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Conformal symmetry is taken as an attribute of theories of massless

�elds in manifolds with speci�c dimensions. This paper shows that this

is not an absolute truth; it is a consequence of the mathematical repre-

sentation used for the physical interactions. It introduces a new kind of

representation where the propagation of massive (invariant mass) and mass-

less interactions are uni�edly described by a single conformally symmetric

Green's function. Sources and �elds are treated at a same footing, symmet-

rically, as discrete �elds - the �elds in this new representation - �elds de�ned

with support on straight lines embedded in a (3+1)-Minkowski manifold.

The discrete �eld turns out to be a point in phase space. It is �nite every-

where. With a �nite number of degrees of freedom it does not share the well

known problems faced by the standard continuous formalism which can be

retrieved from the discrete one by an integration over a hypersurface. The

passage from discrete to continuous �elds illuminates the physical meaning

and origins of their properties and problems. The price for having massive

discrete �eld with conformal symmetry is of hiding its mass and timelike

velocity behind its non-constant proper-time.
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I. INTRODUCTION

A cone can be seen as a continuous set of straight lines (the cone generators) inter-

secting on a single point (the cone vertex). This simple heuristic picture is the basis for

introducing a new tool in �eld theory, the concept of a discrete �eld. Technically, it is a

�eld de�ned with support on a straight line embedded in a (3 + 1) Minkowski spacetime

instead of the usual lightcone support of the radiation �elds. More pictorially this is a

discretization of the standard continuous �eld when one sees it as a set of points and

deals with each one instead of with the entire set as a whole. It carries a continuous label

indicative of its lightcone-generator support so that an integration over this label repro-

duces the usual (massive and massless) continuous �elds and their complete formalisms.

A single Green's function, symmetric under conformal transformations, works as the prop-

agator of both massive and massless discrete �elds. This function, as well as the wave

equation and the Lagrangian, cannot be explicit functions of the mass parameter and

this would break their conformal symmetry. The masses reappear in the formalism (in

the Lagrangian, in the wave equation and in the Green's function) when the continuous

formalism is retrieved with an integration over the discrete �elds.

The point on introducing the discrete �eld is that it does not have the problems of

the continuous ones. In particular it is a �nite �eld, free of problems with in�nities,

causality violation and spurious degrees of freedom. It is just a point in phase space,

symmetric under conformal transformations, univocally determined by its source and

propagating with a well de�ned and everywhere conserved energy-momentum content.

So it can be treated as a legitimate point-like physical object with a �nite number of

degrees of freedom, and this explains why it does not share the same problems of the

continuous �eld with its in�nite number of degrees of freedom. It is a very peculiar object

with simultaneous characteristics of both a �eld and a particle; it may be a key step for

a better comprehension of quantum theory. These nice properties disappear after the
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integration that turns it into a continuous �eld.

Studying the transformation from the discrete to the continuous �eld one can have a

deeper understanding of the physical meaning and origin of many of their properties and

problems. Most of them comes from their hypercone support; their singularity, for exam-

ple, as will be shown, is just a re
ex of the hypercone vertex (Section V). This approach

came from a study of classical electromagnetic radiation on its limiting zero distance from

its sources [1] and its problems of in�nite energy and causality violation [2{7]. Its simpli-

�cation power is drastically exhibited in an application to the general theory of relativity

[8]: the highly non-linear �eld equations are reduced, without any approximation, to the

wave equation in a (3+1) Minkowski spacetime, and yet from their discrete solutions

one can, in principle, retrieve any continuous solution from the full equation [9,10]. The

simple change of support in the �eld de�nition has an immediate dynamical consequence

valid for all fundamental interactions [11]: in the source instantaneous rest frame the �eld

is always emitted along a direction orthogonal to its source acceleration (Section IV).

For the electromagnetic interaction, in particular, this constraint has a solid experimen-

tal con�rmation [3,4] that validates its implementation as a basic physical input. This,

however, will be discussed only in the companion paper III [12] as an application to the

electromagnetic �eld, but part of it has been anticipated in the Section VIII of [13].

As it describes a (1+1) dynamics endowed with a conformal symmetry and covariantly

embedded in a (3+1)-spacetime, this approach has a relevance to all bi-dimensional �eld

theory formalism [14]. A discrete �eld can be thought, in a string theory context [15],

as a string in its zero-length limit. The good results in (1+1) statistical mechanics and

�eld theory are extendable to (3+1) physics of discrete, massive and massless �elds.

This conformal symmetry of massive �elds, it is necessary to emphasize, is not in the

sense of introducing mass transformations [16,17]. We are referring to constant, invariant

masses. Moreover, this is not a Kaluza-Klein formalism [18] although use is made, just
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for convenience, of a �fth (but timelike) dimension and so they have many points of

contact. It is indeed closer, despite its distinct goals and results to the seminal work of

Dirac [19] and a more recent work done on this line [20], as both work with a projective

geometry introducing a manifold with a second time dimension. Distinct aspects here

are that there is no extra space-dimension and that the second time is a Lorentz scalar

with the �xed meaning of a proper time. The use of a scalar second time is very frequent

in the literature (see [21] and the references therein), with various quali�cations (like

the invariant, the universal, the historic time, etc), interpretations and goals. Here it

is the length of an interval associated to the propagation of a physical point-like object.

Although we are restricting the subject to a classical treatment the discrete �eld is de�ned

in such a way that it can be extended to a quantum context too. This allows it to be

relevant to the problems of �eld quantization; to quantum gravity, particularly. Discrete

gravity of general relativity is discussed in the companion paper II [9] as the only possible

interpretation of a discrete scalar �eld.

We will discuss here the properties of a discrete-�eld Green's function which do not

depend on the �eld tensorial nature. The unfeasibility of a strictly point-like physical

signal will make the transition to a quantum context (not discussed here) mandatory

but perhaps easier and more natural. Classical physics is then an idealized limit of the

quantum one where point signals can be produced and measured. But a proper discussion

on physical meanings will be done with respect to speci�c �elds on the companion papers

II (on a classical scalar �eld [9]) and III (on the vector �eld, or more properly, the

Maxwell �eld of classical electrodynamics [12]). This separation is convenient for a gradual

construction of a discrete �eld formalism and also for making explicit which properties

are and which are not consequences of the spinor or tensor character of the �eld. Our

strategy is of exhausting �rst the simplest idealized classical limit before making the

necessary transition to the quantum context.
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This paper is organized in the following way. In Section II a new geometrical way of

implementing relativistic causality in �eld theory is introduced. It extends the concept of

local causality to make possible a consistent and manifestly conformal covariant de�nition

of discrete �elds. Discrete �elds are properly de�ned in Section III. A more direct and

mathematically oriented approach (skipping this causality motivation) is presented in

Section II of [9]. Here we rather emphasize a more physical approach so that an intuitive

feeling can be developed. Its implications to the �eld dynamics and to the consistency

of classical electrodynamics are discussed in Section IV. In Section V we �nd and discuss

the properties of discrete-�eld solutions to the wave equations; how the propagation of

both massive and massless �elds in (3+1)-dimensions is uni�edly described by a same

Green's function, whose conformal symmetry is proved in Section VI. In Section VII we

discuss the relationship between the discrete and the continuous �eld formalisms, how the

continuous �eld and its wave equation are both retrieved from their respective discrete

ones. In Section VIII we clarify how a discrete �eld can be simultaneously massive and

conformally (chirally too, if fermionic, although not discussed here) symmetric. The paper

ends with some �nal comments and the conclusions in Section IX.

II. LOCAL AND EXTENDED CAUSALITY

We recur to causality as a physical motivation for de�ning the discrete �eld in a consistent

and manifestly covariant way. Any given pair of events on Minkowski spacetime de�nes a

four-vector �x: If a �x is connected to the propagation of a free physical object (a signal,

a particle, a �eld, etc) it is constrained to satisfy

�� 2 = ��x2; (1)

where � is a real-valued parameter. We use a metric � = diag(1; 1; 1;�1). �� is the

invariant length or norm of �x. So, the constraint (1) just expresses that �x cannot

be spacelike. A physical object does not propagate over a spacelike �x: This is local
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causality. Geometrically it is the de�nition of a three-dimensional double hypercone; �x

is the four-vector separation between a generic event x� � (~x; t) and the hypercone vertex.

See the Figure 1.

x

t

→
P

θ

FIG. 1. The relation ��2 = ��x2;

a causality constraint, is seen as a re-

striction of access to regions of space-

time. It de�nes a three-dimension hyper-

cone which is the spacetime available to a

free physical object at the hypercone ver-

tex. The object is constrained to be on

the hypercone.

Changes of proper time are de�ned through intervals associated to the propagation of

a free �eld in Minkowski spacetime and not through their association to trajectories as

it is usually done. This subtlety avoids a restriction to classical contexts and allows its

application to quantum physics too.

The validity of Eq. (1) is conditioned to its application to a free �eld but this is not

such a great limitation as it seems to be at a �rst look if we assume that at a fundamental

level all interactions are discrete. It describes the free evolution of an interacting �eld

between any two consecutive interaction events.

Local causality is usually implemented in special relativity through the use of light-

cones by requiring that massive and massless objects remain, respectively inside and on a

lightcone. Our way of implementing the same relativistic causality is of using hypercones

(not necessarily lightcones) even for massive physical objects (the expression physical ob-

ject is used here for not distinguishing between particles and �elds) as a constraint on

their propagation. In spacetime a �eld is de�ned on hypersurfaces: hyperplanes for new-

tonian �elds, for example, and hypercones for relativistic �elds. Think of a wave front,

for example, and think of it as a continuous set of moving points, then each point of it is
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on a world line tangent to a generator of its instantaneous hypercone.

This conic hypersurface, in �eld theory, is the support for the propagation of a free

�eld: the �eld cannot be inside nor outside but only on the hypercone. The hypercone-

aperture angle � is given by

tan � =
j�~xj
j�tj ; c = 1;

or equivalently, by

�� 2 = (�t)2(1� tan2 �): (2)

The speed of propagation determines the hypercone aperture (rapidity). A change of the

supporting hypercone corresponds to a change of speed of propagation and is an indication

of interaction. Special relativity restricts � to the range 0 � � � �
4 ; which corresponds to

a restriction on �� : 0 � j�� j � j�tj: The lightcone (� = �
4 ; or j�� j = 0) and the t-axis

in the object rest-frame (� = 0; or j�� j = j�tj) are the extremal cases: the lightcone for

objects with the speed of light, and a parallel line to the time-axis for each point of an

static �eld or of a massive object on its rest frame.

For de�ning a discrete �eld we will need a more restrictive constraint:

�� + f:�x = 0; for �x 6= 0; (3)

where f is de�ned by

f� :=
�x�

��
; (4)

a constant four-vector tangent to the hypercone; it is timelike (f2 = �1) if �� 6= 0;

or a limiting lightike four-vector (f2 = 0) if �� = 0 and �x 6= 0. Observe that f� is

well de�ned, as a tangent vector to the lightcone, for �� = 0 and �x 6= 0, but not for

�� = �x = 0, as a tangent vector is not well de�ned at the cone vertex. This is connected

to the consistency of classical electrodynamics in the zero-distance limit discussed in [11].
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The Eq. (3) de�nes a hyperplane tangent to the hypercone (1). Together, Eqs. (1)

and (3) de�ne a hypercone generator f , tangent to f�. A �xed four-vector f� at a point

labels a �bre in the spacetime, a straight line tangent to f�, the f -generator of the local

hypercone (1).

On the other hand the Eq. (3) also implies that

f� = � @�

@x�
; (5)

with f� = ���f
� and � seen then as a known function of x, given by the constraint (1).

For �� = 0, that is, for a massless �eld, f� is the four-vector normal to the tangent

hyperplane (3).

Extended causality is the imposition of both Eqs. (1) and (3) to the propagation of a

physical object. Geometrically, it is a requirement that the point object remains on the

hypercone generator f . It is, of course, much more constraining than local causality, the

imposition of just the Eq. (1). This corresponds to a change in our perception of the

spacetime causal structure; instead of seeing it as a local foliation of hypercones (1) we see

it as congruences of lines (Eqs. (1) and (3) together); instead of dealing with continuous

and extended objects, like a (standard) �eld for example, we treat them as sets of points

(discrete �elds).

III. DISCRETE FIELDS

The imposition of extended causality corresponds then to a discretization of a physical

system and should be distinguished from the quantization process, if for nothing else

because it can be applied to both classical and quantum systems. On the other hand,

there exists a relation of complementarity between local and extended causality, in the

same sense of the one existing between geometric and wave optics as descriptions of light

in terms of wave fronts and rays, respectively. Extended causality is a natural description

for a classical particle [11] but its application to a classical �eld makes it, the discrete
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classical �eld, the closest thing to the classical counterpart of the quantum of its respective

quantum �eld. In this paper however, we have no intention of pre-assigning any physical

interpretation to a discrete �eld. Let us work it, for now, as just a convenient tool.

Let us turn now to the question of how to de�ne, in a consistent and manifestly covariant

way, a �eld with support on a generic �bre f , a (1 + 1)-manifold embedded on a (3 + 1)-

Minkowski spacetime. Every physical �eld is tied through the proper time to its source,

or better, to its creation event. There is nothing new or special on this: a massless �eld,

for example, propagates on the lightcone and so its proper time does not change; its clock

keeps marking the time of its creation, the instantaneous proper-time of its source at the

event of its emission. This is one of the extreme situations depicted in the paragraph right

after Eq. (2); the other one is that of a static �eld for which �� = �t at each point. We

use this as a way of implementing causality [8,23,24]. With � being a known function of

x, a solution of Eq. (1),

� = �0 �
q
�(�x)2; (6)

to write �(x) for a �eld is the same (or almost) as writing �(x; � (x)): The subtlety of

including � (x) is of encoding in the very �eld the causal constraint (1) on its propagation.

Then to say, for example, that �� = 0 for a �eld, is just an implicit way of requiring that

it propagates on a lightcone. In order to implement local causality for a given �eld �(x),

therefore, we just have to insert in it an explicit dependence on � (x). For example, the

replacement

�(x) =) �(x� z; � (x)� � (z))
���
�(x)=�(z)

(7)

describes a radiation �eld on the lightcone propagating from an event z to an event x.

We will, in general, write just

�(x) =) �(x; � )
���
�=0

; (8)
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for short. A static �eld, following this line of thought, is just a particular case where

�(x) =) �(x; � )
���
�=t

which is, naturally, a frame dependent expression, in contradistinction to the previous

one.

The four-vector potential of radiation �elds in classical electrodynamics and, in par-

ticular, of the Lienard-Wiechert solution [2{5] have support on the lightcone and they are

well known examples of how a propagating �eld depends on the proper time of its source.

This dependence, let us repeat, is just a form of causality implementation.

Whereas the implementation of local causality requires a �eld de�ned with support

on hypercones, for extended causality it is required a �eld with support on a line f :

�(x) =) �(x� z; � (x)� � (z))
��� ��+f:�x=0

��2+�x2=0

(9)

Let �f represent such a �eld

�f (x� z; �x � �z) = �(x� z; �x � �z)
��� ��+f:�x=0

��2+�x2=0

:= �(x; � )
���
f
;

with
���
f
being a short notation for the double constraint

��� �+f:x=0
�2+x2=0

: Again, for a lighter

notation, sometimes we just omit z and �z. It is called a discrete �eld, for reasons to

become clear later.

It would not make any sense de�ning such a �eld if this restriction (to a line) on its

support could not be sustained during its time evolution governed by the standard wave

equation in (3 + 1)-dimensions. It is remarkable, as we will see in Section V, that this

makes a consistent �eld de�nition.

The derivatives of �f (x; � ); allowed or induced by the constraint (3), are the directional

derivatives along f; which with the use of Eq. (5) we write as

(
@

@x�
+

@�

@x�
@

@�
)�f =

� @

@x�
� f�

@

@�

�
�f := r��f ; (10)
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With r replacing @ for taking care of the constraint (3), � can be treated as a �fth

independent coordinate, timelike and Lorentz invariant:

� (x)) x5 = � (11)

@� ) r� (12)

The constraint (1) is used only afterwards then. We adopt this geometrical approach

which corresponds to embedding the physical spacetime in a (3+2)-manifold, as discussed

in [8,24] and by replacing the Minkowski geometry by a projective one. The f in the

de�nition of r is speci�ed by the constraints on the �eld. Let us illustrate:

r�

�
Af(x; � ) +Bf 0(x; � )

�
= (@� � f�@� )Af(x; � ) + (@� � f 0

�@� )Bf 0(x; � ): (13)

Although not widely recognized, the radiation electromagnetic �eld of classical elec-

trodynamics, more speci�cally the Maxwell stress tensor, is a �eld explicitly de�ned [2{6]

with the two constraints (1) and (3). So, geometrically it should be regarded as a �eld

de�ned with support on a line f , but classical electrodynamics, in this respect, is not

consistent because the Maxwell tensor is the curl of a vector �eld (the vector potential)

de�ned with support on the lightcone. This is so because the signi�cance of the constraint

(3) has not being fully recognized yet [11]. This becomes clear in the wave equation for

the Maxwell tensor as it does not encompass the constraint (3) as it should. This paper

tries to develop a consistent (in this approach) geometrical treatment for a generic �eld

of unspeci�ed tensoriality/spinoriality.

Let us consider a generic �eld equation represented by

O(x; �; @; s)�(x) = J(x); (14)

where O(x; �; @; s) is a linear di�erential operator, � the Minkowski metric tensor, and s

may represent other parameters or degrees of freedom like mass, spin, etc. The tensorial

character of the �eld �(x) and of its source density J(x) will not be �xed in this paper.
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If �(x) is a gauge �eld some gauge-�xing constraint must of course be considered, but

here we will be concerned with solutions from the wave equation only. This usually would

imply on a larger solution space but, as we will see, for a discrete �eld this is not the case.

Eqs. (9),(11) and (12) imply that for a discrete �eld, the Eq. (14) becomes

O(x; �; g;r; s)�f(x; � ) = J(x; � ); (15)

which does not represent a new postulated equation; it is the same operator of Eq. (14),

in a new notation in order to take explicit advantage of the �eld constraint (3), applied on

a discrete �eld. g is the metric tensor induced [24] by the constraint (3) in the embedded

(3+1) manifold:

g�� = ��� + f2f�f� ; (16)

and its inverse, g��g�� = ��� ,

g�� = ��� � f2f�f�

1 + (f2)2
; (17)

with f2 = �1 for a massive �eld, and f2 = 0 for a massless one (for which then g�� = ���).

The Eq. (15) is solved, using a Green's function, by

�f(x; �x) =
Z
d4yd�y Gf (x� y; �x � �y) J(y; �y); (18)

where the sub-indices in � specify the respective events x and y, and Gf (x� y; �x� �y) is

a solution of

O(x; �; g;r; s)Gf(x� y; �x � �y) = �4(x� y)�(�x � �y): (19)

IV. CAUSALITY AND DYNAMICS

As already mentioned, classical electrodynamics uses explicitly both constraints (1)

and (3) but in a way that is not entirely consistent for not recognizing the second constraint
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as being distinct from the �rst one, that they carry distinct informations. In general Eqs.

(1) and (3) are just two kinematical constraints on a �eld propagation but the second

one acquires a dynamical content when �x describes the spacetime separation between

two physical objects like a source and its �eld, as discussed in [11]. �x = x � z(� )

for a �eld emitted by a point charge at z(� ) on its worldline, which is taken, using Eq.

(1), as parameterized by its � . In the limit of x tending to z(� ) both �� and �x go

to zero. Nothing changes with respect to the constraint (1) but there is a crux change

with respect to the constraint (3) because f is not well de�ned in this limit. It requires

a more careful analysis than the one usually found in the literature, which just does not

consider the fact that at the vertex of a cone its tangent vector is not de�ned. This is the

origin of inconsistencies of classical electrodynamics which are usually glossed over with

the assumption that at a such limit quantum electrodynamics should take over. A more

appropriate treatment [1] explains out the inconsistency and implies on a �nite �eld with

a �nite energy content. There is no in�nity.

For a massless �eld the restriction (3) is reduced to f:(x� z(� )) = 0 and this implies

that the event x, where the �eld is being observed, and the charge retarded position z(� )

must belong to a same null line f . It is not necessary to explicitly distinguish a generic �

from a � at a retarded position, as the situations considered in this paper, from now on,

will always refer to the last one.

More information can be extracted from this constraint as @�f:(x� z) = 0 implies on

f:u = �1; (20)

where u = (~u; u4) =
dz
d�

is the source four-velocity. This relation may be seen as a covariant

normalization of the time component of f to 1 in the charge rest-frame at its retarded

time,

f4
���
~u=0

= j~f j
���
~u=0

= 1: (21)
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From Eq. (20), with a� = du�

d�
, we get

a:f = 0; (22)

a constraint between the direction f along which the signal is emitted (absorbed) and the

instantaneous change in the charge state of motion at the retarded (advanced) time. It

implies that

a4 =
~a: ~f

f4
; (23)

whereas a:u � 0 leads to a4 =
~a:~u
u4
; and so we have that in the charge instantaneous rest

frame at the emission (absorption) time ~a and ~f are orthogonal vectors,

~a: ~f
���
~u=0

= 0: (24)

The constraint (22) has been obtained here on very generic grounds of causality, without

reference to any speci�c interaction, which makes of it a universal relation, valid for all

kinds of �elds and sources. It is remarkable that this same behaviour is predicted to hold

for all fundamental (strong, weak, electromagnetic and gravitational) interactions. For

the electromagnetic �eld this is an old well known and experimentally con�rmed fact that

takes, in the standard formalism of continuous �elds, the whole apparatus of Maxwell's

theory to be demonstrated [22]. Its experimental con�rmation is a direct validation of

extended causality. This is discussed, in terms of discrete �elds, in [13,12].

V. THE DISCRETE GREEN'S FUNCTION.

In this section we will be interested on the discrete version of the Green's function for

the wave equation

(���@�@� �m2)�(x) = J(x); (25)
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associated to the Klein-Gordon operator for a massive �eld on a Minkowski manifold and

that is solved by the continuous Green's function G(x), given in the Eq. (72) below.

Applied to a discrete �eld, the Eq. (25) should become

(g��r�r� �m2)�f (x; � ) = J(x; � ); (26)

as det g = const: But this equation does not have a consistent solution [27] unless f2 = 0

and the mass term be dropped from it so that it is reduced to

���r�r��f (x; � ) = J(x; � ): (27)

Otherwise, it would produce [27] a non-propagating discrete �eld which would be a viola-

tion of the Lorentz symmetry, so that no physical object can be described by the Eq. (26).

But interestingly, this does not mean that Eq. (27) is applicable only to massless �elds;

as we will see, it applies to both massive and massless �elds. The mass term and the

timelike velocity are hidden behind a non-constant � for not spoiling the �eld conformal

symmetry.

The Eq. (27) is solved [27] to give:

Gf (x; � ) =
1

2
ab"�(a� )�(b �f:x)�(� + f:x); ~xT = 0; (28)

or, equivalently by

Gf (x; � ) =
1

2
ab"�(a� )�(bt)�(� + f:x); ~xT = 0; (29)

where a; b; " = �1; as the signs of � , t and f4, respectively. They are restricted by ab" = 1.

�(x) is the Heaviside function, �(x � 0) = 1 and �(x < 0) = 0: For f� = (~f ; f4), �f is

de�ned by �f� = (�~f ; f4): The subscript T stands for transversal with respect to ~f :

~f :~xT = 0:

The meaning of the append ~xT = 0 is that the Gf -de�ning Eq. (19) is e�ectively

replaced by



CBPF-NF-024/01 15

���r�r�Gf (x; � ) = �(xL)�(t)�(� ); ~xT = 0; (30)

where the subscript L stands for longitudinal with respect to ~f :

xL =
~f :~x

j~f j ;

so that Z
~xT=0

d5x���r�r�Gf (x; � ) = 1:

The append ~xT = 0 restricts the integration domain so that Eq. (18) is equivalent to

�f (x; �x) =
Z
dyLdtyd�y Gf (x� y; �x � �y) J(y; �y); ~xT = ~yT: (31)

Under the integration sign this append can, of course, be replaced by a factor �2(~xT�~yT)

but never on equations (28) and (29).

The most obvious di�erence between Gf (x; � ) and G(x), and consequently, between

�f and �, is the absence of singularity. The discrete �eld propagates without changing

its amplitude. Such a so great di�erence between two �elds generated by a same source is

closely associated to the distinct topologies of their respective supports. A cone is not a

complete manifold in contradistinction to any of its generators. Conceptually important is

that the singularity r = 0 (in G(x) of Eq. (72) below), which gives origin to an in�nite self

energy for the continuous �eld, is not, as will be clear, a consequence of self interactions

but just from its mathematical representation.

a) (1 + 1) e�ective dynamics

Before going to discuss the meaning of the solution (29) let us explore the fact that it

does not depend on ~xT.

@

@xT
Gf (x; � ) = 0: (32)

The interaction propagated by Gf is blind to ~xT. Anything at the transversal dimensions

is not a�ected by and do not contribute to the interaction described byGf (x; � ). Although
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we are working with a �eld formalism de�ned on a (3+1)-spacetime, with respect to its

dynamics the spacetime is e�ectively reduced to a (1+1)-spacetime, without any breaking

of the explicit Lorentz covariance.

Distinct uncharged �elds emitted by neighbouring point-sources do not see each other;

each one of them can be treated as an independent single entity. This suggests the

interpretation of �f as a physical point object since its propagation does not depend

on ~xT, or in other words, on anything outside f . This interpretation is reinforced in

papers II and III where the energy-momentum conservation of discrete �elds with speci�c

tensoriality is shown.

Eq. (32) has a further consequence that a discrete �eld has a necessarily discrete point

source: the origin of the signal represented by Gf (x; � ) must be a point at the intersection

(in the past) of the straight line f with J(x; � ), and this must be an isolated event. In

an extended source this event would have neighbouring events that could not be just

ignored because they would induce a continuity not consistent with Eq. (32). This is

then a formalism of discrete �elds, discrete sources and discrete interactions; apparent

continuity being just a matter of scale. Discrete here means pointlike, structureless.

There is a complete symmetry between �elds and sources. They are all discrete and

obeying to the same causality constraints (1) and (3); they are all discrete �elds. This

is a relevant symmetry because what would be an apparent weakness, the restriction to

discrete sources, turns into an unifying principle valid for all fundamental �elds (fermions

and bosons, in the words of a quantum context). For the sake of simplicity, as we focus

rather on �f as a discrete �eld, we will omit the discrete-�eld character of J(x; � ) [11]

treating it just as a standard pointlike object. So, from now on, although not explicitly

said, the discrete-�eld properties to be discussed are shared also by the �eld sources as

they are discrete �elds too.

In this formalism where � is treated as a �fth independent coordinate the point source-
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density of a discrete �eld must carry an additional constraint expressing the causal rela-

tionship between two events, say, x and z:

J(x; �x = �z) = j(� )�(4)(x� z(� )) = j(� )�3(~x� ~z(� ))�(tx � tz(� )): (33)

That �x = �z on the LHS is a consequence of the Eq. (1) which is used only afterwards,

so that Eq. (33) may also be written as J(x; � ) � j(� )�3(x)�(� ): The standard current

J(x) is then related to J(x; � ) by

J(x) =
Z
d�J(x; � ): (34)

j(� ) de�nes the tensorial or spinorial character of both J(x; � ) and J(x).

Sometimes it may be convenient to replace the wave equation (27) by

���r�r��f (x� z; �x � �z) = J[f ](x� z; �x � �z); ~xT = ~zT; (35)

where

J[f ](x� z; �x � �z) = j(� )�(�x � �z)�(tx � tz)�(xL � zL); ; ~xT = ~zT (36)

is the source density stripped of its explicit ~xT-dependence, which is, by the way, irrelevant

because Eq. (1) implies on

(tx � tz)
2 = (xL � zL)

2 + (xT1 � zT1)
2 + (xT2 � zT2)

2 + (�x � �z)
2; (37)

and the deltas in the de�nition (36) imply that

�(�x � �z)�(tx � tz)�(xL � zL) =)
8><
>:
xT1 = zT1

xT2 = zT2 ;

(38)

where we have used the notation

x := (~x; tx) = (xL; xT1 ; xT2; tx): (39)

More generally, t = 0 in t2 = � 2+x2 de�nes the hypercone vertex and so it implies on

� = x = 0: The following e�ective identities are useful:
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�(t)�(� )
���
�2+x2=0

= �(t)�(xi)
���
�2+x2=0

= �(� )�(xi)
���
�2+x2=0

(40)

where xi stands for any space component of ~x. In their demonstrations there is a subtle

passage

�(
p
�x2 ) = �(

p
x2 )

which is, of course, valid only for x = 0, that is, at the cone vertex.

So Eqs. (18) and (31) are equivalent to

�f (x; �x) =
Z
dyLdtyd�yGf (x� y; �x � �y)J[f ](y; �y); (41)

where �f (x; �x) and J[f ](y; �y) respectively means �f (xL; ~xT = ~zT; tx; �x = �z) and J[f ](y�
z; �y = �z): From now on,

���
f
will be an indication of

��� ~xT=0

�+f:x=0

�2+x2=0

:

In contraposition to J , J[f ] is just a formal de�nition; it is explicitly dependent on f and

should not be confused with the support of J which is not being shown in j(� ). If we use

Eqs. (33) and (29) in Eq. (18) we obtain

�f (x; � ) =
1

2
�(a� )�(bt)j(� )

����
f

; (42)

and then we can see that the �eld �f is completely determined by its (discrete) source

current j(x). This exposes again the �eld-source symmetry in a discrete �eld approach.

A discrete �eld is equivalent to a unidimensional current so that charge conservation

(r:J = 0) and the Lorentz gauge condition of a gauge �eld (r:A = 0) are both inherent

properties of a discrete �eld, a consequence of Eq. (22). This is being discussed in paper

III . Hereon we will focus on the properties, physical meaning and consequences of its Gf

as they are universal, valid for all fundamental interactions.

b) Massive and massless �elds
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If �� = 0 then �x is a four vector collinear to f , and Gf (x; � ) describes a massless point

signal propagating along the null direction f . If �� 6= 0 one has a massive point signal

propagating along a �x not collinear to f . There is then a timelike four vector v such

that

�� + v:�x = 0; or v =
�x

��
; (43)

with v:f = v2 = �1 which is compatible with Eq. (3) because

(f � v):�x := n:�x = 0 (44)

de�nes

n = f � v (45)

with

n:v = 0

so that

n:f = 1; n2 = 1: (46)

n is a spacelike four vector that in the rest-frame of the signal (the one where �x = (�t;~0))

it is given by n = (0; ~n) with j~nj = 1. The implication of Eq. (44) is that for �� 6= 0, Eq.

(29) describes the propagation of a massive signal on a timelike �x through its projection

on a null direction f : v:�x = f:�x:

The point is that the constraints (1) and (3) are valid for both cases, �� = 0 and

�� 6= 0: There is nothing in Eq. (29) that �xes �� or makes any reference to v or

to any mass. It is indeed remarkable that it describes the propagation of both massive

and massless �elds and not only of the massless one as one could expect from the Eq.

(26). A Lagrangian for a massive discrete �eld cannot have an explicit mass term nor any

reference to its velocity v, and must be written in terms of its projection on a lightcone,
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that is, in terms of f and not of v. It describes a discrete massive �eld as it were massless;

a non-constant proper-time is its telltale. So it is not surprising that it be invariant under

conformal transformations, as it carries no �xed scale. This is like what happens in gauge

�eld theories where the Lagrangian cannot have an explicit mass term for preserving the

gauge symmetry; here the preserved symmetry is the conformal one.

As there is nothing in Eq. (29) that assures that �� = 0; this condition for a massless

�eld must be �xed by an afterwards explicit speci�cation

�f (x� z; �x = �z) = �f (x� z; �x � �z)
���
�x=�z

=
Z
d�z�(�x � �z)�f (x� z; �x � �z): (47)

c) Creation and annihilation processes

�f is just a point on a straight line propagating with the four-velocity f , if massless,

or v if massive. It is the reduction of the �eld support from a lightcone to a lightcone

generator that makes the discrete �eld to be just a point in the phase space. f and �f

are two opposing generators of a same lightcone; they are associated, respectively, to the

b = +1 and to the b = �1 solutions and, therefore, to the processes of creation and

annihilation of a discrete �eld. See the Figure 2.

x

τ

τ

ff

ret

τ
adv

z (   )

FIG. 2. Creation and annihilation of

particles: The discrete solutions from the

wave equation as creation and annihila-

tion of particle-like �elds. There are two

discrete �elds, represented by arrows, at

the point x: one, created at �ret, has prop-

agated to x on the lightcone generator f;

the other one propagating on the lightcone

generator �f from x towards the charge

world line where it will be annihilated at

�adv . The charge on the world line z(�)

is a source for the �rst and a sink for the

second.
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The arrows in the Figure 2 represent the propagating �elds. Observe that there is no

backwards propagation in time implying that there is no advanced solution; the creation

and the annihilation solutions are both retarded. For b = +1 or t > 0, Gf (x; � ) describes

a point signal emitted by the charge at �ret; and that has propagated to x along the �bre

f of the future lightcone of z(�ret); for b = �1 or t < 0; Gf (x; � ) describes a point signal

that is propagating along the �bre �f of the future lightcone of x towards the point z(�adv)

where it will be absorbed (annihilated) by the charge. The only di�erence between the

(b = +1) and the (b = �1) solutions is that J is the source for the �rst and the sink for the

second. Nothing else. Observe the di�erences from the interpretation of the corresponding

standard solutions. There is no advanced, causality violating solution here. These two

solutions correspond to creation and annihilation of discrete �elds, exactly like well known

processes of creation and annihilation of particles in relativistic quantum �eld theory. The

di�culty with a continuous classical �eld is that one has point sources that creates it but

no point sink that annihilates it. It cannot be symmetric as it would require a, possibly

in�nite, continuous distribution of absorbers.

c) Checking the discrete solution

Since we left the derivation of Eq. (29) for the reference [27] it may be instructive to

verify that it is indeed a solution of Eq. (30). As

r(� + f:x) � 0; (48)

���r�r��(b� ) = r�(�bf��(b� )) = �f2�0(� ) = o; (49)

and

���r�r��(�b �f:x) = b �f�r��(�b �f:x) = f2�0( �f:x) = o; (50)

because of Eq. (10) and f2 = �f2 = 0, we �nd that

���r�r�Gf (x) = �(� + f:x)r�(b� ):r�(�b�f:x) = �f: �f�(� )�( �f:x)�(� + f:x) =
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= �(f24 + j~f j2)�(� )�(f4t� j~f jxL)�(f4t+ j~f jxL) = 2f24 �(� )�(2f4t)�(j~f jxL) = �(� )�(t)�(xL):

VI. CONFORMAL SYMMETRY

We show now that the causality constraints (1) and (3) imply on Gf (�x;�� ) invariant

under conformal transformations. First we ask which transformations

�x� ! �x� + ��
T
(�x) (51)

of four-vectors �x on a Minkowski manifold leave invariant the constraint (1) as it induces

a transformation

���T(�� ) + �x:�T(�x) = 0

so that, according to Eq. (4)

�T(�� ) =

8><
>:
�v���T(�x) if �� 6= 0,

�f���T(�x) if �� = 0:

(52)

For �� = 0 the answer is already known [25]. Let us �nd the symmetry of �� + f:�x

with f being a null vector irrespective of wether �� is null or not. For �� = 0 f and

�x are parallel vectors, �x2 = 0; and the symmetry of f:�x is the same of �x2, i.e. the

conformal one. For �� 6= 0 we have from Eq. (52)

�T(�� + f:�x) = (f � v)��
�
T
(�x) + �x��

�
T
(f): (53)

Then using Eq. (45) and (44) we get

�T(�� + f:�x) = �n���T(�x) + �x��
�
T
(v � n) =

= ��T(n:�x) + �x��
�
T
(v) = �x��

�
T
(v); (54)

as n:�x = n:v�� = 0 by construction. Then

�T(�� + f:�x) = �x��
�
T
(
�x

��
) =

�x�

��
[��
T
(�x)� �x�

��
�T(�� )] = (1 +

�x2

�� 2
)
�x�

��
��
T
(�x) � 0:

(55)
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Therefore, the constraints (1) and (3) have the same symmetries. We can see from Eq.

(53) that �� +v:�x has also these same symmetries but it would not produce1 a solution

to the wave equation [27].

Considering the manifestly explicit Lorentz covariance of Eq. (29) it is enough to

verify the invariance under8><
>:
�
�
D(�x) = �x�;

��C�
(�x) = 2�x��x� � ����x��x�:

(56)

Let us do it explicitly for the second one (the other one is just as easy).

�C� [Gf (�x;�� )] = �(�� + f:�x)[�(�t)�C�(�(�� )) + �(�� )�C� (�(�t))] = 0 (57)

because

�C� (�(�� )) = ��(�� )f��
�
C�
(�x) = ��(�� )(2f:�x�x� + f��� 2) = 2�x����(�� ) = 0;

(58)

and

�C� (�(�t)) = �(�t)�C�(�t) = �(�t)(2�t�x� � �4��� 2) = ��4��(�t)�� 2 = 0; (59)

where the last passage is a consequence of Eq. (1) or, explicitly, �t2 = �� 2+ r2; r = j~xj,
so that �t = 0 implies necessarily on �� 2 = 0: The two solutions, with either f or �f , in

Eq. (28) correspond to the right and left movers of the (1+1) -physics [26] and they have

the same symmetry.

This conformal invariance is not much of a surprise after seing the last section but

it is nonetheless interesting that massive and massless �elds in a (3+1) space-time have,

equally, a conformal symmetry. Its price is of keeping hidden all masses and timelike

velocities.

1A lightike f in Eq. (27) produces a propagator with one pole instead of the two of a timelike

one. This makes the whole di�erence.
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VII. RETRIEVING THE USUAL FRAME WORK

In this section we discuss the passage from the discrete to the standard formalism of

continuous �elds.

a) Massless �elds

Here we prove the following connection between G(x), solution of Eq. (25), and

Gf (x; � ) of Eq. (29):

G(x; � ) =
1

2�

Z
d4f �(f2)Gf (x; � ); (60)

with

d4f = df4 j~f j2 dj~f j d2
f ; (61)

�(f2) =
1

2j~f jf�(f
4 � j~f j) + �(f4 + j~f j)g; (62)

and

G(x) =
Z
d�G(x; � )�(� )�(� �

p
�x2): (63)

We write f:x = f4t+ rj~f j cos �f ; where r = j~xj and the angle �f is de�ned by

~f :~x := rj~f j cos �f ; (64)

for a �xed x. Then we have from Eqs. (29) and (60-62), after using " = f4

jf4j
= � f4

jf4j
in

the integration on f4,

G(x; � ) = �ab�(a� )�(bt)

8�

Z
j~f jdj~f jd2
f

n
�[� + j~f j(r cos �f + t)]� �[� + j~f j(r cos �f � t)]

o

(65)

and then
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G(x; � ) =
ab�(a� )�(bt)

4

Z 1

�1
d cos �ff �

(r cos �f + t)jr cos �f + tj �
�

(r cos �f � t)jr cos �f � tjg:

(66)

The constraint (1), t2 = � 2 + r2, implies that jtj � r, so that

jr cos �f � tj = t

jtj(t� r cos �f) = b�(bt)(t� r cos �f) (67)

and Eq. (66) then becomes

G(x; � ) = G(t; r; � ) =
a�(a� )

4

Z 1

�1
d cos �f f �

(t+ r cos �f )2
� �

(t� r cos �f)2
g = (68)

=
a�(a� )

2

Z 1

�1

�

(t+ r cos �f )2
d cos �f :

Therefore, we have

G(x; � ) = G(t2 � r2; � ) = a�(a� )
�

(t2� r2)
; (69)

which, with the use of Eq. (1) gives

G(t2 � r2; � )
���
�=0

=

(
0; for jtj � r 6= 0;

1; for jtj � r = 0.
(70)

The RHS of Eq. (69) represents a spherical signal propagating with the velocity of light,

as expected. So, with

�(� ) = �(
p
t2 � r2 ) =

j� j
r
[�(t� r) + �(t+ r)] =

a�

r
[�(t� r) + �(t+ r)]; (71)

in Eq. (63) we have that

G(x) =
Z
d�

a�

t2 � r2
�(� )�(� �

p
t2 � r2)

G(r; t) =
1

r
[�(t� r) + �(t+ r)] = 2�(t2 � r2); (72)

and then from Eqs. (34), (18), (60) and (63)

�(x) =
1

2�

Z
d4f �(f2)�(x; �x = �z)f : (73)
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� represents rather the smearing of �f over the lightcone. For the emitted �eld (f4 = j~f j)
in the source instantaneous rest frame at the emission time (f4 = 1, according to Eq.

(21)), the Eq. (73) can be written as

�(x; � ) =
1

4�

Z
d2
f�(x; � )f ; (74)

where the integral represents the sum over all directions of ~f on a lightcone. 4� is a

normalization factor

�(x; � ) =

R

f

d2
f�(x; � )fR

f

d2
f

: (75)

b) Massive �elds

For the case of a massive �eld2 we need to retrieve v from the data (�x;��; f) and change

the integration variable from f to p with p = mv. We start from

G(x; � ) =
m

2�2

Z
d4f d� �(f2)Gf (x; � )�(f:v+ 1); (76)

with �(f:v + 1) instead of �(� ) of the massless case, for making, according to Eqs. (45)

and (46), the connection between f and v, which implies also that

�(f2) = �(v2+ 1) = m2�(m2 + p2)

and

�(� + f:x) = �(� + v:x) = m�(m� + p:x):

The extra m
�
factor in Eq. (76) is for keeping the normalization. Then

G(x; � ) =
ab

8�3
�(a� )�(bt)

Z
d4f df5" m

4�(p2 +m2)�(
f:p

m
+ 1)eif5(m�+p:x); (77)

2Using the generic metric tensor (16) we could deal with both massive and massless cases at

once.
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where we have used an integral form for delta in the Green's function (76). Now a change

of integration variables (f; f5)) (p; f5) with

f :=
p

mf5
(78)

so that

@(f; f5)

@(p; f5)
=

1

(f5)4m4
; (79)

leads to

G(x; � ) =
ab�(a� )�(bt)

8�3

Z
d4p

jf5j3 df5" �(p
2 +m2)�(

p2

m2
+ f5)e

if5(m�+p:x): (80)

The integration on f5 gives

G(x; � ) = eim� ab�(a� )�(bt)

8�3

Z
d4p" �(p2 +m2)eip:x =

= eim� ab�(a� )�(bt)

8�3

Z
d4p

2jp4j [�(p4 �
q
(~p)2 +m2)� �(p4 +

q
(~p)2 +m2)]eip:x;

where we made use of " = � p4
jp4j

. So the Cauchy's theorem can be used for writing

G(x; � ) = eim� a�(a� )

8�3

1

2�

Z
d4p

p2 +m2 � i�
eip:x; (81)

which reproduces the standard [28] Klein-Gordon Green's function G(x) of a massive �eld

with an extra factor

G(x; � ) = a�(a� )eim�G(x): (82)

G(x) is a solution to

(���@�@� +m2)G(x) = �4(x): (83)

So we can replace Eq. (73) with a more generic one valid for both massive and massless

�elds

a�(a� )eim��(x) =
1

2�

Z
hc
d4f �f(x; �x); (84)
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where the integration is over a hypercone (hc), a restriction that stands for an integrand

factor: �(f2)�(� ) for a massless �eld, and for m
�
�(v2 + 1)�(f:v+ 1) for a massive one. Of

course, for a massless �eld a�(a� )eim� = 1.

c) The wave equation.

Starting with Eqs. (18) and (27) with its LHS expanded we have

1

2�

Z
hc
d4f ���(@�@� � 2f�@�@�x + f�f�@

2
�x
)
n
�f (x; �x)�

Z
d5yGf(x� y; �x � �y)J(y; �y)

o
= 0:

(85)

Under the integration over the f degrees of freedom the terms linear in f� do not contribute

as Z
hc
d4ff�@�@�Gf (x; � ) = 0

Z
hc
d4ff�@�@��f (x; � ) = 0

because Gf (x; � ) and �f (x; � ) are even functions of f , as we can see from Eqs. (4), (5)

and (29), i.e. f ! �f , with a �xed � , implies on x!�x which leaves Gf and, therefore,

�f invariant. For a massless �eld f2 = 0 and so, in this case, the terms quadratic in f

do not contribute, whereas for a massive �eld, f2 = �1, they can be moved out from the

integration sign,

(���@�@� + f2@2�x)
1

2�

Z
hc
d4f

n
�f (x; �x)�

Z
d5yGf (x� y; �x � �y)J(y; �y)

o
= 0; (86)

so that with Eqs. (82) and (84) we have

(���@�@� + f2@2�x)
n
a�(a�� )eim���(x)�

Z
d4y a�(a�� )eim��G(x � y)J(y)

o
= 0; (87)

where the remaining f2 stands for zero and -1 for the massless and massive �elds, respec-

tively, and we have used Eq. (34). Then, after doing the � -derivatives we end up with

two equations
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�(x) =
Z
d4yG(x� y)J(y); (88)

from the imaginary part, and using Eq. (83)

(���@�@� +m2)�(x) = J(x); (89)

from the real part, for both the massive and the massless �elds.

The f -integration erases in the wave equation the e�ects of the constraint (3) on the

�eld. So, the standard continuous formalism is retrieved from this discrete f -formalism

with �(x) as the average of �f (x) in the sense of Eq. (73), and its wave equation as the

average of Eq. (27), for both, the massive and the massless �elds.

VIII. MASS AND SYMMETRY BREAKING

It may sound strange, at a �rst sight, that we have both massiveness and conformal

symmetry on a same �eld. Conformal symmetry requires and implies the inexistence

of any scale whereas a mass or a timelike velocity represents one (p2 = �m2, v2 =

�1). Although we are not considering here any particular tensor/spinor character for

the discrete �eld it is worthwhile to extend this discussion also to the case of the chiral

symmetry of a fermionic massive discrete �eld. In the following considerations a timelike

four-velocity and a non-longitudinal (with respect to velocity) spin component have the

same role on the broken chiral and conformal symmetries, respectively. respectively, the

chiral and the conformal symmetries.

The point is that a discrete �eld �f does not properly describe a physical object but

its projection, or rather one of its two projections on the lightcone. They are orthogonal

projections made through the plane de�ned by the t-axis and v, the four-velocity of the

proper physical discrete �eld. See the Figure 3.
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A B

FIG. 3. Mass and symmetry breaking. The conformal symmetry of massive discrete �elds

is understood as the symmetry of their projections �f and � �f on the lightcone (lc). A

discrete �eld (A) in its rest-frame has equal components on a basis fjf >g isomorphic

to the set of lightcone generators. This composition is, of course, frame dependent. A

massive discrete �eld has support on a generator v (its four-velocity) of a hypercone totally

inside the lightcone lc.

A massless physical object is on the lightcone and so it coincides with its own pro-

jection. A massive one always has two projections, one along f and the other along �f .

f = (~f; f4) and �f = (�~f; f4). Both propagating forward on time, as it happens to any

discrete �eld.

Its Hamiltonian must be a function of both projections

H = H(�f ;� �f):

For a massive �eld H is diagonal on a basis fjf >g de�ned by its isomorphism with the

set of lightcone generators f: For a massive �eld H is diagonal on a basis fjv >g, de�ned
by the set of
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generators v of a hypercone that is totally inside the lightcone. See the Figure 3.

jv >= �jf > +�j �f > :

In its rest-frame the two projections have a same amplitude: � = �: Its mass spectrum

is de�ned by the set of eigenvalues of H. The chiral and the conformal symmetry are

assured for the projections by f2 = �f2 = 0 but not for the massive discrete �eld because

v2 = 2�� �f :f 6= 0: Therefore the change of basis

fjf >g ) fjv >g (90)

exposes the broken symmetries and introduce a scale in the theory because it changes the

description from the projections to the proper massive discrete �eld.

In the passage from discrete to continuous �elds in Eq. (76) the role of �(f:v + 1) is

of establishing the proportion of f and of �f in the composition of v. Of course, we can

have symmetry breaking with the change of basis (90) and without leaving the discrete

formalism. See [29], for an example.

IX. CONCLUSIONS

This work throws some light on the meaning and origin of continuous �elds, their

symmetries and singularities through the introduction of discrete �elds, a mixed concept

of particles (discreteness, pointlikeness) and �elds (di�erentiability and the superposition

principle). Although we have left any further discussion about the physical meaning of a

discrete �eld for the companion papers II and III we have seen enough to say that with

�f the continuous

� becomes its e�ective average on the lightcone and that the need of boundary con-

ditions, the lose connection between � and its sources, its gauge freedom and singularity

can all be better understood.
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The relationship between a discrete �eld and the standard continuous �eld is similar

to the one between thermodynamics and statistical mechanics. The meaning and the

origins of thermodynamical variables (P, T, S, etc) are illuminated by statistical mechanics

from the knowledge of basic structural elements unknown to thermodynamics. Similarly,

properties of a continuous �eld (its problems, symmetries and singularities) are better

understood from its relation

to its discrete �eld. Thermodynamics is an e�ective description in terms of average

valued properties of the more basic structures, the molecules, considered in statistical

mechanics; likewisely, the various forms of �eld theory (general relativity, statistical me-

chanics and quantum mechanics included) are retrieved from their respective formulation

in terms of discrete �elds as e�ective average-valued descriptions. Statistical mechanics

does not change the status of any of the four laws of thermodynamics, it just put them

in a deeper perspective. Analogously, the validity and the fundamental character of the

�eld equations remain with the discrete �elds and they are equally seen from a deeper

perspective. Although not being a fundamental

theory thermodynamics is successfully used when this is more convenient than using

the known basic molecular structures. The same goes for the continuous and the discrete

�elds.
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