaces
this is certainly not the case since knowing a local net on the lightfront is not sufficient to
re-construct the bulk, even though the global lightfront algebra is equal to B(H) and also
A(∂W )=A(W ). It is the local net structure which determines the cardinality of degrees
of freedom. A completely different situation one meets in the AdS-CFT correspondence
[67].

The main conclusion about the cosmological energy density was that the cut-off de-
pendent calculations have been incorrectly attributed to QFT since they violate one of
its most cherished principles namely the local covariance principle. We have indicated of
how one can set up a cut-off free quantum field theoretic calculation for free fields and
hope that concrete results for minimal energy states in a R-W cosmology will be available
in the near future.

Since a sizable fraction of the particle physics community considers QG as the main
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problem of this century, some remarks of caution are in order. First the idea that grav-
itation may be a relic of already known quantum forces (like the van der Waals force)
and therefore the necessity for quantization is dispensed has never been completely ruled
out. But secondly, even if one accepts the idea of QG, one cannot fail to realize with
amazement that some of the ideas, whose clarification had been placed onto the shoulders
of the still elusive QG, are already taken care of by the recent gain of insights into QFT in
CST. The implementation of the very nontrivial and restrictive local covariance principle
implies that isometrical diffeomorphisms between manifolds lead to the quantum physi-
cal isomorphisms i.e. local quantum symmetries which make it impossible to decide by
local experiments in what global world one lives; in this sense the independence from the
reference system is already implemented in QFT in CST .

QG-physicists want a more radical version namely that (not unlike the idea of gauge
invariance) a description in which those equivalence classes are compressed into one object
i.e. a diffeomorphism invariant algebra. In a recent very interesting and still somewhat
speculative paper, Brunetti and Fredenhagen show [68] that a quantum field theory which
fulfills Einstein-Hilbert like quantum field equations between suitable physical states (the
authors think in terms of a perturbative BRST approach) is automatically invariant under
isometric diffeomorphisms which for many researchers is the epitome of QG. Hence the
main argument against the perturbative approach to QG is not that it inevitably leads
to violations of the independence of the background principle, but rather that it leads to
a perturbation theory around the free spin 2 field in which the number of undetermined
parameters increase with the perturbative order i.e. it is non-renormalizable41. It seems
that claims about incompatibilities between QG with QFT are premature.

The present situation, which is characterized by often unguided speculative guess-
work about what constitutes QG suggests analogies with another very speculative period
in particle physics namely the speculations of how to solve the ultraviolet catastrophe
of QFT. This was a period which preceded the more conservative Schwinger-Tomonaga-
Feynman-Dyson renormalized QED theory. Could history of particle physics repeat itself?
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