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1 Introduction

The linear � � ! model (hereafter called Walecka model) [1] satisfactorily explains many properties of
nuclear matter and �nite nuclei. A shortcoming of this model is the prediction of a high value for the
compression modulus K = 550 MeV. The introduction of nonlinear scalar self-coupling terms [2] has
brought K to a reasonable value of 250 MeV in a theory with four free parameters. Recently, some
attempts have been made in order to modify the Walecka model aiming to keep only two free parameters
and expecting to have a softer equation of state [3]-[6]. These models are not renormalizable and have to
be understood as e�ective models. They are constructed by modifying the usual covariant derivative term
in such a way that, after an appropriate rescaling, the Lagrangian describes the motion of a baryon with
an e�ective mass M� = m�M instead of the bare mass M. This information goes to the meson-baryon
coupling, modifying it to an e�ective scalar coupling constant while the vector coupling constant remaining
the same. This kind of model (we refer as Model 1) can give a good result for the incompressibility K,
a value for M� compatible to the Skyrme force model (showing its modest relativistic content), and a
poor spin-orbit splitting for �nite nuclei calculations [5]. A generalization of this kind of model does not
change much these features [6].

Qualitative di�erent models can be obtained if, instead the modi�cation of the covariant derivative
term, one simply modi�es in the Lagrangian the kinetic baryonic term. In the same way, as before,
after an appropriate rescaling, the Lagrangian also describes a baryon of mass M�. This information
manifests modifying not only the scalar-baryon coupling but also the vector-baryon coupling. It generates
a coupling mechanism between the vector and the scalar �elds. This class of models (we refer as Model
2) is, from our point of view, more rich than those contained in Model 1. The idea of such a possible
model was suggested in the Appendix of Ref.[3] and implemented for a particular case in Ref.[7]. Model
2 is not well known as Model 1 and up no now no generalization of it has been done.

In this work we shall be commited with an uni�ed discussion of generalized Model 1 and Model 2
which are, in general, obtained from derivative coupling models. We show that these models can be
constructed from the usual Walecka model by rede�ning in it the coupling constant to an e�ective one.
Connected in this way, the e�ective coupling constants scale as a function of m� = M�=M . Zimmanyi
and Moszkowski (ZM) [3] proposed a speci�c choice to modify the scalar coupling trough m�(�) =
m�

ZM (�) = (1 + g��=M )�1 that, if applied for Model 1, turns out that their model is completely
equivalent to the Walecka model if one scales (g��=g�) = m� . Any other choice for m�(�) [4]-[6] contained
in Model 1 changes this scaling. Model 2 can be interpreted as the Walecka model if we perform g� ! g��
and g! ! g�!. Irrespective to the choice of m�(�), we have g�!=g! = m�. In the particular case of
m�(�) = mZM (�), e�ective vector and scalar constants scale identically as g��=g� = g�!=g! = m�.

Here the generalization of Model 1 and Model 2 means the introduction of a new free parameter �.
We do it by imposing the following scaling in the e�ective Walecka model:

Model 1 :
g��
g�

= m�
�

;
g�!
g!

= 1 (1)

Model 2 :
g��
g�

= m�
�

;
g�!
g!

= m� (2)

Notice that by doing so we do not need to explicit any especi�c functionm�(�), it is automaticly contained
in the scaling procedure. The free constants g� and g! are chosen to �t the nuclear matter binding energy
(Eb = �15:75 MeV) at the saturation density (�o = 0:15fm�3). We have kept � as a continuum variable
for both models. These models are then studied regarding the obtaining of M�, K, the scalar potential
(S), and the vector potential (V ). The di�erence between the last two quantities is intrinsicly related to
the spin-orbit splitting for �nite nuclei. We show that Model 1, unlike Model 2, can not simultaneously
achieves good performance calculating the above observables.

2 The Models

We start by introducing the nonlinear Lagrangian density for the Model 1,

LNL = �
1

4
F ��F�� + � 

n
=D(g!) � m�(�)M

o
 +

1

2
m2
! !� !

� +
1

2

�
@�� @

�� � m2
� �

2

�
; (3)
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where =D(g!)
:
= 
�D�(g!) = 
�( i @� � g! !� ) , is the usual covariant derivative and the degrees of

freedom are baryon �elds ( ), scalar meson �elds (�), and vector meson �elds (!�). The real function
m�(�) is to be de�ned within each model under consideration, with the condition that for zero density
goes to 1 and vanish for higher densities, because the e�ective mass must approaches zero asymptotically.
Indeed, the Dirac equation obtained from the Lagrangian density (3) gives

m�(�) =
M�

M
; (4)

where M and M� are the bare and e�ective baryonic mass respectively.
Now we proceed to show that performing a spinor �eld transformation, LNL can be obtained from

a Lagrangian density with derivative scalar coupling (DSC). The proposed Lagrangian density [3] which
generates LNL is given by

L = �
1

4
F ��F�� + � 

n
[m�(�)]�1 =D(g!) � M

o
 +

1

2
m2
! !� !

� +
1

2

�
@�� @

�� � m2
� �

2
�
: (5)

Introducing the rescaled barionic �eld  ! [m�(�)]
1

2  , we obtain from Eq.(5) the rescaled Lagrangian
density

LR = LNL + = ; (6)

where = is an imaginary contribution given by

= =
i

2
( � 
� ) @

� ln(m�(�)) : (7)

This term does not carry any physical meaning and its appearance can be avoided by starting from the
correct Hermitian Lagrangian density. To this end we replace the baryonic kinetic term in Eq.(3) by
i
2
f � 
�@� � (@� � )
� g, such that the imaginary = contribution cancels after the �eld scaling. Taking

this into account, the �eld rescaling is equivalent to the replacement�
[m�(�)]�1 =D(g!) � M

	
! f=D(g!) � m�(�)M g : (8)

Therefore, the Lagrangian densities given by Eq.(3) and Eq.(5) are completely equivalent; they provide the
same physical content irrespective of the fact that we deal with in�nite nuclear matter or �nite nuclei. In
other words, the equations of motion obtained from Eqs.(3) and (5) describe the same hadronic dynamics.
The form of Eq.(5) is not arbitrary since it has the physical meaning (from Eq.(4)) that the modi�ed
kinetic energy describes the motion of a baryon of mass M� instead of the bare mass M . Eq.(3) just
carries now this information to the scalar-baryon coupling �elds.

The Walecka model can be obtained as a particular case of the model de�ned by L or LNL and
its Lagrangian density is recovered making the choice m�(�) = ( 1 � g��=M ). In fact, all the recent
nonlinear models [3]-[6] can be obtained from DSC model whose rescaled Lagrangian density can be
interpreted as follows

LNL � LWalecka(g� ! g��) ; (9)

where g�� (hereafter we will interpret � as refering to e�ective coupling constant in the medium) is now a
function of �, related to m�(�) by

m�(�) = 1� g���=M ; (10)

which establishes by itself a class of models, since m�(�) is general. In the usual Zimanyi-Moszkowski
(ZM) model [3],

m�

ZM (�) = (1 + g��=M )�1 ; (11)

and g�� = g�m
�

ZM (�). In the same way, for the other models [4]-[6] the identi�cation of g�� and m�(�)
can easily be done.

Let us now discuss the possible modi�ed versions of the Model 1 we will refer as Model 2. We keep
the generalized m�(�) but following the suggestion given in the appendix of Ref.[3], we shall restrict the
m�(�) dependence in L to the fermionic kinetic term. To this end we introduce the modi�ed covariant
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derivative =Dm� (g!) =
�
[m�(�)]�1 i =@ � g! =!

�
and write the Lagrangian in the form

L = �
1

4
F ��F�� + � 

n
=Dm� (g!) � M

o
 +

1

2
m2
! !� !

� +
1

2

�
@�� @

�� � m2
� �

2

�
: (12)

Since under the previous scaling  ! [m�(�)]
1

2  , we have

f=Dm� (g!) � M g ! f =D(g�!) � m�(�)M g ; (13)

then a new class of nonlinear models can be generated, and again the connection with the Walecka model
is performed through

LNL � LWalecka(g� ! g�� ; g! ! g�!); (14)

in which g�� is connected with m�(�) by Eq.(10) and

g�!
g!

= m�(�) : (15)

Note that Eqs.(9) and (14) simplify the understanding of di�erent kinds of nonlinear couplings since they
are in fact e�ective Walecka models. An interesting point here is that once the Lagrangian is given by
Eq.(12), Eq.(15) imposes the scaling of the e�ective vector coupling constant in the medium.

We can now investigate whether this same scaling can be extended to the e�ective scalar coupling
constant in the medium too. Initially we look for a function m�(�) such that the following constraint is
satis�ed:

g��
g�

=
g�!
g!

= m� : (16)

It turns out that the only function that full�ls the above requirement is m�(�) = m�

ZM (�). This modi�ed
ZM model (ZMM) is the �rst hadronic model which exhibits this property. This kind of model couples
the � �eld to the ! �eld and some results we present here show how it changes the usual ZM model.

The coupling constants for the usual ZM model (ZM) now interpreted as given by Eq.(9) are presented
in Ref.[3]. The model given by Eq.(14) (ZMM) saturates the in�nite nuclear matter at the density
�0 = 0:15 fm�3 with the binding energy Eb = � 15:75 MeV for C2

� = g2�M
2=m2

� = 443:3 and C2
! =

g2!M
2=m2

! = 305:5 [7]. We present, for both models, the incompressibilityK, the scalar potential S, the
vector potential V (in MeV) and the baryonic e�ective mass m�:

Model m�
K S V

ZM 0.85 225 -141 82
ZMM 0.72 156 -267 204

Compared to ZM, ZMM presents the peculiarity of giving simultaneously a smaller m� and a smaller
K. This is not what occurs when we compare ZM model with the Walecka model. This peculiarity may
be explained now by the nonlinear scalar-vector coupling contained in ZMM model. In reference [5],
ZM is implemented for a �nite nuclei calculation showing a poor result regarding the spin-orbit splitting
which, as expected, is strongly dependent on the quantity V � S . In ZMM model, this quantity is
larger than the double of that obtained for ZM model, suggesting that ZMM model may improve upon
ZM model in this particular direction. It is also interesting to remark that for low energy the slope of
the real optical potential (given by 1 � m�) provides information regarding the expected value of m�.
Experimental values [4, 9], in the limits of in�nite mass number and zero radius gives m� around 0.6. It
does not support strongly ZM model, but tends to favour the Walecka model and ZMM model instead
[7]. In ZMM model, K is smaller than the \empirical" prediction K = 210 � 30 MeV. Regarding this
point, unlike the nonlinear �� ! model, which presents unphysical behavior for K < 200 MeV [2], ZMM
model 2 does not present any anomaly for the equation of state with such small value of K.

Now we proceed to generalize the ZM and the ZMM models. Recall that both come from a particular
case of Eq.(10) when m�(�) = m�

ZM (�) , this choice has the consequence that the scalar e�ective coupling
constant scales as (g��=g�) = m�. Di�erent choices ofm�(�) can be done under the requirement of Eq.(10).
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2.1 Model 1

From Eq.(9) we generate a family of models by choosing the scaling given by Eq.(1). The equation of
state for such a model is given in a general expression together with Model 2. Model 1 have two particular
cases: Walecka Model ( � = 0) and ZM model ( � = 1 ).

2.2 Model 2

The basis of this model is the Eq.(2 and Eq.(14) (the ZMM model case is achieved for � = 1). Given �,
m�(�) is de�ned by Eq.(2) together with Eq.(10) as in the Model 1 case.

2.3 The Equations of State for the Models

When the meson �elds in the Lagrangians are replaced by their mean values, we arrive at the mean
�eld approximation (MFA). In Model 1 the scalar meson �eld equation implies � to be a function of the
scalar density (�s) only. This is not which occurs in Model 2, once here � becomes also a function of the
baryonic density �b. For rotationally and translationally invariant symmetric nuclear matter, the MFA
equation for the scalar �elds reads

� =
g�

m2
�M

m��+1

(1� �)m� + �

"
M�s + �

�
g!
m!

�2

m��2b

#
; (17)

where � = 0 and 1 for Model 1 and Model 2 respectively. This shows clearly how Model 2 and its
generalization mixes the scalar and vector �elds. The scalar and baryonic densities are related through

�s
�b

= �

�
C2
!

C2
�

��
(1� �)m� + �

m�2�+1�2�

��
S

V

�
� �

�
V

Mm�

�
; (18)

where
S = � g�� � = �M (1�m�) ; (19)

and
V = (C2

!=M
2)m�2�=�b : (20)

This ratio estimates the relativistic content of each model. Model 2 presents an additional term, favouring
its relativistic contribution compared to Model 1.

The expressions for the energy density and pressure at a given temperature T can be found as usual
by the MFA average of the energy-momentum tensor,

E =
C2
!

2M2
m�

2�

�2b +
M4

2C2
�

�
1�m�

m��

�2

+



(2�)3

Z
d3k E�(k)(nk + �nk) ; (21)

and

p =
C2
!

2M2
m�

2�

�2b �
M4

2C2
�

�
1�m�

m��

�2

+
1

3




(2�)3

Z
d3k

k2

E�(k)
(nk + �nk) ; (22)

where

�b =



(2�)3

Z
d3k (nk � �nk) : (23)

Here 
 is the degeneracy factor ( 
 = 4 for nuclear matter and 
 = 2 for neutron matter ), �nk and nk stand
for the Fermi-Dirac distribution for antibaryons and baryons with arguments (E� � �)=T respectively.
E�(k) is given by

E�(k) = (k2 +M�2)
1

2 ; (24)

while an e�ective chemical potential which preserves the number of baryons and antibaryons in the
ensemble is de�ned by � = � � V , where � is the thermodynamical chemical potential. According
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the Hugenholtz-van Hove theorem [8], the Fermi energy must be equal to the energy per baryon at the
saturation density. Therefore, the following relation has to be satis�ed,

E

�o
= V + E�(�o) : (25)

We �nish this section by presenting an analytical general expression for the incompressibility valid for
both models,

K = 9V + 3
k2F

(k2F + (M + S)2)1=2
+ 9

�
�
@S

@�

�
(M + S)

(k2F + (M + S)2)1=2
+ 2�

V

(M + S)

��
; (26)

where all the quantities are calculated at the nuclear matter saturation density �o and kF is the fermi
momentum.

3 Results and Discussions

We have implemented these generalized new models for T = 0, requiring Eb = � 15:75 MeV at �o =
0:15 fm�3 for some values of �. We start this section by discussing the Model 1, asking whether by varying
� simultaneous reasonable results for K, M� and V � S may be obtained. The answer for this question
has to be found in the Fig.1, where these quantities are plotted together as a function of �. The answer
is clearly no, since there is no region where we could pick up simultaneous reasonable results for the
discussed quantities, supporting the conclusions extracted from a generalized " ansatz " implemented by
Greiner and Reinhard [6]. We mean by reasonable results m� around 0.6 as pointed out before, which, as
we will see later, �xes the values of V � S around 680 MeV. The experimental value of K , determined
from the energy of the breathing mode of doubly magic nuclei [10], is 210 � 30 MeV. G.E.Brown [11],
using Fermi-liquid Landau theory, gives strong reasons for a lower value of K. Once this question sems
to be under debate, we use the experimental value of Ref.[10] as an approximated upper limit.

The results for the Model 2 are presented in Fig. 2. The values ofK are weakly sensitive in the region
of � > 1, and they reach the minimum value very close to � = 1, the ZMM case. Particulary interesting
are the results for the region � < 1 in Fig. 2, where m� and the quantity V � S can improve the results
of ZMM model given in the last section. As an example, for � = 0:9 Model 2 furnishes M� = 558:3 Mev,
V � S = 687:6 Mev and the incompressibility K = 166:2 Mev. It is very interesting that for � = 0:88
the values for M� = 507:0 Mev, V � S = 785:1 Mev are approximately the same as the obtained in the
usual linear Walecka Model but with a reasonable value for the incompressibility,K = 181:3 Mev.

Fig. 2 also shows, that for � < 0:79 no nuclear matter saturation is achieved, including the limiting
case of �=0 , which would correspond to the Walecka choice for m�(�) in Eq.(10). Moreover, Fig.1 and
Fig.2 show that M� increase with � and, as a consequence of Eq.(25), the vector potential V decreases.
We have allowed high values of � to obtain the curious situation where V vanishes, and the Model 1 and
Model 2 degenerate. Nuclear matter saturation, only with scalar �eld, is then achieved. This occurs for
� � 12:8 which is the maximum value allowed for this parameter (beyond this, V becomes negative) with
C2
� = 315:36. The results for this especial case are: M� = 885:8 Mev, V � S = �S = 52:4 Mev and

K = 65:8 Mev.
After having gained some insights from each kind of model, we discuss here in which M� could give

model independent properties for the nuclear matter. M� itself is a manifestation of the relativistic
content of any particular model. On the other hands, if two di�erent models present the same value of
M�, they have the same relativistic ratio given by Eq.(18). This quantity is presented in Fig. 3 for Model
1 and Model 2, for di�erent values of �. This shows how Model 2 (unlike Model 1) can acquires extrem
relativistic features. In particular, we see from Figs. 1 and 2 that Model 1 and Model 2 can give the
same values for M� (for di�erent values of �) and, consequently, the same relativistic ratio too. If the
situation is such that di�erent models give the same M�, the question is whether it can itself determine
other observables. For instance, the values of S and V are �xed from Eq.(19) and Eq.(25) respectively if
M� is given. Therefore, the quantity V � S andM� are directly correlated and carry the same physical
information for each particular model. Regarding the correlation between K and M� , the situation
di�ers and assumes a character of model dependence.
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In order to have a better radiografy of K , we calculate separately the di�erent terms which compose
it, according Eq.(26). Notice that comparing to Model 1 (� = 0), Model 2 (� = 1) presents an additional
fourth term (hereafter K4). The �rst three terms of Eq.(25) we will refer as K1 , K2 and K3 respectively.
We plot in Figs. 4 and 5 these quantities to see the isolated contribution of each one. K1 and K2 are
completely determined by M� since they directly depend on S and V . However, K3 and K4 depend
not only on M� but also on the slope of M�(�) which is negative and carries the information from the
scalar �eld. For Model 1, we see from Fig.1 that when M� increases the incompressibility K decreases.
So, this explains why in Walecka model, where M� is small, K is so high. In the usual ZM model occurs
the opposite. In Model 2 we do not have this behavior, as we can see from Fig. 5, where we show how
K4 composes with K3 to keep K almost constant when M� increases.

4 Conclusions

In summary, we have shown the equivalence between the derivative scalar coupling and some nonlinear
hadronic models which now are understood as an e�ective Walecka models. In this case the e�ective
coupling constants depend on the density and are completely determined by the e�ective nucleon mass
m�. Two class of models were studied. The �rst has only an e�ective scalar coupling g�� related with m�

by m� = 1� g���=M . The second also includes a new e�ective vector coupling g�! which always is given
by g�! = m�g!. We have also shown that only for a particular choice of m� = m�

ZM (�) both e�ective
meson coupling constants scale as m�. We have generalized the scaling, to conclude that in a theory
with three free parameters, Model 1 can not succeed to furnish good results for the �nite nuclei splitting
simultaneously with the values of K and m�. From Fig. 2, however, it is possible to pick up values of �
giving values of m� , K and V �S around those obtained from the nonlinear � � ! model, that we assume
as good. The aim of this work is, however, not the proposal of any particular alternative model, but a
systematic study to see in which direction the Walecka model could be changed with some possibilities of
success. In this way becomes clear that, to change only the scalar coupling (Model 1) one de�nitely can
improve K but (supporting the Ref.[6]) with no hope to have good answers to the spin-orbit splitting
for �nite nuclei. This is a direct consequence from the high value of M� that Model 1 furnishes when
K goes in the right direction by variation of �. Model 2, instead, suggests that a modi�cation of the
Walecka model which includes a mixed coupling of the scalar and the vector �elds may be the way to
expect improvement in the calculation of the discussed observables.
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Figure Caption

Figure 1: The nucleon e�ective mass (M�), the di�erence between the vector and scalar potentials
(V � S) and the incompressibility K as function of � for Model 1.

Figure 2: The nucleon e�ective mass (M�), the di�erence between the vector and scalar potentials
(V � S) and the incompressibility K as function of � for Model 2.

Figure 3: The relativistic ratio between scalar and baryonic densities (�s=�b) as a function of � for both
models.

Figure 4: The components K1, K2 and K3 of the incompressibility K as a fuction of � for Model 1.

Figure 5: The components K1, K2, K3 and K4 of the incompressibility K as a fuction of � for Model
2.

Figure 6: The e�ective nucleon mass as a function of the scalar sigma �eld (u = g��=M ) for di�erent
values of �.
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