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Abstract

We introduce a three-generator algebra where the eigenvalue of one generator is given

by the logistic map. We also present the Casimir operator of this algebra, construct

matrix representations that can be �nite as well as in�nite and obtain the Hamiltonian

of the XX-model in a magnetic �eld from the lowest dimensional representation of the

algebra.
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The relevance of symmetries in physical systems is well established. Algebraic structures

can play an important role in the solution of physical models: in a few cases, for completely

solved systems [1], symmetries can be very important since for these models they are in

general connected to their invariants.

For systems that present some kind of non-regular deterministic behaviour (in special

cases these systems may be even chaotic [2]) the known algebraic structures are not very

useful since the construction of regular invariants, an usual procedure in solving physical

models, is in opposition to the non-regular behaviour of these systems.

Within this framework it may be relevant to generalise the known algebraic structures

and, in particular, to develop a class of algebras that may present a non-regular behaviour.

We start considering the algebra generated by J0; J� described by the relations

J+Ji = Ji+1J+ ; i = 0; 1; 2; � � � (1.a)

JiJ� = J�Ji+1 ; (1.b)

J+J� � J�J+ = a(J0 � J1) ; (1.c)

where J� = J
y
+ ; J

y
i = Ji and a is a real constant. Moreover,

Ji � rJi�1(1 � Ji�1) (2)

with r a real parameter. We could have chosen Ji+1 � a0+ a1Ji+ � � �+ anJ
n
i + � � � but we

are particularly interested in eqn. (2) where Ji is given by the logistic map [2]. In fact,

considering the general quadratic expansion (n = 2) for Ji+1 most results we are going to

discuss for the logistic map (eqn. (2)) are unchanged.

The hermitian operator J0 can be diagonalised. Consider the state jn0i with the

highest eigenvalue of J0

J0jn0i = n0jn0i (3)

Since n0 is the highest J0 eigenvalue we must have

J+jn0i = 0 : (4)
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Using the algebraic relations in eqn. (1) we obtain�

J0jnmi = nmjnmi ; (5)

J�jnmi = Nmjnm+1i ;

J+jnm+1i = Nmjnmi ;

where

Nm =
p
a(n0 � nm+1) (6)

and

nm+1 = rnm(1� nm) : (7)

Of course, since the eigenvalues of J0 are given by the logistic map, eqn. (7), their values

as m increases can have an irregular behaviour depending on the values of r and n0, and

the dimension of the representation.

Let us now consider the operator

C = J+J� + aJ1 = J�J+ + aJ0 (8)

Using the algebraic relations (1) it is easy to see that

[C; J0] = [C; J�] = 0 ; (9)

i.e., C is the Casimir operator of the algebra. In fact, we arrive easily at

Cjnmi = c0jnmi ; (10)

with c0 = an0 independent of m. The value n0 characterises the inequivalent representa-

tions of the algebra.

As far as matrix representations are concerned we give three examples that can be

easily veri�ed to satisfy eqns. (1-7)

Example 1. Two-Dimensional Representation

J0 =

0
@ n0 0

0 n1

1
A ; J+ =

0
@ 0 N0

0 0

1
A ; J� = J

y
+ (11)

�In order to preserve the standard notation for the logistic map, the states generated by the lowering

operator J�, are labeled by jnmi with INCREASING values of m.
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For this case the allowed values of r and n0 are determined by the equation n0 � n2 = 0

such that n0 � n1 6= 0. There are two non-trivial solutions for these two equations

n�
0
=

r + 1 �p
r2 � 2r � 3

2r
: (12)

The solution n+0 gives n+0 > n+1 implying a > 0, while n�0 < n�1 give a < 0. For both cases

r � 3.

Example 2. Three-Dimensional Representation

J0 =

0
BBB@

n0 0 0

0 n1 0

0 0 n2

1
CCCA ; J+ =

0
BBB@

0 N0 0

0 0 N1

0 0 0

1
CCCA ; J� = J

y
+ (13)

The allowed values are computed from n0�n3 = 0, n0�n2 6= 0, n0�n1 6= 0. The solution

can be obtained numerically and there are four non-trivial solutions to this case.

Example 3. In�nite Dimensional case

J0 =

0
BBBBBBBBB@

n0 0 0 0 � � �
0 n1 0 0 � � �
0 0 n2 0 � � �
0 0 0 n3 � � �
...

...
...

...
...

1
CCCCCCCCCA

; J+ =

0
BBBBBBBBB@

0 N0 0 0 � � �
0 0 N1 0 � � �
0 0 0 N2 � � �
0 0 0 0 � � �
...

...
...

...
...

1
CCCCCCCCCA

; J� = J
y
+ (14)

The allowed values of r and n0 can be computed for instance for a < 0 from nm > n0

for all values of m � 1. In �gure I we show the half-leaf region, with the allowed values

of r and n0. In this case nm was computed up to m = 200. The diagram with possible

solutions has as superior boundary a composition of several curves. For 1 � r � 3 we

see the stable �xed point curve, (r � 1)=r, of the logistic map. For 3 < r < 3:4 we have

the lowest branch attractor two-cycle logistic map curve, (r+1�pr2 � 2r � 3)=(2r) and

so on. The points that are below these curves are the allowed values for a < 0 in�nite-

dimensional representation. The peculiar structure of equations (1a,b) allows the algebra

to have highest weights with �nite and in�nite representations.
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In order to indicate a possible application of the algebra (eqn. (1)) for low-dimensional

representions, where the irregularity aspect does not fully emerge, we construct a spin-1=2

nearest-neighbour quantum spin chain Hamiltonian invariant under this algebra.

The matrices (�J0)R; (�J�)R

(�J0)R =

0
BBBBBB@

n1 0 0 0

0 n0 0 0

0 0 n0 0

0 0 0 n1

1
CCCCCCA

; (�J+)R =

0
BBBBBB@

0 b2 b3 0

0 0 0 b8

0 0 0 b12

0 0 0 0

1
CCCCCCA

; (�J�)R = (�J+)
y
R

(15)

with

b2 = i(�b28 +N2

0 )
1=2 ; (b8 � arbitrary);

b3 = ib8 ; (16)

b12 = (�b2
8
+N2

0
)1=2 ;

are 4 � 4 matrices satisfying eqns. (1-7). These matrices are reducible representations

since they can be constructed as

(�J0)R = a1(J0 
 11 + 11 
 J0) + a211 
 11 + a3J0 
 J0 ;

(�J+)R = �1J+ 
 11 + �211 
 J+ + �3J+ 
 J0 + �4J0 
 J+ ; (17)

with a similar equation for (�J)R, where

a1 =
n0 + n1
n0 � n1

; a2 =
�n1(n0 + n1)

n0 � n1
; �1 =

b8[n1(i� 1)� n0(i+ 1)]

(i+ 1)(n1 � n0)
;

�2 =
(n0 + ini)

p
�b2

8
+N2

0

n1 � n0
; �3 =

2b8
(1 + t)(n1 � n2)

; �4 =
(i+ 1)

p
�b2

8
+N2

0

n0 � n1
:

(18)

Eqns. (17) represent a reduced form of a universal coproduct of the algebra (1).

Let h � �C�
11
11, where �C is the result of the Casimir, eqn. (8), for the matrices

in eqn. (15) and 
 a constant. Consider the Hamiltonian

H = J

N�1X
n=1

11 
 � � � 
 hn;n+1 
 11 
 � � � 
 11 (19)
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where J is a constant and hn;n+1 is h acting in the (n; n + 1) slot of (CI )
N . Then, we

obtain

H =
1

2

N�1X
n=1

�
�xn�

x
n+1 + �yn�

y
n+1 +

1

2
(�+ ��1)(�zn + �zn+1)

�
+

(�� ��1)

4
(�z

1
� �zN) (20)

with

� =

p
�b28 +N2

0

b8
(21)

This is the XX-Hamiltonian in an external magnetic �eld with a non-trivial boundary

condition. We have just proven that this Hamiltonain is invariant under algebra described

in eqn. (1). This result indicates that the lowest dimensional representation of the algebra

(1) is connected to slq(2) for q4 = 1 [3].

We present now some comments. Firstly, instead of having eqn. (1c) we could have

chosen a more general algebra

J+J� � J�J+ =
X
i=0

a2i(J2i � J2i+1) :

In this case the Casimir becomes

C = J+J� +
X
i=0

a2iJ2i+1 :

The only di�culty with this general approach seems to be the increasing algebraic com-

plication in the equations determining the allowed values of r and n0. There are also other

possible ways of generalising the algebra; for instance we could think to construct higher

rank Logistic algebras or to �nd out possible non-trivial deformations of eqns. (1-7). It

would be also interesting to �nd the bialgebra structure of the algebra, eqn. (1), and the

completely integrable strucuture connected to it as indicated by the example worked at

the end of this letter. It would be tempting to develop an example where the irregularity

present in the algebra is manifest, for instance by considering a Lipkin-Meshkov-Glick [4]

like model where now the generators belong to the algebra in (1).

Finally, we conjecture that the points in �g. I below the lower branch of the two-

cycle curve (r + 1 � p
r2 � 2r � 3)=2r for 3 < r < 3:4 correspond to the XX-model

as the upper boundary points. The reason is that the \asymptotic" states of the in�nite

dimensional representation jn�0 i (see eqn. (12)) occur with in�nite degeneracy, being then
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the relevant ones. Moreover, since n�1 � rn�0 (1� n0) = n+0 we can reconstruct with jn�0 i
the two-dimensional representation of the logistic algebra (1). It would be interesting to

�nd out what are the statistical models on and below the higher-cycles curves in �g. I.

Furthermore, the model associated to the allowed solutions a < r < 4 in �g. I, where a is

the Feigenbaum point, is a potentially soluble model with a close relation to chaos.
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