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ABSTRACT

It is shown, for a wide class of operators, that the solution to
the associated heat_equation may be obtained as a series. This |is
accomplished using the inverse Mellin transform of the Kernel of
the s-th vower of the operator, together with the analytic proper-

ties of the Kernel in the complex s-plane.
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A renewed interest on the study of the solutions of the Heat equa
tion associated to elliptic operators, in the form of an asymptotic
expansion, was observed these last years in several situations. Ex
amples of such situations are found in the regularization of ope-
rator determinants associated with Grassmann variables in the path
integral approach to Quantum Field Theory, in the calculation of

non-aAbelian anomaliesi's, or in studies of Field Theories in curved

-

2 L -
spaces . For instance, in 2-dimensional QCD'’® we may write the

Generating Functional, after integration over the fermionic fields,

as .,

7 = PA(x) detp exp[—%Jde Guva(;“"&:l " _ li)

(apart from gauge fixing terms) where A{(x) is the gauge field, Guva
is the gauge field strength tensor and D=i(a¥A(x)), The debamﬁnént
of P appearing in’' (1) comes from the integrdtion over the fermionic
fields; it is a divergent quantity’and must be regularized. One of
the most popular ways is the proper time regularization method*. The
regularized determinant is given in terms of the proper-time regu-
larization parameter e, through the diagonal part of a function?
Fle,x,y) which obeYs the "heat equation", associated to the opera-
tor P? (see eq. 2). The regularized determinant det B(c) (e+0) must
"be known and then the behaviour of F(e,x,y) as €+0 must be found.
Beyond the particular example we have just given, we are led in
general to the study of the solutions of the "heat equation®.,

a% F(t,x,y) = HF(t,x,y) (2)

where t is a ("time") parameter and x and y are points of a D-di-
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mensional compact manifold without boundary; the operator H acts
on the x variable. In the case of QCDZ, t is the proper-time regu-
‘larization parameter €, and H is the operator B?’. For more genera-
‘lity, B may be taken as an order m pseudo-differeential operaiors.
Particularly important is the asymptotic behaviour of the diagonal
part of F(t,x,y) as t+0., This is usually done by means of the de
Witt anzatz?,

F(t,x,y) = F, (t,x,y) § t°
© 2=0

a,(x,y)
where F is the solution of the "free heat equation”.

In this paper we propose a new simple Mellin transform method to
obtain an asymptotic expansion to the solution of the Heat equation
F(t;x,y), the so-called Heat Kernel. This is done using the rigor
ous results of Seeley® on the analytic structure of the Kernel
K(s;x,y) associated to the s-th power of the operator H of (eq.2),
Hs, in the complex s-plane. Our exéansion may be seen as an alter-
native to the de Witt anzatz in the case where the residues
of the diagonal part of K(s:;x,y) can Dbe calculated. We ramnk~ﬁmm
Mellin transform methods for obtaining asymptotic behaviours have
been used in other coﬁtexts. Indeed, one of us used such methods
to demcnstrate theorems on the asymptotic behaviour of Feymman am-
plitudes®.

To proceed we note that it may be shown that the Green function
of Hs, 2(s,x,vy), is related to the Seeley's Kernel of H° by Z{(s,x,y)=
K(-s,x,y), and to the solution of the heat equation (2) by a Mellin

transform. So,

K(s,x,y) = TT%ET Jdt £ ree,x,y). {3)
2]
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Conversely the inverse Mellin transform gives:

-+
F(t,x,y) = J g%??-ts r{-s)K{s,x,y) . (4)
O
provided K(s,x,y) can be extended to the whole complex s-plane. .
The s-integration in (4) goes parallel to the imaginary axis

and Re(s) must belong to the analiticity domain of K(s;x,y,) .
One of ;Seeley's results® is that within the apzivroximation made to ceonstruct
the power operator H®, it has a continuous Kernel for Re(s) <-D/m.

The diagonal elements K(s,x,y) extend to meromorphic functions of
s, having as only singularities simple poles located at s=(j-D)/m,

j=0,1,2;...: their residues can in principle be calculated® from
the symbol (generalization of the characteristic polynomial) of}f,

using the formula,

R
Res K(S=(j—D) Il'-ﬁ) = imD+1 IJ X m b—ln—j (’ltg]d ldE ’ (4a)
(2T} v |E|_1’p -

where I' is a curve coming from «, going along the ray of minimal
growth to a small circle around the origin, then going back to .,
The quantities b{X g) are obtained from the coefficients of the
symbol. |e|=1 me;%?that‘ the set of variables {{} is constrained to be at
the surface of the D-dimensional unit sphere. The off-diagonal elements K(s,X,y)
X #y extend to entire functions of s.

For the diagonal elements, the general analytic structure of the
integrand in (4} is displayed in figure 1. The inverse Mellin trans
form (4) is unambigously defined if we take the integration along
a line €  in the "initial" analyticity domain of K{s,x,y), Re(s)<-D/m.

Then we may obtain an expansion in t by displacing the integration
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contour to the right, picking up successively the contributions from
the poles. We note that double poles may exist in the integrand
of.(4) located at the real positive values of s. The douyble poles,
if they are present, may be treated writing I(-s)K(s,x,y)xé(s)/(s-£)2,
for s 4 £, and performing an integration by parts. Then if the Kernel
K has a good behaviour at infinite s, together with the vanishing®
of the resi@ues of K at positive integer s we are left.with the re
maining contributions from the residues at the poles. The diagonal
elements of the sclution of the "heat equation" (2) are thus express
ible as the following series:
- £
F(t,x,x) = - ) ¢ &¢ =

D=
') R.(x) , (5)
£=0 'a? s-.e E J

_Z t
j
where the sum over j=0,1,2,... excludes the terms such that (3-D)/m= 0,1,2,...,

and Rj is the residue of K(s,x,x) at s=(j-D)/m.
This is the result we would like to present here. In the :following

we illustrate our method with two simple examples:

THE LAPLACIAN IN A RIEMANNIAN METRIC

We consider the operator H =-V?+P, where v¥? is the Laplacian in

a Riemannian manifold, and P the projection on the constants. In
. D .

this case, K(s;x,x) has poles at the values s=j-3. j=0,1,2,... and

if the dimension D is even, these poles are in finite number®, lo-

P .
cated at s=j-%, j=0,1,...,%-1. The residue at s=-35 can be cal-

culated in geodesic coordinates using formula (4a), ana we can ob-

' (*)
tain the leading term to the expansion (5) in differential form

I(*)We remember the definition of Seeley's Rernel, as such that if H acts on. a
manifold M, then B f(x)= IM dy K(s,x,y) £(y).
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D
- -D
e 21 L1 [P Hav,

D-1 _ _
where |s | is the surface area of the unit sphere in tRD, and dv

the volume element in the manifold.

The Euclidean Laplacian

"Of course we do not know the exact Kernel in the general case,
but we indeed know it in at least a particular one, and it may be
jnstructive to see what happens in this case. Let us take H to be
the Euclidean Laplacian operator,H=az, in D dimensions. The Green
function of Hk, for real iﬁteger positive- k is given in ref. 7 .
Startiné from this we perform the extension from positive integers
k to complex s-values, obtaining the exact Kernel of H® as a mero-
morphic function of s, for any dimensionality D,

D
| o Tr Cis) (P+i0) 77" o
K (s,x,y) = (-1} — 7 Rels) < 5, (6)
451 (<8)n%

D
where P is the quadratic form - | (x,-y.}? = - (x-y) 2. We note that
i=1

the original restriction’ (-D/2)< k< 0 for integer k implies after
-performing the analytic continuation, the "jnitial" domain of ana-
lyticity (-D/2) <Re(s) <0 for K(s,x,vy). In this domain'thé inverse
Mellih transform (6) is unambigously defined. Then starting from an
integral along a line € parallel to the imaginary axis in the re-

gion (-D/2) <Re(s) <0 (figure 2} we sum up the contributions from

the poles, obtaining the result,

=

F(XIY:t) = (--l)D(4-rrt)2 exp [~ (x~y) 2/4t] .(7)

which is the well known solution to the "free heat equation®.
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In the case of the Laplacian L, the analytic structure in s of
the exact Kernel K, {s,x,y) of L® multiplied by T(-s) is .shown in
fiqure 2. It is rather different from that'corresponding to the Kernel ..0of the
power'HS'_of any psewdo-differential operator H, as obtained from ref . 6
(figure 1). This is simply due to the fact that R? does not belong

to the class of spaces treated by Seeley in his work.

CONCLUSION

The expansion (5) for the Heat Kernel.which is the result we would
like toqpresent here, is rather different from the de Witt's anzatz
currently_'used, It could give new results when applied to
more realistic examples. However, it is not our purpose in this short

‘note to make physical applications. These will be the subject of
a forthcoming paper. Qur wotk must be understood as a new method to
obtain an asymptotic expansion to the Heat Kernel, which could lead

to new results in physical situations.
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FIGURE CAPTIONS

Fig. 1 - Poles of I(-s)K(s,x,x) for a general pseudo-~differential
operator H; K is the approximate Kernel of H® as given by
ref. 5.

Fig. 2 -~ Poles of I'(-s)K(s,x,y) in the case where H is the Lapla-
cian. K(s,x,y) 1s the exact Kernel of H®.
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