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I. INTRODUCTION

Supersymmetric quantum mechanics(SUSY QM) has provided a possibility to solve an-

alytically some non-relativistic quantum systems. The simplest model in this framework was

proposed by Witten[1] in the early eights of the last Century. After this pioneered work, the

methods of SUSY QM have quickly developed and some applications arised. Some of these

applications include the problems related with the superpotential [2, 3], whose generalization

to the case of a matrix superpotential was done a long time ago. The SUSY QM has also

applications in the non-relativistic quantum context [4]-[7] and in the case involving two or

three fields in (1+1)-dimensional model. Others applications include some results connected

with self-adjoint extensions [8] and superpotential matrix [9], among others.

The classical configurations with domain wall solutions are bidimensional structures in

(3+1)-dimensions [10]-[14]. They are static, non-singular, classically stable Bogomol’nyi [15]

and Prasad-Sommerfield [16] (BPS) soliton (defect) configurations, with finite localized energy

associated with a real scalar field potential model.

The BPS states are classical configurations that satisfy first and second order differential

equations. In a context that stresses the connection with BPS-bound states[17, 18], domain

walls have been exploited.

Recently, the stability and metamorphosis of BPS states have been investigated [19], using

the framework of SUSY QM, with a detailed analysis of a 2-dimensional N = 2−Wess-Zumino

model in terms of two chiral superfields and composite dyons in N = 2-supersymmetric gauge

theories[20]. Also, the superpotential associated with the linear classical stability of the sta-

tic solutions for systems with one real scalar field in (1+1)-dimensions were discussed in the

literature [2, 3]. However, for solitons associated with three coupled scalar fields there are no

general rules for finding analytic solutions since the nonlinearity in the potential leads to an

increasing of the difficulties to solve the BPS and field equations.

This paper is organized as follows: In Section II, we discuss SUSY algebra with topological

charge. In Section III, we consider a SUSY model for two coupled scalar fields. In Section IV,

we present the BPS configurations for three coupled scalar fields. In Section V, we define the

BPS mass bound of the energy and discuss the stability of BPS states. The Schrödinger-like

equation and also the Hessian matrix are obtained. In Section VI, a matrix superpotential

with three-component wave functions is obtained. In Section VII, a specific potential model is
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investigated. Our conclusions are presented in Section VIII.

II. SUPERSYMMETRY ALGEBRA WITH TOPOLOGICAL CHARGE

Let us start with a discussion concerning central charges due to the fact that these quan-

tities characterize SUSY. To do this, consider the potential model with one single real scalar

field φ, whose Lagragian is given by

A =
∫
d2z

1

2

{
(∂µφ)2 +

[
ψ̄∂µγ

µψ − U2(φ) − U ′(φ)ψ̄ψ
]}

(1)

where U(φ) a well defined continuous function and the Majorana spinor, ψ(z), is given by

ψ(z) =

⎛
⎜⎝ ψ+(z)

ψ−(z)

⎞
⎟⎠ . (2)

In this case, the conserved SUSY current can be written as

Sµβ = (∂αφ) (γαγµ)βξ ψξ + U(φ)γµβξψξ. (3)

Therefore, the topological SUSY charge is given by

Qβ =
∫
S0
βdz, (4)

and, then, we can write

Q+ =
∫
dz [(∂0φ+ ∂1φ)ψ+ − U(φ)ψ−] , (5)

Q− =
∫
dz [(∂0φ− ∂1φ)ψ− + U(φ)ψ+] . (6)

In (1+1)-dimensions the SUSY algebra becomes

Q2
+ = P+ = P0 + P1, Q2

− = P− = P0 − P1 (7)

and

Q+Q− +Q−Q+ = 0 (8)

where

[ψ−(y), ψ−(x)]+ = δ(y − x), [ψ+(y), ψ+(x)]+ = δ(y − x),
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[ψ−(x), ψ+(x)]+ = 0.

In a field theory without soliton solutions these equations are satisfied. However, in a field

theory with soliton solutions these equations are not satisfied because the surface terms for a

soliton solution are different from zero, and as a consequence

Q+Q− +Q−Q+ =
∫ +∞

−∞
dz

∂

∂x
(2Γ(φ)), (9)

with the superpotential satisfying the relation

Γ′(φ) =
d

dφ
Γ = U(φ). (10)

Note that the right hand side of Eq. (9) is a scalar, which corresponds exactly to the central

charge. Thus, the Bogomol’nyi classical bound, for a single particle with mass m0, at rest,

which means that, P+ = P− = m0, becomes

m0 ≥
∣∣∣∣∣
∫ +∞

−∞
dz

∂

∂z
Γ(φ)

∣∣∣∣∣ = |Γ[Mj ] − Γ[Mi]| , (11)

where Mi and Mj represent the vacuum states. It is worth calling attention to the fact that

this inequality remains valid for soliton and antisoliton solutions at one-loop order.

III. SUSY FROM TWO COUPLED SCALAR FIELDS

Let us write the potential V (φj) in the following SUSY form, analogous to the case with

one single field only,

V (φj) =
1

2

(
U2

1 (φj) + U2
1 (φj)

)
, Ui(φj) = Ui(φ1, φ2). (12)

Thus, the N = 1 algebra can be discussed by investigating the SUSY Lagrangian density in

(1+1)-dimensions with the following form

L =
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2 +
1

2
ψ̄1

(
iγµ∂µ − ∂U1

∂φ1

)
ψ1

−1

2
U2

1 (φj) − 1

2
U2

2 (φj) +
1

2
ψ̄2

(
iγµ∂µ − ∂U2

∂φ2

)
ψ2

−1

2

∂U1

∂φ2
ψ̄1ψ2 − 1

2

∂U2

∂φ1
ψ̄2ψ1 (13)
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where ψ1 and ψ2 are Majorama spinors. In this framework, the SUSY current is given by

Sµ = (∂αφ1)γ
αγµψ1 + iU1(φj)γµψ1 + (∂βφ2)γ

βγµψ2 + iU2(φj)γ
µψ2, (14)

and therefore, the conserved supercharges can be expressed as

Q± =
1√
2

∫
dz {(∂0φ1 ± ∂1φ1)ψ± ∓ U1(φJ)ψ∓}

+
1√
2

∫
dz {(∂0φ2 ± ∂1φ2)ψ± ∓ U2(φj)ψ∓} . (15)

On the other hand, the superpotential W (φj) satisfy

∂W

∂φ1

= U1(φj),
∂W

∂φ2

= U2(φj) (16)

which leads to the value for a Bogomol’nyi minimum energy.

IV. CONFIGURATIOS WITH THREE COUPLED SCALAR FIELDS

In this section, we consider classical soliton solutions with three coupled real scalar fields,

φj, (j = 1, 2, 3), in (1+1)-dimensions included in bosonic sector and explain the equality of

topological and central charges, ψi = 0. The soliton solutions are static, nonsingular, classically

stable and finite localized energy solutions of the field equations. The Lagrangian density for

such nonlinear system in the natural system of units (c = h̄ = 1), in a (1+1)-dimensional

space-time, with Lorentz invariance, is written as

L (φj, ∂µφj) =
1

2

3∑
j=1

(∂µφj)
2 − V (φj), (17)

where ∂µ = ∂
∂zµ , zµ = (t, z) with µ = 0, 1, φj = φj(t, z) and ηµν = diag(+,−) is the metric

tensor. Here, the potential V (φj) = V (φ1, φ2, φ3) is a positive definite function of φj. The

general classical configurations obey the following equation

∂2

∂t2
φj − ∂2

∂z2
φj +

∂

∂φj
V = 0, (18)

which, for static soliton solutions, is equivalent to the following system of nonlinear second

order differential equations

φ′′
j =

∂

∂φj
V, (j = 1, 2, 3), (19)
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where prime denotes differentiation with respect to the space variable.

There is in literature, a trial orbit method for finding static solutions of Eq.(19), for certain

positive potentials. This constitutes what is termed the ”trial and error” technique [11]. This

method has many limitations, notably the need to choose trial orbits. Solutions had to be

obtained by ingenuity combination with trial and error rather than by systematic derivation

from the field equations. In this paper we will use the trial orbit method for the first order

differential equations associated with three real scalar fields, differently from what was done by

Rajaraman[11], who applied this method to the equation of motion.

Let us assume that the trial orbit is given by

G(φ1, φ2, φ3) = 0. (20)

Thus, we have
d

dz
G(φ1, φ2, φ3) =

3∑
i=1

∂G

∂φi
φ′
i = 0. (21)

Taking Eqs. (20) and (21) into account, we can get the constant coefficients in such trial

orbit by substitution of the vacuum and the BPS states into these equations.

V. LINEAR STABILITY

Since the potential V (φj) is positive, it can be written in the square form analogous to

the case in which we have just one single field[2], as

V (φj) = V (φ1, φ2, φ3) =
1

2

3∑
j=1

U2
j (φ1, φ2, φ3), Uj(φ1, φ2, φ3) ≡ ∂W

∂φj
, (22)

where W is the superpotential associated with the three fields.

Therefore, we can write the total energy given by

E =
∫ +∞

−∞
dz

1

2

[
(φ′

1)
2
+ (φ′

2)
2
+ (φ′

3)
2
+ 2V (φ, χ)

]
, (23)

in the BPS form, which consists of a sum of squares and surface terms, as

E =
∫ +∞

−∞
dz

(
1

2
(φ′

1 − U1)
2 +

1

2
(φ′

2 − U2)
2 +

1

2
(φ′

3 − U3)
2 +

∂

∂z
W

)
. (24)

Note that the first three terms are always positive and thus, the lower bound of the energy

is given by the fourth term, which means that

E ≥
∣∣∣∣∣
∫ +∞

−∞
dz

∂

∂z
W [φ1(z), φ2(z), φ3(z)]

∣∣∣∣∣ , (25)
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where the superpotential W = W [φ1(z), φ2(z), φ3(z)] will be discussed in what follows. The

BPS mass bound of the energy which results in a topological charge is given by

EBPS = Tij = |W [Mj] −W [Mi]|, (26)

where Mi and Mj represent the BPS vacuum states and are the extrema of W. In this case the

BPS states satisfy the following set of first order differential equations

φ′
j = Uj(φ1, φ2, φ3). (27)

Now, let us analyze the classical stability of the soliton solutions in this nonlinear system,

taking into consideration small perturbations around φj(z)(j = 1, 2, 3), namely, ηj . Thus, we

can write the classical solution of the system as

φj(t, z) = φj(z) + ηj(t, z), (j = 1, 2, 3). (28)

We can expand the fluctuations ηj(t, z) in terms of the normal modes, in the following way

ηj(t, z) =
∑
n

εj,nηj,n(z)e
iωj,nt, ω1,n = ω2,n = ω3,n = ωn, (29)

where εj,n are real constant coefficients. Thus, the stability equation for the fields turns into a

Schrödinger-like equation for a three-component eigenfunction Ψn,

HΨn = ω2
nΨn, n = 0, 1, 2, · · · , (30)

where

H =

⎛
⎜⎜⎜⎜⎝
− d2

dz2
+ ∂2

∂φ2
1
V ∂2

∂φ1∂φ2
V ∂2

∂φ1∂φ3
V

∂2

∂φ2∂φ1
V − d2

dz2
+ ∂2

∂φ2
2
V + ∂2

∂φ2∂φ3
V

∂2

∂φ3∂φ1
V ∂2

∂φ3∂φ2
V − d2

dz2
+ ∂2

∂φ2
3
V

⎞
⎟⎟⎟⎟⎠

|φj=φj(z)

≡ −I
d2

dz2
+ VF (z), (31)

with I being the (3x3)-dentity matrix and VF (z) the (3x3) fluctuation Hessian matrix. The

excited modes are, thus, given by

Ψn(z) =

⎛
⎜⎜⎜⎜⎝
η1,n(z)

η2,n(z)

η3,n(z)

⎞
⎟⎟⎟⎟⎠ . (32)

Since VF (z) is a symmetric matrix and H is Hermitian, thus the eigenvalues ω2
n of H are real.

The Schrödinger-like equation (30) and the Hessian matrix VF (z) in Eq. (31) are obtained

by taking a Taylor expansion of the potential V (φj) in terms of ηj(t, z) and retaining the first

order terms in the equations of motion.
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VI. POTENTIAL MODEL WITH THREE SCALAR FIELDS

As an application of this formalism, let us consider the following potential

V = V (φ1, φ2, φ3) =
1

2

(
λφ2

1 + αφ2
2 + αφ2

3 −
m2

λ

)2

+
1

2

(
−αφ1φ2 + β2φ

2
3 − β2

)2

+
1

2
φ2

3 (−αφ1 + 2β2φ2 + αβ1)
2 , (33)

where α > 0 and βi ≥ 0. This is a generalized potential for three scalar fields which was

constructed from the potential discussed recently [18], for two scalar fields. Note that the

symmetry Z2xZ2 is preserved only if φ2 = 0 or if β1 = β2 = 0.

The corresponding superpotential in a field theory model is given by

W (φj) =
m2

λ
φ1 − λ

3
φ3

1 − αφ1φ
2
2 −

α

2
φ1φ

2
3 + β2φ2φ

2
3 − β2φ2 +

1

2
αβ1φ

2
3. (34)

It is required that φj, satisfy the BPS state conditions, which are expressed by the following

equations

φ′
1 = −λφ2

1 − αφ2
2 +

m2

λ
− αφ2

3

φ′
2 = −2αφ1φ2 + β2φ

2
3 − β2

φ′
3 = φ3(−αφ1 + 2β2φ2 + αβ1) (35)

and the superpotential W (φj) satisfy ∂W
∂φj

= Uj(j = 1, 2, 3).

Note that the BPS states saturate the lower bound, so that EBPS = |Wij| is the central

charge of the realization of N = 1 SUSY in (1+1)-dimensions. Thus, the vacua are determined

by the extrema of the superpotential. Therefore, the condition

∂W

∂φj
= 0, j = 1, 2, 3 (36)

provides the vacuum states Mi = (φ1v, φ2v, φ3v) whose values must satisfy the following equa-

tions

−λφ2
1 − αφ2

2 +
m2

λ
− 1

2
αφ2

3 = 0

−2αφ1φ2 + β2φ
2
3 − β2 = 0

−αφ1 + 2β2φ2 + αβ1 = 0. (37)
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In order to obtain an explicit form of the vacuum states, let us consider the cases φ2v =

φ3v = 0 and φ1v = φ3v = 0, respectively. Thus, we obtain the four vacuum states, which are

given by

M1 =
(
−m
λ
, 0, 0

)

M2 =
(
m

λ
, 0, 0

)

M3 =

⎛
⎝0,−m

√
1

λα
, 0

⎞
⎠

M4 =

⎛
⎝0, m

√
1

λα
, 0

⎞
⎠ . (38)

It is easy to verify that these vacuum states are satisfied by the equations given in (37), for

β2 = 0 and αλ > 0. Now, let consider φ1v = β1 and φ2v = 0 in Eq.(37). In this case, we obtain

two additional vacuum states, which are

M5 =

⎛
⎝β1, 0,

√√√√ 2

α

(
m2

λ
− λβ2

1

)⎞
⎠

M6 =

⎛
⎝β1, 0,−

√√√√ 2

α

(
m2

λ
− λβ2

1

)⎞⎠ , (39)

for β2 = 0,−m
λ
< β1 <

m
λ

and α �= 0. Therefore, in this case the components of the tension are

T12 = T21 =
4

3

m3

λ2

T13 = T31 = T24 = T42 = T41 = T14 = T23 = T32 =
2

3

m3

λ2

T15 = T51 = T25 = T52 = T16 = T61 = T26 = T62 = |2
3

m3

λ2
− β1(

m2

λ
− λ

2
β2

1)|
T34 = T43 = 0 = T56 = T65

T35 = T53 = T45 = T54 = T36 = T63 = |λ
3
β3

1 −
m2

λ
β1|. (40)

From the results given by Eq.(40), we see that the potential presents two non-topological

sectors, which are non-BPS sectors, namely, T34 and T56, and twelve BPS topological sectors.

Now, let us specialize to the (3x3)-matrix superpotential, W, with β2 = 0, which is given by

W =

⎛
⎜⎜⎜⎜⎝

2λφ1 αφ2 αφ3

αφ2 αφ1 0

αφ3 0 αβ1 − αφ1

⎞
⎟⎟⎟⎟⎠

|φ=φ(z),χ=χ(z)

. (41)



CBPF-NF-024/07 9

This superpotential satisfies the Ricatti equation associated with the non-diagonal fluctuation

Hessian matrix, VF (z), which is written as

W2 + W′ = VF (z) =

⎛
⎜⎜⎜⎜⎝
VF11(z) VF12(z) VF13(z)

VF12(z) VF22(z) VF23(z)

VF13(z) VF23(z) VF33(z)

⎞
⎟⎟⎟⎟⎠

|φ=φ(z),χ=χ(z)

, (42)

where the elements of VF (z), denoted by VF ij(z),are given by the following relations

VF11 = 6λ2φ2
1 + α2(4φ2

2 + φ2
3) + 2λ

(
αφ2

2 +
1

2
αφ2

3 −
m2

λ

)

VF22 = 6α2φ2
2 + 2α(2α+ λ)φ2

1 + (α2 + 4β2
2)φ

2
3 − 2α

m2

λ

VF12 = V21 = 4λαφ1φ2 + 8α2φ1φ2 − 2α(2β2φ
2
3 − β2)

VF13 = V31 = 2α(λ+ α)φ1φ3 − 4αβ2φ2φ3 − 2α2β1φ3

VF33 =
3

2
α2φ2

3 + 6β2
2φ

2
3 − 2β2(2αφ1φ2 + β2) + (−αφ1 + 2β2φ2 + αβ1)

2

VF32 = VF23 = 2α2φ2φ3 + 4φ3β2(−αφ1 + 2β2φ
2
2 + αβ1). (43)

The Ricatti equation (42) only holds for the BPS states. According to Witten’s model[1, 4],

we have

A± = ±I
d

dz
+ W(z), Ψ

(n)

SUSY(z) =

⎛
⎜⎝ Ψ

(n)
− (z)

Ψ
(n)
+ (z)

⎞
⎟⎠

1x6

, (44)

where Ψ
(n)
± (z) are three-component eigenfunctions. In this case, the graded Lie algebra of the

SUSY QM for the BPS states may be realized as

HSUSY = [Q−, Q+]+ =

⎛
⎜⎝ A+A− 0

0 A−A+

⎞
⎟⎠

6x6

=

⎛
⎜⎝ H− 0

0 H+

⎞
⎟⎠ , (45)

[HSUSY , Q±]− = 0 = (Q−)2 = (Q+)2, (46)

where Q± are the (6x6) supercharges of the Witten model and is given by

Q− = σ− ⊗A−, Q+ = Q†
− =

⎛
⎜⎝ 0 A+

0 0

⎞
⎟⎠ = σ+ ⊗A+, (47)

with the intertwining operators, A±, given in terms of (3x3)-matrix superpotential, Eq.(44), and

σ± = 1
2
(σ1 ± iσ2), with σ1 and σ2 being Pauli matrices. Note that the bosonic sector of HSUSY
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is exactly the fluctuating operator given by H− = H = −I d2

dz2
+ VF (z), where V− = VF (z) is

the non-diagonal fluctuation Hessian matrix. The supersymmetric fluctuation partner operator

of H− is

H+ = A−A+ = A+A− + [A−,A+] = H− − W′(z), (48)

so that the SUSY partner is given by V+ = V− − W′(z).

The Ricatti equation given by (42) is reduced to a set of first-order coupled differential

equations. In this case, the superpotential is not necessarily defined as W (z) = 1

ψ
(0)
−

d
dz
ψ

(0)
− (z),

as in the case of a system described by a one-component wave function in the framework of

SUSY QM[1, 4].

Therefore, as the zero-mode is associated with a three-component eigenfunction, Ψ
(0)
− (z),

one may write the matrix superpotential in the form[5]

d

dz
Ψ

(0)
− (z) = WΨ

(0)
− (z), (49)

from which we find the following zero mode eigenfunction

Ψ
(0)
− =

⎛
⎜⎜⎜⎜⎝
U1(φi)

U2(φi)

U3(φi)

⎞
⎟⎟⎟⎟⎠ , (50)

where Ui (i = 1, 2, 3) are given by the BPS states (35).

Now, let us show that the ωn
2’ s are non-negative. To do this, consider the bilinear form of

H given by

H = A+A−, (51)

where

A− = (A+)† =

⎛
⎜⎜⎜⎜⎝
a−1 A−

12 A−
13

A−
21 a−2 A−

23

A−
31 A−

32 a−3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
a−1 0 0

0 a−2 0

0 0 a−3

⎞
⎟⎟⎟⎟⎠+ R(φi), (52)

with the obvious identification of the elements of R(φi) and the following expressions for the

operators that appear in the analysis of classical stability associated with a single field [2]

a−1 = − d

dz
+ 2λφ1,

a−2 = − d

dz
+ αφ1,

a−3 = − d

dz
+ αφ1 − αβ1, (53)
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where

A−
12 = αφ2 = A−

21, A−
13 = αφ3 = A−

31, A−
23 = 0 = A−

32.

Since a+
j = (a−j )† and hence A+ = (A−)†, we find

(A+A−)jj = − d2

dz2
+

∂2

∂φ2
j

V, (54)

which are exactly the diagonal elements of H. It is worth calling attention to the fact that the

linear stability is satisfied, which means that

ω2
n =< H >=< A+A− >= (A−Ψ̃n)

†(A−Ψ̃n) ≥ 0, (55)

and therefore the ωn
2’ s are non-negative.

VII. PROJECTIONS ON SCALAR FIELDS

Let us now consider a projection on the (φ1, φ2) plane in order to find an explicit form of

domain walls using the trial orbit method. In this case, if we choose φ3 = 0 in Eq. (35) and

the following trial orbit

G(φ1, φ2) = c1φ
2
1 + c2φ

2
2 + c3 = 0, (56)

we get from dG
dz

= ∂G
∂φ1

φ′
1 + ∂G

∂φ2
φ′

2 = 0 and using the BPS states (35), that c1 = 1, c2 = α
2(λ−α)

and c3 = −m2

λ2 . Thus, the resulting elliptical orbit is

φ2
1 +

α

(λ− 2α)
φ2

2 =
m2

λ2
(57)

or
λ2

m2
φ2

1 +
λ2

2m2
φ2

2 = 1, (58)

for α = λ
4
. These provide the following BPS solutions

φ1(z) =
m

λ
tanh(

m

2
z)

φ2(z) = ±
√

2
m

λ
sech(

m

2
z)

φ3 = 0, (59)

which connect the vacua (m
λ
, 0, 0) and (−m

λ
, 0, 0). Note that
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φ1 → ±m
λ
, for z → ±∞

φ2 → 0, for z → ±∞.

This result corresponds to the same one obtained recently [18] for BPS solutions when two

scalar fields are taken into account.

In this situation, the matrix superpotential in SUSY QM, W(z), becomes

W(z) = −m
2

⎛
⎜⎜⎜⎜⎝

4 tanh(m
2
z) ±√

2sech(m
2
z) 0

±√
2sech(m

2
z) tanh(m

2
z) 0

0 0 4

⎞
⎟⎟⎟⎟⎠ , (60)

where we have used the BPS states in terms of a projection on the (φ, χ) plane. This provides

the following bosonic zero-mode

d

dz
Ψ

(0)
− (z) = WΨ

(0)
− (z) ⇒ Ψ

(0)
− (z) = N

⎛
⎜⎜⎜⎜⎝

sech2(m
2
z)

±√
2 tanh(m

2
z)sech(m

2
z)

0

⎞
⎟⎟⎟⎟⎠ , (61)

for α = λ
4
, where N is the normalization constant. However, in Ref. [18] the relation between

λ and α is given by α = λ
2
.

VIII. CONCLUSIONS

In this paper, we considered the classical stability analysis for BPS domain walls associ-

ated with a potential model of three coupled real scalar fields, which obeys the non-ordinary

supersymmetry (SUSY). The approach of effective quantum mechanics provides a realization

of SUSY algebra in the three-domain wall sector of the non-relativistic formalism.

The components of the tension given in (40) were deduced from the charge central properties

in the model that present N = 1 SUSY. From a three-field specific potential model we found

two null tensions which correspond to non-topological sectors, and other topological sectors,

which depend on the manifold of vacuum states, Tij = |W [Mj ] −W [Mi]|, where Mi and Mj

represent the vacuum states.
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We have shown that the positive potentials with a square form lead to three-component

non-negative normal modes ωn
2 ≥ 0, analogous to the case with a single field [2], so that the

linear stability of the Schrödinger-like equations is ensured.

We have seen that domain walls associated with the three-field potentials have features

that are not present in the one-field models. The BPS states which connect the vacua exist

within the stability domain and minimize the energy. Thus, they provide a realization of the

supersymmetric quantum mechanical algebra for three-component eigenfunctions. From the

stability equation, we have found an expression for the matrix superpotential, satisfying the

Ricatti equation, within the context of unidimensional quantum mechanics.

We also deduced an (3x3)-matrix explicit form of the SUSY QM superpotential from a field-

theoretic superpotential model in (1+1)-dimensions. A general three-component zero-mode

eigenfunction is deduced, but its explicit form is found only for the projection on the (φ1, φ2)

plane, φ3 = 0, and for α = λ
4
, under which the original superpotential becomes harmonic.

Recently, in the context of a three-field potential model was considered an hexagonal network

of static classical configuration inside a topological soliton. Also, the 1/4 BPS equations of

domain wall junction were first obtained by Gibbons and Townsend [21] and independently by

Carrol et al. [22]. We point out that the superpotential model investigated here can be applied

to implement new string junctions by extended BPS domain walls[23].
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