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Abstract

We work out the physical field variables and write down the physical Hamiltonian

for the Chern-Simons-Maxwell theory by working with the symplectic projector method.
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1 Introduction

Some years ago, we developed a method based on the so-called symplectic projectors
to work in the framework of gauge field theories’?; the idea of the procedure is to pick
out from the original set of field variables those which are the "true” or ”physical”
variables. This would be the first step to treat a gauge theory in a strictly canonical

way 345,

We show in this letter how to derive the physical Hamiltonian for the D = 3-Chern-

Simons-Maxwell (CSM) model with the Coulomb gauge conditions without coupling to

matter fields. Its expression is closely related to the one previously found in a work

by Devecchi et al®, where the Dirac bracket quantization procedure (DBQP) has been

adopted. Here, we proceed along a different way and try to check the efficacy of

the symplectic projector method by applying it to a 3 - dimensional gauge theory.

2 The Physical Hamiltonian for the CSM theory

We start off from the Lagrangian density

1
(1) L= =B P 4 me A, 05 A,

where the metric (—1,1,1) is adopted.

The generalised Hamiltonian has the following canonical form:

(2) H:/d2$ [%ﬂ'iﬂ'i—l—%(eijaiAj)Z—l—%mZAkAk—I—meiinﬂ'j )

with the (second class) constraint relations:
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(3) Q'=r"=0,
(4) =0 7"+me’d A =0,
(5) 0> =A% =0,
(6) Q'=9"A'=0.

To set up a symplectic structure, we rename field variables according to the following

Correspondence:

(7) (AO, Al7 Az7 71_07 71_17 ﬂ_z) N (517 527 537 547 557 56)‘

The constraints Q' define a local metric, g¢;;, which isthe inverse of

g (z,y)={Q" (z), Q7 (y) }, and reads formally as below:

0 0 62(x—y) O

- L 0 0 0 V-2
—§¥(x—y) O 0 0
0 — V-2 0 0

The general form for the symplectic projectors is given by the expression that follows! :
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(9) AL (2, y) =0606% (x—y)—e"® /dzrdzwm]‘ (r, @) Sa(e) Q' (1) S0y ' (=),

0 0 0 0 0 0

0 6 (e —y)— LN e 0 0 0
K A 8 (x—y)— 2 0 0 0

0 0 0 0 0 0

0 0 —mé*(x—y) O 52(:1;—y)—aé§f _8fvig

0 mé?(x —y) 0 0 _8§V§1 2 (z—vy __8%?2

Getting the physical variables, {; (z), is a simple matter of applying the

prescription

(11) ¢ (@) = [ APy AL (o) € ()

we get thereby:

(12) ¢ (2) =7 (2) =0,
(13) ¢ (x) = Ay (o),
(14) ¢ () = Ay (o),

(15) ¢ (x) =7 (2) —mAy (o),

(10)
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(16) ¢ (2) =7y (x) +m Ay (2).

Now, our original constrained Hamiltonian written in symplectic coordinates takes

over the form:

(17)
H:/d2$ [% (f?—l—fé)—l—% (8153—5252)24-%7712 (f§+f§)+m(fzf6—f3fs) ;

on the other hand, the projected Hamiltonian becomes as below:

(18)

o= [ 5 (64 62) + 506 - 06 + ot (62 +67) +m(66 - 66)|.

Coming back to the original  phase - space  notation, with the help
of egs. (12) — (15), we finally conclude that the projected Hamiltonian reads as below:

(19)
o= [ [% (rhrt+amPAtAt) + % (670,4%) +2m (At rt _A;Wf)] |

This is the Chern-Simons-Maxwell Hamiltonian written in terms of the so-called
transverse expression, wich agrees with the results found in ref.[6] along a different line
of arguments.

We wish to stress a very important point of these results: the physical Hamiltonian is
the one given by eq.(18) in that the physical variables, those obeying canonical Poisson

brackets, are the £*’s and not the familiar transverse field variables. The only reason to
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write down H* according to eq.(19) is to establish a bridge between our approach

and the usual terminology.
Going over to the equations of motion and using the physical Hamiltonian within

the framework of the Hamilton-Jacob equations, we find that:

-

(20) b= —2mE5 4 Du0nls — 0yE5—2mEs,
1) Eom 2L O ES — DOy ES — 2m S,
(22) €om — 2Tt 05— 01 05+ m [2m? — ] €
(23) Eom 2P & 4 DO E — 010y —m 2 — V] £,

Apparently, these equations might look rather strange; but, if we go back to the

most familiar notation, by means of the correspondence between the A’s, 7’s and ¢’s

(eq.(7)), we can cast them under the form:

(24) (O+4m?) Af = —2mny,

(25) (D—|-4m2) Af=2mni,

(26) Onri =0,
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(27) Ory =0,

which amount to ensuring that

(28) O (O+4m?) Af =0, (i=12).

K3

This guarantees that the physical excitation is a massive (p* =4m?) transverse
vector; the massless pole is a spurious one: it has no dynamical role and does not
correspond to any physical mode . Indeed, in coupling the A, - field propagator to a

conserved external current, the current -current amplitude is such that the imaginary

part of its residue taken at the pole p? = 0 vanishes, wich confirms that the latter does

not correspond to any physical excitation.
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