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1 Introduction

The non-renormalizability of General Relativity [1, 2] has inspired the study of various alternative

models for Quantum Gravity. It was soon realized that proposals based on high-derivative local

�eld theories are inconsistent with the simultaneous requirements of unitarity and renormalizability

[3] (see also [4] for the discussion of the spectrum of a general high-derivative local Quantum

Gravity) and the main attention is now concentrated on non-local objects like strings and p-branes.

Therefore, while high energy e�ects are described by strings, at low energies one meets e�ective

gravity actions, which may be the Einstein-Hilbert one or extensions based on the inclusion of some

additional �elds, such as a dilaton. It was already noticed by S. Weinberg, in [5], that Quantum

Gravity based on General Relativity may be consistent as a quantum theory for the restricted

low-energy domain. The idea of an e�ective approach to Quantum Gravity was realized in a recent

paper by F. Donoghue [6], who used it to perform a practical calculation of the leading long-

distance quantum correction to the Newton potential 4 (See also [8] for a general explanation of

the e�ective approach). This work attracted considerable interest and raised the hopes to apply the

background of e�ective Quantum Gravity to other problems. However, as concerning the original

calculations in Quantum Gravity [6], some questions still remain unanswered.

The calculations imply two important suppositions. First, one has to deal with the separation

of the long-distance e�ects, related to the non-local part of the e�ective action, from the UV

divergent pieces, which may always be subtracted by adding local counterterms. Indeed, all these

counterterms have plenty of higher derivatives, but they may be removed by the renormalization

of the corresponding high derivative terms in the action. These terms, in turn, are invisible at

low energies, because their corresponding degrees of freedom have huge masses. Second, some

part of the long-distance contributions of the Feynman diagrams are proportional to the well-

known UV divergences, and this enables one to greatly reduce the volume of calculations [6]. This

part is composed by the logarithmic (L-type in [6]) non-analytic terms, and they come from the

diagrams with only massless internal lines. At the same time, there are other one-loop diagrams

which produce, along with L-type structures, other (S-type in [6]) non-analytic terms, and those

are absolutely independent from the UV divergences. Indeed, this kind of terms gives the leading

contribution to the long-distance quantum corrections. After the original papers [6] were published,

there was a series of works devoted to their correction and checking. In particular, [9] pointed out

4A similar calculation has been done long ago by Iwasaki [7].
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the error in the calculation of the one-loop contribution to the vertex function, while [10] found

some relevant diagrams which were not accounted for in [6]5. At the same time, in the works of

refs. [11, 12] functional methods were applied for the same calculation. However, they succeeded

in extracting only the L-type non-analytic terms, which can be easily obtained from the 1-loop

logarithmic divergences. The leading S-type non-localities do not come out in this way, and it

is still necessary suplement the programme by calculating diagrams. One has to notice that the

S-type non-localities appear due to the mixed loops with both massive and massless internal lines,

and that the corresponding diagrams are not subject to the Appelquist-Carazzone theorem [13].

Indeed, the mixed diagrams produce L-type nonlocalities, too. Thus, at present, we have some set

of alternative results for the same quantity (quantum corrections to the Newton potential), and

they do not �t with each other.

Another subtle point in all the procedure is the gauge-independence of the result. For instance,

the original calculation of [6] has used the polarization operator obtained in [1], but this is well-

known to be gauge-dependent [14, 15]. On the other hand, one can argue that, being related to

a scattering amplitude, quantum corrections to the potential should be gauge-independent. Thus,

one expects that the gauge-�xing dependence of the polarization operator must cancel the one

coming from the vertex. However, the non-standard aspects of the above e�ective scheme make an

explicit check of the gauge-independence reasonable. We mention that such a check was successfully

done in [11], but only for the L-type terms, while the question for S-type terms remains open.

Practical calculations in e�ective Quantum Gravity meet two kind of technical di�culties. First,

there are problems with extracting the non-analytic pieces from the diagrams with both massless

and massive internal lines (S-type terms). The complexity of this operation greatly increases with

the number of massive insertions. The second problem is the huge amount of algebraic steps

which are necessary for the calculations of diagrams in Quantum Gravity, especially in general

non-minimal gauges. In view of this, in the present paper, we choose as our working model Scalar

Quantum Electrodynamics (SQED), where the volume of algebraic work is essentially reduced,

while the systematic of the approach is quite the same: SQED has almost all the diagrams that

one meets in Quantum Gravity, and also these diagrams have the same power-counting for the IR

5Unfortunately, the authors of [10] did not provide su�cient details of their calculations. Here, we analyse the same

diagrams as the ones considered in [10]. Nevetheless, our considerations are more general in that we adopt a general

gauge-�xing condition, and also present technical details. >From our point of view, such a calculation is essentially

non-trivial and its details should be manifest.
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divergences. Hence, in the course of our present calculations, one can learn better how to select

relevant diagrams and contemporarily develop a technique for extracting the non-local pieces from

these diagrams.

Our paper is organized as follows. In Section 2, we present the backgrounds of the model,

including the Feynman rules and a quick derivation of the classical Coulomb potential from the tree-

level amplitude. Section 3 contains the full list of one-loop diagrams and their classi�cation with

respect to the low-energy contributions. In Sections 4 and 5, we present the details of the diagrams,

discuss the cancellation of their gauge-dependent parts and derive the quantum correction to the

potential. Finally, we draw our Conclusions in Section 6. An Appendix follows, where we list the

low-momentum behaviour of the relevant 1-loop integrals.

2 Feynman rules and the Coulomb potential

Let us consider SQED, starting from the non-invariant action with an arbitrary covariant gauge-

�xing term:

Stot =
Z
d4x

�
�1

4
F��F

�� +
1

�
(@�A

�)2 +
1

2
g�� (D��)(D��)

� � 1

2
m2���

�
� (1)

Here, � is the arbitrary gauge-�xing parameter. In the following, we shall consider the interac-

tion between two heavy spinless particles of equal mass (m) and electric charge (e) as due to photon

exchange. The e�ective interaction in the static regime is achieved by evaluating the scattering

amplitude between these heavy particles in the limit of small momentum transfer, q2 ! 0. This

is readily carried out by using that, for a potential, V , the S-matrix element is given by

S = 1� 2�{ �(Ei� Ef) < f jV ji > �2�{ �(Ei�Ef )
< f jV jn >< njV ji >

Ei �En

+ : : : ; (2)

where Ei, Ef are the energies of the initial and �nal asymptotic states, respectively.

If we denote the incoming and the outgoing momenta of the particles 1 and 2 by p1; p2 and

p3; p4 respectively, and normalize the state vector as

< p3 p4jp1 p2 >= (2�)3�(3)(p1 � p3)(2�)
3�(3)(p2 � p4) ; (3)

then

< p3 p4jV jp1 p2 >= (2�)3�(3)(p1 + p2 � p3 � p4)

Z
V (r)ei~q�~rd3r ; (~q = ~p1 � ~p3): (4)
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In terms of the reactance matrix, the S-matrix may be parameterized as below:

Sij = �ij � i (2�)4 �(4)(pf � pi)T (~q) ; (5)

yielding the following expression for the potential:

V (r) =
1

(2�)3

Z
T (~q ) e�i~q�~r d3~r: (6)

As it was already mentioned, the advantage of working with SQED is that it leads to consid-

erably simpler Feynman rules, while it presents diagrams similar to the ones appearing in the case

of Quantum Gravity. The Feynman rules for the photon-matter vertices and propagators for an

arbitrary gauge-�xing are given in Figure 1:

The calculation of the tree-level graph at the static limit (Figure 2) leads us to a scattering

amplitude proportional to 1
q2
, which gives rise to the classical Coulomb potential. By virtue of the

current conservation, it can be readily checked that this result is completely independent of any

gauge-�xing procedure. The same can indeed be achieved by means of the above Feynman rules.

The tree-level scattering amplitude has the form presented in Figure 2:

In the static limit, q0 = 0, and therefore q2 = �~q 2; so, after performing the Fourier transform

Z
1

~q 2 e
i~q�~r d3~r =

1

4�r
; (7)

we obtain, as expected, the Coulomb potential:

V (r) = � e2

4� r
; (8)

which is the tree-level approximation to the potential for the interaction between two static

sources.

Before going on to speci�c calculations, it is possible to anticipate the form of the long distance

�h-quantum corrections to the Coulomb potential, based upon dimensional analysis:

V (r) = �e2

r

�
1 + �h e2 � �

r
+ �h e2

�

r2

�
; (9)

where � and � are to be extracted from the loop diagrams and exhibit mass dimensions (�1)
and (�2), respectively. They shall be shown to correspond to the L and S-types non-local 1-loop

contributions.

Before closing this section and going on to calculate the relevant Feynman diagrams, we should

perhaps make clear that the question of the potential in a �eld theory deserves some discussion.
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There is not a unique way of extracting a potential from a Lagrangian �eld-theoretic model. In

considering bound states or scattering processes, one should consider di�erent ways of extracting

a potental. This discussion becomes very clear in a series of papers by J. Sucher [16]

In our work, we shall be dealing with the potential as extracted from a scattering problem,

as explained in the begining of this section. In the next section, we shall work out the quantum

corrections to the scattering potential derived at tree-level, as illustrated above.

3 One-loop diagrams

Now, our task is to extract quantum corrections to the non-relativistic potential coming from

quantum 
uctuations of both the vector and scalar �elds. Let us stress that the contributions

from massive scalars cannot be disregarded, unless they form a closed loop without massless vector

insertions. In fact, the only way to distinguish between the relevant and non-relevant diagrams

is to check whether the particular graph has IR divergence, whenever the momentum transfer,

~q , goes to zero. Only if the diagram has analytic behaviour in this limit, it can be left aside.

This selection rule exactly corresponds to the result of [13]. In this point, we agree with some

of the previous publications [6, 9, 10] and disagree with others: [11] and [12], where scalars were

taken as merely classical sources. We shall consider the interaction induced by 1-loop contributions

to the scattering amplitude between two heavy scalar particles of equal mass, m. The e�ective

interaction in the static regime is then determined by evaluating the scattering amplitude, to

order e4, in the limit of very small momentum transfer, ~q 2 ! 0. In order to extract low-energy

quantum corrections, the amplitudes are computed in momentum space as functions of the total

momentum transfer, ~q2. To �nd such non-analytic terms, it is necessary to separate the UV �nite

pieces of the one-loop integrals, for instance by using dimensional regularisation [17]. This �nite

part contains all information concerning the low-energy behaviour of the amplitude, while the

ultraviolet divergences have local structure and one disregards them, having in mind that they

may be suitably renormalized.

In order to calculate the loop integrals, we have used the Feynman parametric representation for

combining propagator denominators. The �nal answer then follows after performing the necessary

momentum and parametric integrations, which are carried out by heavily making use of the software

MAPLE V.

For small ~q2 , the leading contributions arising from each diagram can then be separated into
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two types of terms, namely, ln (�~q 2) and �2 mp
~q
2 , the latter coming exclusively from mixed massive-

massless loops. The corrections to the potential, in coordinate space, come from momentum space

calculations upon use of the Fourier transforms [6] similar to (7):

Z
d3q

(2�)3
e�i~q�~r 1p

~q2
=

1

2�2r2
(10)

Z
d3q

(2�)3
e�i~q�~r ln ~q2 = � 1

2�2r3
: (11)

The full set of potentially relevant diagrams is presented in Figure 3. One can classify all those

diagrams using the non-analyticity as q ! 0 as a criterium. The �rst group of graphs includes

(3a), (3b) and (3c), and their respective permutations of external legs, which really contribute to

the potential in the static limit. These diagrams will be considered in details in the next section.

The second group is composed by the graphs (3d),(3e) and (3f). One of these diagrams, (3d),

has analytic behaviour as q2 ! 0 , because it displays only massive particles inside the loop. The

contribution of this diagram in the limit q2 ! 0 is proportional to ln(m2) and therefore does not

contribute to the long-distance force. The diagrams (3e) and (3f) have infrared divergences, but

these divergences do not depend on the momentum transfer and thus do not contribute to the long-

distance force. This is the usual "soft photons" situation, and it can be, for instance, treated by

adding constant IR divergent counterterms [18]. For the sake of compactness, we do not consider

these trivial IR divergences in what follows, since they cancel after summing up all graphs. The

third group consists of the diagrams depicted in Fig. (3g) and their permuted partners. They do

not lead to any contribution in the limit of low momentum transfer, as they are just a quantum

correction to the the tree-level graph of Figure 4, and they are therefore subject to the same

kinematical restrictions.

The diagram of Figure 4 describes annihilation of two massive particles into a virtual photon

with its subsequent decay, creating another massive pair. Obviously, the momentum transfer

satis�es the energy condition ~q 2 � 2m2. Clearly, this diagram vanishes for low-momentum transfers

and therefore does not contribute to the long-distance force.

A major concern, which arises when throwing away such a family of di�erent diagrams, is the

gauge-invariance of the entire set of diagrams. It is not a priory established whether, or not, this

symmetry is preserved if we adopt this usual de�nition of potential.
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4 Calculation of the relevant diagrams

Now, using the Feynman rules given above, together with the appropriate mass-shell conditions,

we can derive the contributions to the scattering amplitudes from each of the relevant graphs. The

mass-shell conditions for the external momenta and momentum transfer have the form:

p1 � p3 = q ) p1 � p3 = p2 � p4 = m2 � q2

2
;

p1 � q = �p2 � q = �p3 � q = p4 � q = q2

2
;

p1 � p2 = p3 � p4 = m2 � q2

2
;

p1 � p4 = p3 � p2 = m2 : (12)

Now, based on our analysis of the previous section, let us consider only the diagrams (2a) {

(2e) which have essential non-analytic parts. The expression for the diagram (2b) is the easiest one

to compute, because it includes only two massless propagators.

Fig:2b = 16e4
Z

d4k

(2�)4
1

k2(k � q)2
� 8e4(1 + �)

Z
d4k

(2�)4
1

k2(k � q)2
+

+ 4e4(1 + �)
Z

d4k

(2�)4
k�(k� q)� k�(k � q)�

k2(k � q)2
: (13)

The expression for the diagram (2d) contains an additional massive propagator:

Fig:2c = �2e4
Z

d4k

(2�)4
(2p1 � k)�(p1 + p3 � k)�

k2(k � q)2[(k � p1)2 �m2]

+ 2e4(1 + �)

Z
d4k

(2�)4
(p1 + p3 � k)�(k � q)�(2p1 � k)�(k � q)�

k2 (k � q)4 [(k� p1)2 �m2]

+ 2e4(1 + �)
Z

d4k

(2�)4
k�(p1 + p3 � k)�k�(2p1 � k)�
k4(k � q)2[(k � p1)2 �m2]

� 2e4(1 + �)2
Z

d4k

(2�)4
k�(k � q)� (k � q)�(p1 + p3 � k)�k�(2p1 � k)�

k4 (k� q)4 [(k� p1)2 �m2]
�

(14)

In all the integrals proportional to the gauge-�xing factors, (1 + �) and (1 + �)2, it can be

checked that one term in the numerator of the integrand always cancels the massive propagators,

after the mass-shell conditions are taken into account. In order to see these cancellations, one

has to notice that the term (p1 + p3 � k)�(k � q)� is equal to k2 � 2k � p1, which is exactly the

denominator of the massive propagator, due to the mass-shell relation p21 = m2. In the next

integrals for this graph, one can also use the relation k � (2p1 � k) = (k � p1)2 �m2. One should
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notice that also (p2 + p4 + k)�(k � q)� equals k2 � 2k � p2. So, by using the expressions (12), we

arrive at the following expressions for the diagrams:

Fig:2c = �2e4
Z

d4k

(2�)4
(2p1 � k)�(p1 + p3 � k)�

k2(k� q)2[(k � p1)2 �m2]

� 2e4(1 + �)
Z

d4k

(2�)4
(2p1 � k)�(k � q)�

k2 (k � q)4

� 2e4(1 + �)

Z
d4k

(2�)4
k�(p1 + p3 � k)�

k4(k � q)2

+ 2e4(1 + �)2
Z

d4k

(2�)4
k�(k � q)� (k� q)�(p1 + p3 � k)�

k4 (k � q)4
: (15)

Next graph, (2c0), is obtained from (2c) upon the following exchange:

p1 ! p2; p3 ! p4; k ! �k and q ! �q

Fig:2c0 = �2e4
Z

d4k

(2�)4
(2p2 + k)�(p2 + p+k)�

k2(k � q)2[(k + p2)2 �m2]

+ 2e4(1 + �)
Z

d4k

(2�)4
(2p2 + k)�(k � q)�

k2(k � q)4

+ 2e4(1 + �)

Z
d4k

(2�)4
k�(p2 + p4 � k)�

k4(k� q)2

� 2e4(1 + �)2
Z

d4k

(2�)4
k�(k � q)� (k � q)�(p2 + p4 + k)�

k4(k � q)4
; (16)

The contribution of the \box" diagram has the form:

Fig:2a = e4
Z

d4k

(2�)4
(2p1 � k)�(2p2 + k)�(p2 + p4 + k)�(p1 + p3 � k)�

k2(k � q)2[(k � p1)2 �m2][(k + p2)2 �m2]

+ e4(1 + �)

Z
d4k

(2�)4
(2p1 � k)�(2p2 + k)�

k2(k � q)4

+ e4(1 + �)
Z

d4k

(2�)4
(p2 + p4 + k)�(p1 + p3 � k)�

k4(k � q)2

� 2e4(1 + �)2
Z

d4k

(2�)4
(p2 + p4 + k)�(k � q)�(k � q)�(p1 + p3 � k)�

k4(k � q)4
:

(17)

The same exchange of external momenta is used above to obtain Fig. (2a0), which represent

the graph where the internal photons cross each other internally.

Fig:2a0 = e4
Z

d4k

(2�)4
(2p1 � k)�(k � 2p4)

�(k � p2 � p4)� (p1 + p3 � k)�

k2(k� q)2[(k � p1)2 �m2][(k� p4)2 �m2]

+ e4(1 + �)

Z
d4k

(2�)4
(2p1 � k)�(k � 2p4)�

k2(k � q)4
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+ e4(1 + �)
Z

d4k

(2�)4
(k � p2 � p4 + k)�(p1 + p3 � k)�

k4(k� q)2

� 2e4(1 + �)2
Z

d4k

(2�)4
(k � p2 � p4)�(k � q)�(k � q)�(p1 + p3 � k)�

k4(k � q)4
:

(18)

One can notice that the expressions for the gauge-dependent integrals look very similar. Our

procedure to show the gauge-independence consists in grouping together all the integrals propor-

tional to (1+�) and (1+�)2, without solving them explicitly. After that, we just make use of the

on-shell conditions and perform suitable momentum rede�nitions in order to check that the overall

expression vanishes. So, we expand, for arbitrary �,

T (q) = T0(q) + (1 + �)T1(q) + (1 + �)2T2(q) ; (19)

and, using the previous expressions for the diagrams, we may write T1 and T2 as follows:

T1(q) = � 8

Z
d4k

(2�)4
1

k2(k � q)2
� 2

Z
d4k

(2�)4
(p1 + p3 � (k � q))�(k � q)�

k2(k � q)4

� 2

Z
d4k

(2�)4
(p1 + p3 � k)�k

�

k4(k � q)2
+ 2

Z
d4k

(2�)4
(p2 + p4 + (k � q))�(k � q)�

k2(k � q)4

+ 2
Z

d4k

(2�)4
(p2 + p4 + k)�k

�

k4(k � q)2

+
Z

d4k

(2�)4
(p1 + p3 � (k � q))�(p2 + p4 + (k � q))�

k2(k � q)4

+
Z

d4k

(2�)4
(p1 + p3 � k)�(p2 + p4 + k)�

k4(k � q)2

+

Z
d4k

(2�)4
(p1 + p3 � (k � q))�((k � q)� p2 � p4)�

k2(k � q)4

+

Z
d4k

(2�)4
(p1 + p3 � k)�(k � p2 � p4)

�

k4(k � q)2
: (20)

By analyzing these expressions, it is possible to eliminate integrals of the form

Z
(p1 + p3) � k
kn(k � q)m

or
Z

(p2 + p4) � k
kn(k � q)m

;

because the sum will depend linearly on q�. One can readily see that (p1 + p3) � q = 0 and

(p2 + p4) � q = 0, for q = p1 � p3 = p4 � p2. The same argument may be applied to similar terms,

like (p2 + p4) � (k � q) , where, after the shift of momentum k ! k + q , we arrive at the same

situation as before. Finally, we are left with the vanishing expression:

T1(q) = e4(1 + �)

Z
d4k

(2�)4
1

k2(k� q)2
� (�4 + 8� 4) = 0 : (21)
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Now, considering the part proportional to (1 + �)2, and collecting all integrals we have:

T2(q) = 4

Z
d4k

(2�)4
[k�(k � q)�]2

k4(k � q)4
+ 2

Z
d4k

(2�)4
(p1 + p3 � k)�(k � q)� k�(k � q)�

k4(k � q)4

� 2
Z

d4k

(2�)4
(p2 + p4 + k)�(k � q)� k�(k � q)�

k4(k � q)4

�
Z

d4k

(2�)4
(p2 + p4 + k)�(k � q)� (p1 + p3 � k)�(k � q)�

k4(k � q)4

�
Z

d4k

(2�)4
(k� p2 � p4)�(k � q)�(p1 + p3 � k)�(k � q)�

k4(k � q)4
� (22)

Using exactly the same procedure as before, the following vanishing result follows:

T2(q) = e4(1 + �)2
Z

d4k

(2�)4
[k � (k� q)]2

k4(k � q)4
� (2� 4 + 2) = 0� (23)

As we can see, it is possible to demonstrate the overall cancellation of the gauge-�xing depen-

dence in the de�nition of the potential. It is not necessary to solve the loop integrals explicitly; all

we have to do is to search for convenient simpli�cations using on-shell conditions for the external

legs. This relatively easy way of cancelling non-physical contributions to the potential is not so

obvious when treating the same problem in Quantum Gravity, which is indeed our major concern.

We believe that cancellations in SQED are, anyway, a good signal for the gravity counterpart.

At least, now it is possible to set the de�nition of the potential as the non-relativistic limit of

scattering amplitude of the 1 particle-irreducible graphs, and our method for treating the non-

analytic pieces is consistent with the (expected) gauge-independence. Also, the cancellation of the

gauge-dependent integrals coming from various diagrams con�rms that the set of these diagrams

is complete and none of them has been lost.

5 Calculation of the physical potential

Grouping the remaining part of the scattering amplitudes in order to extract the quantum correc-

tions to the classical Coulomb potential, we have:

T0(q) = 8e4
Z

d4k

(2�)4
1

k2(k � q)2
� 2

Z
d4k

(2�)4
(p1 + p3 � k + q)) � (p1 + p3 � k)

k2(k � q)2[(k� p1)2 �m2]
�

�2e4
Z

d4k

(2�)4
(p2 + p4 + k � q)�(p2 + p4 + k)�

k2(k � q)2[(k + p2)2 �m2]
+
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+e4
Z

d4k

(2�)4
(p2 + p4 + k)�(p1 + p3 � k)�(p2 + p4 + k � q)�(p1 + p3 � k + q)�

k2(k � q)2[(k � p1)2 �m2][(k + p2)2 �m2]
+

+ e4
Z

d4k

(2�)4
(k � p2 � p4)�(p1 + p3 � k)�(k � q � p2 � p4))�(p1 + p3 � k + q)�

k2(k � q)2[(k� p1)2 �m2][(k� p4)2 �m2]
: (24)

To extract the non-analytic terms, one can isolate the �nite part of the integrals with the help

of the dimensional regularization scheme. The integrals coming from 2 massless particles in the

loop are relatively easy to perform; the integrals with one extra massive propagator, which are

related to loops with 3 internal lines, are much more di�cult. It was crucial for their solution the

use of computer algebra techniques, once we are left with 2 Feynman parametric integrals, which

are in general very complicated to be analytically solved. It was obtained, for these terms, the

leading quantum corrections: the ones that are really important in the limit of small momentum

transfer. As for the integrals with four di�erent propagators, 2 massless and 2 massive o�-shell

particles, this was really a di�cult task: the direct integrals over the Feynman parameters were

impossible to be solved and the calculation required additional e�orts.

Our way out to the problem was based upon the assumption that the static potential should not,

in principle, be dependent on velocities. Then, afterwards, we might choose the most convenient

external momentum con�guration considering its conservation in each vertex separately. This

trick was useful for the calculation of the loop integrals with four propagators. The con�guration

adopted is the one shown in the diagram of Figure 5.

For this con�guration, we succeeded in �nding an appropriate partial fraction decomposition

for the 4-propagator integrals, and the results are given in Appendix.

Another important remark is that some integrals may immediately be disregarded, because they

do not present non-analytic contributions. It is rather easy to show that the integrands with k2

or (k� q)2 in the numerator do not depend on q2, and so they have no contributions at all for the

potential. This is so because these same terms appears in the denominator, representing massless

propagators, and consequently simplifying them, we are left with q2-independent integrals. Let us

now put everything together, collecting the results from all integrals we have done, where we have

considered only the leading IR quantum corrections. After that, we re-express the �nal expression

in coordinate space by means of the Fourier transforms (15); (16), which provides the following

potential:
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V (r) = �e2

r

 
1� 3

64�2
e2

m

1

r
+

5

48�4
e2

m2

1

r2

!
�

After restoring the powers of �h and c, we arrive at the �nal expression

V (r) = �e2

r

 
1� 3

64�2
e2 �h

Lc

r
+

5

48�4
e2 �h

L2
c

r2

!
; (25)

where Lc = �h
mc

is the natural length scale which shows up due to the existence of the mass

parameter in SQED. We remark that such a parameter is absent in Quantum Gravity. One

can see, from this potential, that, contrary to the low-energy Quantum Gravity calculations to

Newton's potential, here all quantum corrections contain the factors of �h hidden in Lc. Indeed, Lc

is Compton wave length at which the quantum contributions to the potential become signi�cant. In

Quantum Gravity, there are two di�erent scales, namely the Schwarzschild radius (for the �rst type

corrections) and the Planck length, for quantum corrections coming from the L-type IR non-local

terms.

In SQED, as we can see, there is only one scale for quantum corrections.

6 Conclusions

We have calculated the low-energy quantum corrections to the Coulomb potential in SQED. Despite

its a renormalizability, SQED mimics most of the properties of an e�ective �eld theory approach

for Quantum Gravity. We have checked that it is really possible to separate di�erent scales for

the theory. Then, we might say that this low-energy physics is completely independent from any

high-energy renormalization parameters. As it was expected in [6], low-energy quantum predictions

can be made in the framework of e�ective �eld theories. Being a renormalizable quantum �eld

theory, SQED is its own low-energy e�ective theory; Nevertheless, one might hope to realize the

same programme for Quantum Gravity. In particular, this concerns the gauge-independence of the

quantum corrections to the potential, which has just been demonstrated for the SQED case. We

remark that, unlike a previous investigation [11], our calculations concern all the relevant diagrams,

even those which have massive internal lines. Indeed, for the contributions of the massless loops,

the same results may be easily achieved by means of functional methods. For instance, since the

UV and IR divergences are proportional in the massless case (momentum transfer playing the rôle

of the regularization parameter in IR), one can simply apply the on-shell gauge-independence of
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the one-loop divergences (see, for example, [19] or simpli�ed 1-loop proof in [15]). For the more

complicated S-type non-localities, Feynman diagrams still remain the important tool, and we now

hope to apply it for the Quantum Gravity case.

In this case, the theory is non-Abelian and we expect that an overall infrared divergence should

persist in the potential and its cancellation should be accomplished by bremsstrahlung contributions

in the scattering processes.
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7 Appendix

Here, we present the loop integrals which were used throughout this work. All the integrals with

two and three propagators can be performed directly by means of the Feynman parameter method

(see [17] for a review on dimensional regularization).

Let us comment on the derivation of integrals with four propagators. One can always decompose

the integrand into partial fractions, containing 3 propagators each, as indicated below:

q2

k2(k � q)2[(k� p)2 �m2][(k+ p� q)2 �m2]
=

1

k2[(k � p)2 �m2][(k+ p� q)2 �m2]
+

+
1

(k � q)2[(k� p)2 �m2][(k+ p� q)2 �m2]
� 1

k2(k � q)2[(k + p� q)2 �m2]
+

� 1

k2(k � q)2[(k � p)2 �m2]
: (26)

Integrating the �rst two terms, we do not obtain any non-analytical contribution, and conse-

quently our interest is restricted to the last two fractions. They can be, in turn, calculated using

Feynman parameters and Maple V. All the resulting integrals required for our calculation are dis-

played below. One has to notice that these expresions contain only the non-analytic parts of the

integrals. Also, we have omitted the trivial infrared divergences, mentioned in Section 4.
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Z
d4k

(2�)4
1

k2(k � q)2
= � i

16�2
ln(�q2) + : : : (27)

Z
d4k

(2�)4
k�

k2(k � q)2
= � i

16�2
q� ln(�q2) + : : : (28)

Z
d4k

(2�)4
k�k�

k2(k � q)2
=

i

16�2
q�q� ln(�q2) + : : : (29)

Z
d4k

(2�)4
k�

k2(k � q)4
=

i

16�2
q�
ln(�q2)

q2
+ : : : (30)

Z
d4k

(2�)4
k�k�

k4(k � q)4
=

i

16�2
q�q�

ln(�q2)
q4

+ : : : (31)

Z
d4k

(2�)4
1

k2(k � q)2[(k � p1)2 �m2]
= � i

32�2m2

 
ln(�q2) + �2mp�q2

!
: : : (32)

Z
d4k

(2�)4
k�

k2(k � q)2[(k � p)2 �m2]
=

i

32�2m2

n
q�

�
� ln(�q2)+

�1

2

�2mp�q2
!
+ p1� ln(�q2)

o
(33)

Z
d4k

(2�)4
k�

k2(k � q)2[(k � p)2 �m2][(k � p)2 �m2]
=

�i
32�2m2

(
q�

 
� 1

4m2

�2mp�q2
� 1

2m2
ln(�q2)

�
+ p�

 
1

2m2

�2mp�q2 +
1

m2
ln(�q2)

!)

Z
d4k

(2�)4
k�k�

k2(k � q)2[(k � p)2 �m2][(k � p)2 �m2]
=

i

32�2m2

(
q�q�

 
� 3

8m2

�2mp�q2
� 1

m2
ln(�q2)

�
� p�p�

1

m2
ln(�q2) + (p�q� + p�q�)

 
1

4m2

�2mp�q2+
1

m2
ln(�q2)

�
+

1

2
��� ln(�q2)

�
(34)

Z
d4k

(2�)4
� 1

k2(k � q)2[(k� p)2 �m2][(k+ p� q)2 �m2]
=

i

32�2m2

(
2

q2

 
ln(q2) +

�2mp�q2
!
+

+
1

4m2
� �2mp�q2 +

1

3m2
ln(�q2)

)
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Figure Captions

�q
� � = �

i

q2

(
��� � (1 + �)

q�q�

q2

)
(1)

�p
=

i

p2 �m2
(2)

�k� = �ie
�
p� + p0

�

�
(3)

�p

p0

k

q

�

�

= 2 i e2 ��� : (4)

Fig.1: The Feynman rules for SQED.

T (q) =�q

p2

p1

p4

p3

=
i e2

q2
: (5)

Fig.2: Tree level diagram, producing Coulomb potential.
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Fig. 3: All possible Feynman classes of diagrams to order e4.
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p2
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Fig:4 : The t� channel process is irrelevant at the infrared limit:

1



CBPF-NF-025/00 18

Figure Captions
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F ig:5 : External momenta configuration:
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