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ABSTRACT

We consider some aspects of conformal symmetry in a metric-scalar-torsion system. It

is shown that, for some special choice of the action, torsion acts as a compensating �eld

and the full theory is conformally equivalent to General Relativity on classical level. Due

to the introduction of torsion, this equivalence can be provided for the positively-de�ned

gravitational and scalar actions. One-loop divergences arising from the scalar loop are

calculated and both the consequent anomaly and the anomaly-induced e�ective action

are derived.
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1 Introduction

The studies in the framework of gravity with torsion have a long history and many in-

teresting achievements. In particular, the relation between torsion and local conformal

transformation (see, for example, [1, 2] for a recent reviews with broad lists of references)

is a topic of special relevance. Torsion appears naturally in the e�ective action of string

and, below the Planck scale, should be treated, along with the metric, as part of the

gravitational background for the quantized matter �elds. In this paper, we are going

to investigate some details of conformal symmetry that come up in some metric-scalar-

torsion systems. First, we briey consider, following earlier papers [3, 4, 5], a similar

torsionless system and then investigate the theory with torsion; proceeding further, we

derive the one-loop divergences, conformal anomaly and the anomaly-induced e�ective

action.

Since we are going to consider the issues related to conformal transformation and

conformal symmetry in gravity, it is worthy to make some general comments. The con-

formal transformations in gravity may be used for two di�erent purposes. First one can,

by means of the conformal transformation, change the so-called conformal frame in the

scalar-metric theory. Indeed, this choice is not arbitrary since the masses of the �elds

must be introduced. There may be various reasons to choose one or another frame as

physical; one may �nd a detailed discussion on this issue in [1]. All theories for which this

consideration usually applies do not have conformal symmetry, even before the masses

are introduced. Second, one can consider the theory with conformal symmetry.

In the present paper, we are going to discuss only the second case, that is, massless

theories with unbroken conformal symmetry. Then, the change of the conformal frame is

nothing but the invariant (at least, at the classical level) choice of the dynamical variables.

It is worth mentioning that the theories with conformal symmetry have prominent signif-

icance in many areas of modern theoretical physics. The most important, at least for the

sake of applications, is that at the quantum level this symmetry is violated by anomaly.

As examples of the application of the trace anomaly, one may recall the derivation of

the e�ective equations for strings in background �elds (which are nothing but conditions
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for the anomaly cancellation) [6], the study of the renormalization group ows (see, for

example, [7] for the recent developments and list of references), the derivation of the black

hole evaporation in the semiclassical approach [8], �rst inationary model [9] and some

others (we recommend [11] for a general review on conformal anomaly). Recently, the

application of anomalies for n = 4 has been improved by the use of the anomaly-induced

e�ective action obtained long ago [12, 13]. In particular, this led to a better understanding

of the anomaly-generated ination [14] and allowed to perform a systematic classi�cation

of the vacuum states in the semiclassical approach to the black hole evaporation [15].

Anomaly-induced e�ective action has been used to develop the quantum theory for the

conformal factor [16] and for the consequent study of the back reaction of gravity to the

matter �elds [17].

The generalization of the anomaly and the anomaly-induced action for the case of

completely antisymmetric torsion has been given in [18]. Here we investigate a non-

trivial conformal properties of the metric-scalar-torsion system, which modify the Noether

identity corresponding to the conformal symmetry. This modi�cation is due to the fact

that, in the model under discussion, torsion does transform, while its antisymmetric

part considered before [18] does not. As a result of this new feature, the conformal

anomaly is not the anomaly of the Energy-Momentum Tensor trace, but rather the trace

of some modi�ed quantity. However, using a suitable parametrization for the �elds one

can, as it will be shown below, reduce the calculation of this new anomaly, and obtain

the expressions for both the anomaly and the anomaly-induced e�ective action using

corresponding results from [12, 13, 18].

For the sake of generality, we present all classical formulae in an n-dimensional space-

time, for n 6= 2 (see the Appendix of [5] for the discussion of the special n = 2-case in the

torsion-free theory). The divergences and anomaly are all evaluated around n = 4.
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2 Brief review of the torsionless theory.

Our purpose here is to show that conformally invariant second-derivative n-dimensional

metric-dilaton model is conformally equivalent to General Relativity. This equivalence

has been originally demonstrated and discussed in [3] for the four-dimensional space and

free scalar �eld, and later generalized in [4, 5] for the interacting scalar �eld in an arbitrary

n 6= 2 dimensions. In this section, we review the result of [3, 4] presenting calculations in

a slightly di�erent manner. Our starting point will be the Einstein-Hilbert action with

cosmological constant. For further convenience we take this action with negative sign.

SEH[g�� ] =
Z
dnx

q
�ĝ

�
1

G
R̂ + �

�
� (1)

The above action depends on the metric ĝ�� and we now set ĝ�� = g�� � e2�(x). In order

to describe the local conformal transformation in the theory, one needs some relations

between geometric quantities of the original and transformed metrics:

q
�ĝ = p�g en� ; R̂ = e�2�

h
R� 2(n � 1)(2�) � (n� 2)(n � 1)(r�)2

i
� (2)

Substituting (2) into (1), after integration by parts, we arrive at:

SEH [g��] =
Z
dnx
p�g

(
(n� 1) (n � 2)

G
e(n�2)� (r�)2 + e(n�2)�

G
R+ �en�

)
; (3)

where (r�)2 = g��@��@��. If one denotes

' = e
n�2
2 � �

s
8

G
� n� 1

n� 2
; (4)

the action (1) becomes

S =
Z
dnx
p�g

(
1

2
(r')2 + n� 2

8(n � 1)
R'2 + �

�
G

8
� n� 2

n� 1

� n

n�2 � ' 2n
n�2

)
� (5)

And so, the General Relativity with cosmological constant is equivalent to the metric-

dilaton theory described by the action of eq. (5). One has to notice that the latter

exhibits an extra local conformal symmetry, which compensates an extra (with respect

to (1)) scalar degree of freedom. Moreover, (5) is a particular case of a family of similar

actions, linked to each other by the reparametrization of the scalar or (and) the conformal
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transformation of the metric [5]. The symmetry transformation which leaves the action

(5) stable,

g0�� = g�� � e2�(x) ; '0 = ' � e(1�n

2 )�(x); (6)

degenerates at n ! 2 and that is why this limit cannot be trivially achieved [5]. If

we start from the positively de�ned gravitational action (1), the sign of the scalar action

(5) should be negative, indicating to the well known instability of the conformal mode

of General Relativity (see [19, 20] for the recent account of this problem and further

references).

3 Conformal invariance in metric-scalar-torsion the-

ory

In this section, we are going to build up the conformally symmetric action with additional

torsion �eld. Our notations are similar to the ones accepted in [21] for the n = 4 case.

Torsion is de�ned as e��� � e��� = T �
� ;

where e��� is the non-symmetric a�ne connection in the space provided by independent

metric and torsion �elds. The covariant derivative, fr� , satis�es metricity condition,fr�g�� = 0. Torsion tensor may be decomposed into three irreducible parts:

e��;� � e��;� = T�;� =
1

n� 1
(T�g� � Tg��)� 1

3!(n� 3)!
"���1:::�n�3S

�1:::�n�3 + q��� :

(7)

Here T� = T �
�� is the trace of the torsion tensor T �

� . The tensor S�1:::�n�3 is com-

pletely antisymmetric and, in the case of a purely antisymmetric torsion tensor, T�� is

its dual. "���1:::�n�3 is the maximal antisymmetric tensor density in the n-dimensional

space-time. The sign of the S-dependent term corresponds to an even n. We notice that,

in four dimensions, the axial tensor S�1:::�n�3 reduces to the usual S� { axial vector [21].

In n dimensions, the number of distinct components of the S�1:::�n�3 tensor is n3�3n2+2n
6 .

The tensor q�� satis�es, as in the n = 4 case, the two constraints:

q��� = 0 and q�� � "���1:::�n�3 = 0
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and has n3�4n
3

distinct components. We shall denote, as previously, Riemannian covariant

derivative and scalar curvature byr� and R respectively, and keep the notation with tilde

for the geometric quantities with torsion.

The purpose of the present work is to describe and discuss conformal symmetry in the

metric-scalar-torsion theory. It is well-known that torsion does not interact minimally

with scalar �elds, but one can formulate such an interaction in a non-minimal way (see

[21] for the introduction). Moreover, this interaction between scalar �eld and torsion is

necessary element of the renormalizable quantum �eld theory in curved space-time with

torsion [22]. One may construct a general non-minimal action for the scalar �eld coupled

to metric and torsion as below:

S =
Z
dnx
p�g

(
1

2
g��@�' @�'+

1

2
�iPi'

2 � �

4!
'

2n
n�2

)
: (8)

Here, the non-minimal sector is described by �ve structures:

P1 = R ; P2 = r�T
� ; P3 = T� T

� ; P4 = S�1:::�n�3 S
�1:::�n�3 ; P5 = q�� q

�� ; (9)

in the torsionless case the only �1R term is present. �i are the non-minimal parameters

which are typical for the theory in external �eld. Renormalization of these parameters is

necessary to remove corresponding divergences which really take place in the interacting

theory [22]. Furthermore, the renormalizable theory always includes some vacuum action.

This action must incorporate all structures that may show up in the counterterms. The

general expression for the vacuum action in the case of a metric-torsion background has

been obtained in [23]; it contains 168 terms. In fact, one can always reduce this number,

because not all the terms with the allowed dimension really appear as counterterms. The

discussion of the vacuum renormalization for the external gravitational �eld with torsion

has been previously given in [18] for a purely antisymmetric torsion. In the present article,

we will be interested in the special case of the (8) action, which possesses an interesting

conformal symmetry. The appropriate expression for the corresponding vacuum action

will be given in Section 4, after we derive vacuum counterterms.

Using the decomposition (7) given above, the equations of motion for the torsion tensor

can be split into three independent equations written for the components T�; S�; q��;
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they yield:

T� =
�2
�3
� r�'

'
; S�1:::�n�3 = q�� = 0 : (10)

Replacing these expressions back into the action (8), we obtain the on-shell action

S =
Z
dnx
p�g

(
1

2
(1� �22

�3
) g��@�' @�'+

1

2
�1'

2R � �

4!
'

2n
n�2

)
; (11)

that can be immediately reduced to (5), by an obvious change of variables, whenever

�1 =
1

4

 
1 � �22

�3

!
n� 2

n� 1
: (12)

Therefore, we notice that the version of the Brans-Dicke theory with torsion (8) is confor-

mally equivalent to General Relativity (1) provided that the new condition (12) is satis�ed

and no sources for the components T�; S�1:::�n�3 and q�� of the torsion tensor are in-

cluded. In fact, the introduction of external conformally covariant sources for S�1:::�n�3 ,

q�� or to the transverse component of T� does not spoil the conformal symmetry.

One has to remark, that the theory with torsion provides, for
�22
�3
� 1 > 0, the equiv-

alence of the positively de�ned scalar action (8) to the action (1) with the negative sign.

The negative sign in (1) signi�es, in turn, the positively de�ned gravitational action.

Without torsion one can achieve positivity in the gravitational action only by the expense

of the negative kinetic energy for the scalar action in (5). Thus, the introduction of torsion

may lead to some theoretical advantage.

The equation of motion for T� may be regarded as a constraint that �xes the conformal

transformation for this vector to be consistent with the one for the metric and scalar.

Then, instead of (6), one has

g0�� = g�� � e2�(x) ; '0 = ' � e(1�n

2 )�(x) ; T 0

� = T� + (1� n

2
) � �2
�3
� @��(x) (13)

Now, in order to be sure about the number of degrees of freedom in this theory, let us

compute the remaining �eld equations for the whole set of �elds. From this instant we

consider free theory and put the coupling constant � = 0, because scalar self-interaction

does not lead to the change of the qualitative results.

The dynamical equations for the theory encompass eqs. (10) along with

1

2
�1'

2
�
R�� � 1

2
g��R

�
� 1

4
g��(r')2 + 1

2
r�'r�'

+
1

2
�2'

2
�
T�T� � 1

2
g��T�T

�

�
+

1

2
�3'

2
�
r�T� � 1

2
g��r�T

�

�
= 0 (14)
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and �
2� �1R � �2r�T

� � �3T�T �
�
' = 0 : (15)

In case of the on-shell torsion (10), equations (14) reduce to:

1

8

n� 2

n� 1
�2
�
R�� � 1

2
g��R

�
� 1

4
g��(r�)2 + 1

2
r��r�� = 0 ; (16)

2�� 1

4

�
n � 2

n � 1

�
R� = 0 : (17)

Taking the trace of the �rst equation, it can be readily noticed that this equation is exactly

the same as the one for scalar �eld. This indeed justi�es our procedure for replacing (10)

into the action. It is easy to check, by direct inspection, that even o�-shell, the theory

with torsion (8), satisfying the relation (12), may be conformally invariant whenever we

de�ne the transformation law for the torsion trace according to (13): and also postulate

that the other pieces of the torsion, S� and q��, do not transform. The quantities
p�g

and R transform as in (2). One may introduce into the action other conformal invariant

terms depending on the torsion. For instance:

S = �1

4

Z
dnx

p�g ' 2�(n�4)
n�2 T�� T

��; (18)

where T�� = @�T� � @�T�. This term reduces to the usual vector action when n ! 4. It

is not di�cult to propose other conformally invariant terms containing other components

of the torsion tensor in (7).

One can better understand the equivalence between GR and conformal metric-scalar-

torsion theory (8), (12) after presenting an alternative form for the symmetric action. It

proves a useful way to divide the torsion trace T� into longitudinal and transverse parts:

T� = T?

� +
�2
�3
@� T ; (19)

where r�T?

� = 0 and T is the scalar component of the torsion trace, T�. The coe�cient

�2
�3

has been introduced for the sake of convenience. Under the conformal transformation

(13), the transverse part is inert and the scalar component transforms as T 0 = T � �.

Now, we can see that the conformal invariant components, S; T? and q, appear in the

action (8) in the combination

M2 = �3 (T
?

� )
2 + �4 S�1�2:::�n�3S

�1�2:::�n�3 + �5 q
2
��� ; (20)
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which has the conformal transformation, M20 ! e(2�n)�(x) � M2 similar to that of the

square of the scalar �eld. In fact, the active compensating role of the torsion trace,

T�, is accommodated in the scalar mode T . Other components of the torsion tensor,

including T?

� , appear only in the form (20) and allow to create some kind of conformally

covariant "mass". On the mass-shell, this "mass" disappears because all its constituents,

T?

� ; S�1:::�n�3 and q���, vanish.

The next observation is that all torsion-dependent terms may be uni�ed in the expres-

sion

P = � n� 2

4(n � 1)

�22
�3
R+ �2 (r�T

�) + �3 T�T
� + �4 S

2
�1�2:::�n�3

+ �5 q
2
���

= � n� 2

4(n � 1)

�22
�3

"
R � 4(n� 1)

n� 2
(rT )2� 4(n � 1)

n� 2
2T

#
+M2 : (21)

It is easy to check that the transformation law for this P is the same as the one for M2.

Using new de�nitions, the invariant action becomes

Sinv =
Z
dnx
p�g

(
1

2
g��@�' @�'+

n� 2

8(n� 1)
R'2 +

1

2
P '2

)
: (22)

Let us make a change of variables in the last action:

T = ln ;

with obvious transformation law,  0 =  � e��, for the new scalar  . After some small

algebra, one can cast the action (22) in the form of a 2-component conformally invariant

sigma-model:

Sinv =
1

2

Z
dnx
p�g

(
�'�2' + M2'2 +

�22
�3

('2 �1)�2 

)
; (23)

where

�2 = 2� n� 2

4(n � 1)
R

is a second-derivative conformally covariant operator acting on scalars. It is easy to check

that if one takes, for example, the conformally at metric, g�� = ��� � �2(x), one arrives

at three-scalar non-linear sigma-model, but two of these three scalars are dependent. The

last expression for the action (23) shows explicitly the conformal invariance of the action

and also con�rms the conformal covariance of the quantity P .
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One may construct a trivial 2-scalar sigma-model conformally equivalent to GR, by

making a substitution � ! �1+�2 in the action (3), and after regarding �1(x) and �2(x)

as distinct �elds. A detailed analysis shows that the theory (23) can not be reduced to

such a 2-scalar sigma-model by a change of variables. In order to understand why this

is so, we need one more representation for the metric-scalar-torsion action with local

conformal symmetry.

Let us start, once again, from the action (8), (12) and perform only part of the

transformations (13):

'! '0 = ' � e(1�n

2
)�(x) ; T� ! T 0

� = T� + (1� n

2
) � �2
�3
� @��(x) : (24)

Of course, if we supplement (24) by the transformation of the metric, we arrive at (13)

and the action does not change. On the other hand, the results of Section 2 suggest that

(24) may lead to an alternative conformally equivalent description of the theory. Taking

' � e(1�n

2
)�(x) = 8(n�1)

G (n�2)

�
1 � �22

�3

�
= const, we obtain, after some algebra, the following

action:

S =
1

G

Z
dnx
p�g R+

+
4(n � 1)

G(n � 2)(1 � �22=�3)
Z
dnx
p�g

8<:�4S2
�1:::�n�3

+ �5q
2
��� + �3

 
T� � �2

�3
r� ln'

!2
9=; :

(25)

This form of the action does not contain interaction between the curvature and the scalar

�eld. At the same time, the latter �eld is present until we use the equations of motion

(10) for torsion. Torsion trace looks here like a Lagrange multiplier, and only using its

corresponding equation of motion (and also for other components of torsion), we can

obtain the action of GR. It is clear that one can arrive at the same action (25) making

the transformation of the metric as in (13) instead of (24).

To complete this part of our consideration, we mention that the direct generalization

of the Einstein-Cartan theory including an extra scalar may be conformally equivalent to

General Relativity, provided that the non-minimal parameter takes an appropriate value.

To see this, one uses the relation

eR = R � 2r� T
� � n

n� 1
T� T

� +
1

2
q��q

�� +
1

4
� 1

3!(n� 3)!
S�1:::�n�3 S�1:::�n�3 (26)
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and replace it into the "minimal" action

SECBD =
Z
dnx
p�g

�
1

2
g��@�'@�'+

1

2
� eR'2

�
: (27)

It is easy to see that the condition (12) is satis�ed for the special value

� =
n(n � 2)

8(n � 1)
: (28)

In particular, in the four-dimensional case, the symmetric version of the theory corre-

sponds to � = 1
3
, contrary to the famous � = 1

6
in the torsionless case. The e�ect of

changing conformal value of � due to the non-trivial transformation of torsion has been

discussed earlier in [24] (see also further references there).

In the next section we shall see how the non-trivial conformal transformation for

torsion changes the Noether identity and the quantum conformal anomaly.

4 Divergences, anomaly and induced e�ective ac-

tion

In four dimensions, by integrating over the free scalar �eld (even without self-interaction),

one meets vacuum divergences and the resulting trace anomaly breaks conformal invari-

ance. As it was already mentioned in the Introduction, the anomaly and its application

is one of the most important aspects of the conformal theories. The anomaly is a con-

sequence of the quantization procedure, and it appears due to the lack of a completely

invariant regularization. In particular, trace anomaly is usually related to the one-loop

divergences [25]. At the same time, one has to be careful, because the non-critical use of

this relation may, in principle, lead to mistakes.

Consider the renormalization and anomaly for the conformal metric-scalar theory with

torsion formulated above. The renormalizability of the theory requires the vacuum action

to be introduced, which has to be (as it was already noticed in Section 3) of the form of

the possible counterterms. The total four-dimensional action including the vacuum term

can be presented as:

St = Sinv + Svac ; (29)
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where Sinv has been given in (22) and the form of the vacuum action will be established

later.

Before going on to calculate the divergences and anomaly, one has to write a functional

form for the conformal symmetry. It is easy to see that the Noether identity corresponding

to (13) looks like

2g��
�St
�g��

+
�2
�3
@�

�St
�T�

� '
�St
�'

= 0 : (30)

Now, if we are considering both metric and torsion as external �elds, and only the scalar

as a quantum �eld, in the vacuum sector we meet the �rst two terms of (30). This means

(due to the invariance of the vacuum divergences) that the vacuum action may be chosen

in such a way that

�p�g T = 2g��
�Svac
�g��

+
�2
�3
@�
�Svac
�T�

= 0 : (31)

The new form (31) of the conformal Noether identity indicates to a serious modi�cation

in the conformal anomaly. In the theory under discussion, the anomaly would mean

< T > 6= 0 instead of usual < T �
� > 6= 0. Therefore, at �rst sight, we meet here some

special case and one can not directly use the relation between the one-loop counterterms

and the conformal anomaly derived in [25], because this relation does not take into account

the non-trivial transformation law for the torsion �eld. It is reasonable to remind that,

for the case of completely antisymmetric torsion discussed in [18], this problem did not

show up just because S� is inert under conformal transformation.

Let us formulate a more general statement about conformal transformation and anomaly.

When the classical metric background is enriched by the �elds which do not transform,

the Noether identity corresponding to the conformal symmetry remains the same as for

the pure metric background. In this case one can safely use the standard relations [25]

between divergences and conformal anomaly. However, if the new background �eld has a

non-trivial transformation law, one has to care about possible modi�cations of the Noether

identity and consequent change of anomaly.

In our case, the anomaly is modi�ed, because it has a new functional form, < T > 6= 0.

One can derive this new anomaly using, for instance, the methods described in [25] or

[21]. However, it is possible to �nd < T > in a more economic way, using some special
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decomposition of the background �elds. As we shall see, the practical calculation of a

new anomaly and even the anomaly-induced action may be reduced to the results known

from [25, 12, 13] and especially [18], where the theory of the antisymmetric torsion was

investigated.

Our purpose is to change the background variables in such a way that the transfor-

mation of torsion is absorbed by that of the metric. The crucial observation is that P ,

from (21), transforms4 under (13) as P 0 = P � e�2�(x). Therefore, the non-trivial transfor-
mation of torsion is completely absorbed by P . Since P only depends on the background

�elds, we can present it in any useful form. One can imagine, for instance, P to be of

the form P = g�� ���� where vector �� doesn't transform, and then the calculation

readily reduces to the case of an antisymmetric torsion [18]. In particular, we can now

use standard results for the relation between divergences and anomaly [25].

In the framework of the Schwinger-DeWitt technique, we �nd the 1-loop counterterms

in the form

�(1)
div = �

�n�4

(4�)2 (n � 4)

Z
dnx
p�g

�
1

120
C2 � 1

360
E +

1

180
2R +

1

6
2P +

1

2
P 2
�
; (32)

Here

C2 = C����C
���� and E = R����R

���� � 4R����R
�� +R2

are the square of the Weyl tensor, and the scalar integrand of the Gauss-Bonnet term.

The eq. (32) gives, as a by-product, the list of necessary terms in the vacuum action.

Taking into account the arguments presented above, we can immediately cast the anomaly

under the form

< T >= � 1

(4�)2

�
1

120
C���� C

���� � 1

360
E +

1

180
2R +

1

6
2P +

1

2
P 2
�
: (33)

One may proceed and, following [12, 13, 18], derive the conformal non-invariant part of

the e�ective action of the vacuum, which is responsible for the anomaly (33). Taking into

account our previous treatment of the conformal transformation of torsion, we consider

4As a consequence, the action
R p

�gP�2 is conformal invariant. This fact has been originally dis-

covered in [26].
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it is hidden inside the quantity P of eq. (21), and again imagine P to be of the form

P = g�� ���� . Then the equation for the e�ective action �[g�� ;��] is 5

� 2p�g g��
� �

�g��
=< T > : (34)

In order to �nd the solution for �, we can factor out the conformal piece of the metric

g�� = �g�� � e2�, where �g�� has �xed determinant and put P = �P � e�2�(x), that corresponds
to ��� = ��. This transformation for arti�cial variable �� is identical to the one for the

S� pseudovector, that is the case considered in [18]. Then the result can be obtained

directly from the e�ective action derived in [18], and we get

� = Sc[�g�� ; �P ] � 1

12
� 1

270(4�)2

Z
d4x

q
�g(x)R2(x) +

1

(4�)2

Z
d4x
p��g

�
� � [ 1

120
�C2�

� 1

360
( �E � 2

3
�r2 �R) +

1

2
�P 2] +

1

180
� ��� � 1

6
( �r��) �r� �P +

1

6
�P ( �r��)

2
�
; (35)

where Sc[�g��; �P ] is an unknown functional of the metric �g��(x) and �P , which acts as an

integration constant for any solution of (34).

Now, one has to rewrite (35) in terms of the original �eld variables, g�� ; T �
�. Here,

we meet a small problem, because we only have, for the moment, the de�nition �� = ���

for the arti�cial variable ��, but not for the torsion. Using the previous result (13), we

can de�ne

T �
� = �T �

� �
1

3
�
h
�� @�� � ��� @�

i
; (36)

so that �T �
� is an arbitrary tensor. Also, we call �T � = �g�� �T� etc. Now, we can rewrite

(35) in terms of metric and torsion components

� = Sc[�g��; �T
�
�] �

1

12
� 1

270(4�)2

Z
d4x

q
�g(x)R2(x)+

+
1

(4�)2

Z
d4x
p��g

�
+

1

180
� ��� +

1

120
�C2 � � 1

360
( �E � 2

3
�r2 �R)�

+
1

72
�

"
��

2
2

�3
�R + 6�2 ( �r�

�T �) + 6�3 �T� �T
� + 6�4 �S� �S

� + 6�5 �q����q
���

#2
+

5We remark that this equation is valid only for the "arti�cial" e�ective action �[g��;��] , while the

e�ective action in original variables g��; T
�
� would satisfy the modi�ed equation (31). The standard

form of the equation for the e�ective action is achieved through the special decomposition of the external

�elds.
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1

6

h
( �r2� + ( �r��)

2
i
�
"
��

2
2

�3
�R+ 6�2 ( �r�

�T �) + 6�3 �T� �T
� + 6�4 �S� �S

� + 6�5 �q����q
���

#)
;

(37)

This e�ective action is nothing but the generalization of the similar expressions of [12, 13,

18] for the case of general metric-torsion background and conformal symmetry described in

Section 3. The curvature dependence in the last two terms appears due to the non-trivial

transformation law for torsion.

5 Conclusions.

We have considered the conformal properties of the second-derivative metric-torsion-

dilaton gravity, on both classical and quantum level. The main results, achieved above,

can be summarized as follows:

i) If the parameters �i of the general metric-torsion-dilaton theory (8) satisfy the

relation (12), there is conformal invariance of the new type, more general than the one

considered in [26, 24] and di�erent from the ones considered in [22, 21].

ii) In this case the vector trace of torsion plays the role of a compensating �eld, provid-

ing the classical conformal on-shell equivalence between this theory and General Relativ-

ity. The conformal invariant scalar-metric-torsion action can be presented in alternative

forms (22), (23), (25), while (23) is some new nonlinear n-dimensional conformal invari-

ant sigma-model. If the nonminmal parameters satisfy an additional relation �22 > �3,

the equivalence holds between the positively de�ned General Relativity and scalar �eld

theory. This indicates to the stabilization of the conformal mode in gravity with torsion

and may indicate that the introduction of torsion can be some useful alternative to other

approaches to this problem (see [19, 20]).

iii) The conformal Noether identity (30) indicates that the conformal anomaly with

torsion is not the anomaly of the trace of the Energy-Momentum Tensor, but rather

the anomaly of some modi�ed quantity T . But, using the appropriate decomposition of

the background variables, the calculation of this new anomaly can be readily reduced to

the use of the known results of [25] and [18], and the derivation of the anomaly-induced
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e�ective action can be done through the similar decomposition of variables and the use of

the known results of [12, 13, 18]. As in other known cases, the induced action (37) breaks

the conformal equivalence between metric-torsion-scalar action and (1) and therefore may

lead to the nontrivial applications to inationary cosmology.
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