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Using the so-called Euclidon method propounded by Ts.I. Gutsunaev, V.A. Chernyaev and S.L. Elsgolts [1], we show
how to reobtain the Kerr and Schwarzschild solutions from a particular Lewis static solution.

1. Introduction

We are interested in this paper in constructing new axi-
ally symmetric stationary exact solutions of the Einstein
equations in vacuo. This problem was investigated from
various points of view: for more details and references,
see the introduction to the article by Ts.I. Gutsunaev,
V.A. Chernyaev and S.L. Elsgolts (GCE) [1]. GCE, us-
ing a technique of variation of constants, proposed a
method for generating, in principle, new vacuum solu-
tions from any axisymmetric solution. They start from a
Euclidon solution that we can call a matriz solution, and
vary the four constants appearing there: three of them
appear in another arbitrarily chosen solution, called a
seed solution; the fourth constant, to be simply called
a potential, becomes a function U, which is determined
from the seed solution by a set of two first-order partial
differential equations, ((9) in [1]), in general, difficult to
be solved. By such a general method, they generate a
new solution which could be called a daughter solution.
However, they do not exhibit a specific example of such
a solution in their article.

Ts.I. Gutsunaev, A.A. Shaideman, and S.L. Elsgolts,
in another article [2], with a purpose similar to GCE,
apply the variation of constants method to a soliton-
like matrix solution ((13) in [2]). As an example, they
find again the Kerr solution. The complexity of the
calculations is in general a technical obstacle in obtain-
ing a daughter solution from an arbitrary seed solution.
Besides, the interpretation of daughter solutions; when
successfully obtained from a given seed solution, is in
general of no physical interest because quite often new
generated solutions do not exhibit good asymptotic be-
haviour.

The choice of an axisymmetric static seed solution
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permits one to considerably simplify the problem. In
such a case, two compatibility equations, (23) and (24)
in the present paper, can be constructed, the first one
obeyed by the U potential, the other one linking the
seed solution to the daughter solution.

In this paper, we test the Euclidon method proposed
by GCE using a Euclidon-like matrix solution. Then,
we show how to obtain in this way the Kerr solution
from a static Lewis-like seed solution. In Sec.2, using
the Weyl coordinates, we recall the Euclidon method
used by GCE [1] with a slightly different presentation.
Then, we apply this method to the case of a Lewis-like
static seed solution. We show that the whole problem
essentially reduces to determining the U potential from
two simple first-order partial differential equations, (20)
and (21). In Sec. 3, using prolate spheroidal coordinates,
we show how to generate the Kerr solution.

2. The Euclidon method

The Papapetrou-Lewis axisymmetric stationary metric
in Weyl coordinates can be expressed as

ds® = f(dt — wde)* — %[ezv(drz +dz?) 4 r2de?], (1)

where f, w, v are functions of r and z.
With the help of a twist potential ®, defined by

Ow r 0P

o = o ®
Ow r 0

2 = For 3)

we express the Einstein vacuum equations,

FAf = (V)? = (Vo) (4)
JA® = 2Vf VO, (5)
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where the Laplacian and gradient operators are defined
as follows:
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The GCE method [1] rests on the choice of a special
solution of the vacuum field equations, which we call the
matrix solution, namely,

1
e = c—(z—zl—i—RtanhUo), (8)

1

1 R

bp = —

B ¢y cosh Uy + e (9)
e1(z — z1) coth Uy
= 10
W (z — z1) cosh Uy + Rsinh Uy t s (10)
where

R=[(z—z)+ "2, (11)

and c¢1, ¢o, ¢g and Uy are constants.

All the curvature tensor components of this solution
vanish. That 1s why this solution is called a euclidon by
GCE.

Using the variation of constants method, GCE sup-
pose that the constants become functions of r and z:

if
[ fo(ra Z)a

where fy, wp and ®y form an arbitrary solution of the
vacuum field equations called a seed solution by GCE,
and

ez = By(r, 2),(12)

Ca = wo(r, Z),

Uy =U(r,z) (13)

1s a potential which satisfies a set of two partial differen-
tial equations ((9) in [1]), constructed from the solution
(12), then, the so generated functions, constructed from
(8)-(10) with (12)-(13) and denoted f, ® and &, con-
stitute a new solution of (2)-(5), to be called a daughter
solution:

z— 2z + Rtanh U

/= fo ’ 1)

15
focoshU—i_wo’ (15)

B fo(z = z1) coth U
"~ (2 —=z1)coshU + Rsinh U

€2

+ Dg. (16)

Only U remains to be determinated.

The complexity of the set of partial differential equa-
tions, allowing one in principle to determine the U func-
tion, 1s in practice an obstacle to its integration. How-
ever, such a difficulty vanishes if a static solution is cho-
sen as a seed solution:

fo = folr,2), ®y =0, wo = 0. (17)

In this case, choosing

Jo=eX, (18)
the Einstein equations (4), (5) reduce to

Ay =0. (19)

For such an harmonic function x, the solution (17)
is said to be Lewis-type [3]. Hence, the system (9) in [1]
permitting one to determine the U function reduces to

U,r = a1X,r +a2X,z, (20)

U,z = —a2)Xr + 1 Xz, (21)
where

alz—z_zl, azzr a%—i—a%:l. (22)

R R’

Besides, (19)—(21) lead to a canonical elliptic equa-
tion for U [5],

r[rz + (Z - Zl)z](U,rr + U,zz)
—[r? - (z — zl)z]Uyr —2r(z —z)U. =0,(23)

and, from (14)—(15),

FRP 4+ %) = 2fo(z — 21)f —r? = 0. (24)

3. The Kerr solution

We can present the Lewis static seed solution (17) as a
euclidon-like solution,

fo(A ) = 21(A+ 1) (p+ 1),
q)o = 0, wo = 0, (25)

where A and p are the prolate spheroidal coordinates
linked to the Weyl coordinates r and z by the relations

= S {[n)? Y () 4 2]V (26)

221
po= g AlGa)? 4 T = () 4 7, o)
with
A>1, lu| < 1. (28)

fo and &y given by (25) are solutions of Einstein’s equa-
tions (4)—(5). From (18) and (25) we find

x = In[a1(A+ 1)(p + 1)), (29)

where x obeys (19).
The system (20)-(21), determining the potential
U(A, p), now takes the form

o Ap—1 1— p?
U7>\ = /\_ﬂ Xa+ /\_NX,;M (30)
A2 —1 Ap—1
= — . 1
U’/’L A—/,LX)\—F A—/,LXVN (3)
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Hence, we find by integration

U=In [ﬁ] , (32)

where ag is a constant. On the other hand, (23) be-
comes, in prolate spheroidal coordinates,

(A = [V = DUpx + (1= p*)U, ]

20— D(Ua+ T =0, (33)
and it can be easily checked that (32) is a solution to
(33). Eqgs. (14)-(15), giving f and &, now become
A — 14 (X —p)tanh U

A+D(p+1) 7
- A—p

) = BT Deoh U (35)

(34)

where U is given by (32). Hence, we immediately find

= A —1+ag(p® - 1)
(A+1D? +ag(p+ 1
2a0(A — p)

¢ = A+ 1)2 +a2(p+ 1)2 (37)

To interpret this solution, we propose to determine
the corresponding solution of the Ernst equation [4]:

(36)

(66" — 1)AE = 26" VE - VE, (38)
where

£ =P\ p)+1iQ(A, ), (39)
and

P = ﬂ (40)

(1=f)*+ @2
2®

YT e )

Then, we find
_Atagp | ao(A—p)
{= 1+ a2 t 14+a2 (42)

This solution (42) can be easily transformed into the
Kerr solution with the help of the unitary transforma-
tion €', defined by

ag = —tana. (43)

Then, from (42)

£k = €6 = pA—iqu, (44)
with

p=(1+aj)~? g = ao(1+a3)™"?, (45)
(36) or

q/p = ao, PP+’ =1, (46)

that is to say, we find again the Kerr solution.
It can be easily seen that (25) and (36)-(37) satisfy
Eq. (24) by using the relations inverse to (26)-(27),

z—z1 = z1(Ap—1), (47)
r? = ZE(A? = 1)(1 — p?). (48)
Finally, let us note that to find again the Schwarz-
schild solution, it suffices to use the asymptotic behav-

iour of the U potential (32) in (34)-(35), and there is
no need for the explicit solutions (36)-(37).
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