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Using the so-called Euclidon method propounded by Ts.I. Gutsunaev, V.A. Chernyaev and S.L. Elsgolts [1], we show
how to reobtain the Kerr and Schwarzschild solutions from a particular Lewis static solution.

1. Introduction

We are interested in this paper in constructing new axi-
ally symmetric stationary exact solutions of the Einstein
equations in vacuo. This problem was investigated from
various points of view: for more details and references,
see the introduction to the article by Ts.I. Gutsunaev,
V.A. Chernyaev and S.L. Elsgolts (GCE) [1]. GCE, us-
ing a technique of variation of constants, proposed a
method for generating, in principle, new vacuum solu-
tions from any axisymmetric solution. They start from a
Euclidon solution that we can call amatrix solution, and
vary the four constants appearing there: three of them
appear in another arbitrarily chosen solution, called a
seed solution; the fourth constant, to be simply called
a potential, becomes a function U , which is determined
from the seed solution by a set of two �rst-order partial
di�erential equations, ((9) in [1]), in general, di�cult to
be solved. By such a general method, they generate a
new solution which could be called a daughter solution.
However, they do not exhibit a speci�c example of such
a solution in their article.

Ts.I. Gutsunaev, A.A. Shaideman, and S.L. Elsgolts,
in another article [2], with a purpose similar to GCE,
apply the variation of constants method to a soliton-
like matrix solution ((13) in [2]). As an example, they
�nd again the Kerr solution. The complexity of the
calculations is in general a technical obstacle in obtain-
ing a daughter solution from an arbitrary seed solution.
Besides, the interpretation of daughter solutions, when
successfully obtained from a given seed solution, is in
general of no physical interest because quite often new
generated solutions do not exhibit good asymptotic be-
haviour.

The choice of an axisymmetric static seed solution
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permits one to considerably simplify the problem. In
such a case, two compatibility equations, (23) and (24)
in the present paper, can be constructed, the �rst one
obeyed by the U potential, the other one linking the
seed solution to the daughter solution.

In this paper, we test the Euclidon method proposed
by GCE using a Euclidon-like matrix solution. Then,
we show how to obtain in this way the Kerr solution
from a static Lewis-like seed solution. In Sec. 2, using
the Weyl coordinates, we recall the Euclidon method
used by GCE [1] with a slightly di�erent presentation.
Then, we apply this method to the case of a Lewis-like
static seed solution. We show that the whole problem
essentially reduces to determining the U potential from
two simple �rst-order partial di�erential equations, (20)
and (21). In Sec. 3, using prolate spheroidal coordinates,
we show how to generate the Kerr solution.

2. The Euclidon method

The Papapetrou-Lewis axisymmetric stationary metric
in Weyl coordinates can be expressed as

ds2 = f(dt � !d�)2 �
1

f
[e2
(dr2 + dz2) + r2d�2]; (1)

where f , ! , 
 are functions of r and z .
With the help of a twist potential �, de�ned by
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we express the Einstein vacuum equations,

f�f = (~rf)2 � (~r�)2; (4)

f�� = 2~rf � ~r�; (5)
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where the Laplacian and gradient operators are de�ned
as follows:
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The GCE method [1] rests on the choice of a special
solution of the vacuum �eld equations, which we call the
matrix solution, namely,

fE =
1

c1
(z � z1 +R tanhU0); (8)

�E =
1

c1

R

coshU0

+ c2; (9)

!E =
c1(z � z1) cothU0

(z � z1) coshU0 +R sinhU0

+ c3; (10)

where

R = [(z � z1)
2 + r2]1=2; (11)

and c1 , c2 , c3 and U0 are constants.
All the curvature tensor components of this solution

vanish. That is why this solution is called a euclidon by
GCE.

Using the variation of constants method, GCE sup-
pose that the constants become functions of r and z :
if

c1 = f0(r; z); c2 = !0(r; z); c3 = �0(r; z);(12)

where f0 , !0 and �0 form an arbitrary solution of the
vacuum �eld equations called a seed solution by GCE,
and

U0 = U (r; z) (13)

is a potential which satis�es a set of two partial di�eren-
tial equations ((9) in [1]), constructed from the solution
(12), then, the so generated functions, constructed from
(8)-(10) with (12)-(13) and denoted ~f , ~� and ~! , con-
stitute a new solution of (2)-(5), to be called a daughter
solution:

~f =
z � z1 + R tanhU

f0
; (14)

~� =
R

f0 coshU
+ !0; (15)

~! =
f0(z � z1) cothU

(z � z1) coshU +R sinhU
+ �0: (16)

Only U remains to be determinated.
The complexity of the set of partial di�erential equa-

tions, allowing one in principle to determine the U func-
tion, is in practice an obstacle to its integration. How-
ever, such a di�culty vanishes if a static solution is cho-
sen as a seed solution:

f0 = f0(r; z); �0 = 0; !0 = 0: (17)

In this case, choosing

f0 = e�; (18)

the Einstein equations (4), (5) reduce to

�� = 0: (19)

For such an harmonic function � , the solution (17)
is said to be Lewis-type [3]. Hence, the system (9) in [1]
permitting one to determine the U function reduces to

U;r = a1�;r + a2�;z; (20)

U;z = �a2�;r + a1�;z; (21)

where

a1 =
z � z1
R

; a2 =
r

R
; a2

1
+ a2

2
= 1: (22)

Besides, (19){(21) lead to a canonical elliptic equa-
tion for U [5],

r[r2 + (z � z1)
2](U;rr + U;zz)

� [r2 � (z � z1)
2]U;r � 2r(z � z1)U;z = 0; (23)

and, from (14){(15),

f2
0
( ~f2 + ~�2)� 2f0(z � z1) ~f � r2 = 0: (24)

3. The Kerr solution

We can present the Lewis static seed solution (17) as a
euclidon-like solution,

f0(�; �) = z1(� + 1)(� + 1);

�0 = 0; !0 = 0; (25)

where � and � are the prolate spheroidal coordinates
linked to the Weyl coordinates r and z by the relations

� =
1

2z1
f[(z+z1)

2 + r2]1=2 + [(z�z1)
2 + r2]1=2g;(26)

� =
1

2z1
f[(z+z1)

2 + r2]1=2 � [(z�z1)
2 + r2]1=2g;(27)

with

� � 1; j�j � 1: (28)

f0 and �0 given by (25) are solutions of Einstein's equa-
tions (4){(5). From (18) and (25) we �nd

� = ln[z1(� + 1)(� + 1)]; (29)

where � obeys (19).
The system (20)-(21), determining the potential

U (�; �), now takes the form

U;� =
��� 1

� � �
�;� +

1� �2

� � �
�;�; (30)

U; � = �
�2 � 1

� � �
�;� +

��� 1

� � �
�;�: (31)
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Hence, we �nd by integration

U = ln

�
1 + �

a0(1 + �)

�
; (32)

where a0 is a constant. On the other hand, (23) be-
comes, in prolate spheroidal coordinates,

(� � �)[(�2 � 1)U;�� + (1� �2)U;��]

� 2(��� 1)(U;� + U;�) = 0; (33)

and it can be easily checked that (32) is a solution to
(33). Eqs. (14)-(15), giving ~f and ~�, now become

~f (�; �) =
��� 1 + (� � �) tanhU

(� + 1)(�+ 1)
; (34)

~�(�; �) =
�� �

(�+ 1)(�+ 1) coshU
(35)

where U is given by (32). Hence, we immediately �nd

~f =
�2 � 1 + a2

0
(�2 � 1)

(�+ 1)2 + a2
0
(�+ 1)2

; (36)

~� =
2a0(� � �)

(�+ 1)2 + a2
0
(�+ 1)2

: (37)

To interpret this solution, we propose to determine
the corresponding solution of the Ernst equation [4]:

(��� � 1)�� = 2��~r� � ~r�; (38)

where

� = P (�; �) + iQ(�; �); (39)

and

P =
1� ~f2 � ~�2

(1� ~f )2 + ~�2
; (40)

Q =
2~�

(1� ~f )2 + ~�2
: (41)

Then, we �nd

� =
� + a2

0
�

1 + a2
0

+ i
a0(�� �)

1 + a2
0

: (42)

This solution (42) can be easily transformed into the
Kerr solution with the help of the unitary transforma-
tion ei� , de�ned by

a0 = � tan�: (43)

Then, from (42)

�K = ei�� = p�� iq�; (44)

with

p = (1 + a2
0
)�1=2; q = a0(1 + a2

0
)�1=2; (45)

(36) or

q=p = a0; p2 + q2 = 1; (46)

that is to say, we �nd again the Kerr solution.
It can be easily seen that (25) and (36)-(37) satisfy

Eq. (24) by using the relations inverse to (26)-(27),

z � z1 = z1(�� � 1); (47)

r2 = z2
1
(�2 � 1)(1� �2): (48)

Finally, let us note that to �nd again the Schwarz-
schild solution, it su�ces to use the asymptotic behav-
iour of the U potential (32) in (34)-(35), and there is
no need for the explicit solutions (36)-(37).
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