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The physical meaning, the properties and the consequences of a discrete

scalar �eld are discussed; limits for the validity of a mathematical descrip-

tion of fundamental physics in terms of continuous �elds are a natural

outcome of discrete �elds with discrete interactions. The discrete scalar

�eld is ultimately the gravitational �eld of general relativity, necessarily,

and there is no place for any other fundamental scalar �eld, in this con-

text. Part of the paper comprehends a more generic discussion about the

nature, if continuous or discrete, of fundamental interactions. There is a

critical point de�ned by the equivalence between the two descriptions. Dis-

crepancies between them can be observed far away from this point as a

continuous-interaction is always stronger below it and weaker above it than

a discrete one. It is possible that some discrete-�eld manifestations have

already been observed in the 
at rotation curves of galaxies and in the ap-

parent anomalous acceleration of the Pioneer spacecrafts. The existence of

a critical point is equivalent to the introduction of an e�ective-acceleration

scale which may put Milgrom's MOND on a more solid physical basis. Con-

tact is also made, on passing, with in
ation in cosmological theories and

with Tsallis generalized one-parameter statistics which is regarded as proper

for discrete-interaction systems. The validity of Botzmann statistics is then

reduced to idealized asymptotic states which, rigorously, are reachable only

after an in�nite number of internal interactions . Tsallis parameter is then

a measure of how close a system is from its idealized asymptotic state.
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I. INTRODUCTION

Although it is considered that a scalar �eld has not been observed in nature as a

fundamental �eld its use as such is very frequent in the modern literature, particularly

in elementary particles, �eld theory and cosmology. Here we will apply to the scalar

�eld the concepts and results developed in the reference [1], referred here as the paper

I, where the concept of a discrete �eld was introduced and its wave equation and its

Green's function discussed. The standard �eld and its formalism, which for a distinction,

we always append the quali�cation continuous, are retrieved from an integration over

the discrete-�eld parameters. Remarkable in the discrete �eld is that it has none of the

problems that plague the continuous one so that the meaning and origin of these problems

can be left exposed on the passage from the discrete to the continuous formalism [1].

Although the motivations for the introduction of a generic discrete �eld in paper I have

being made on pure physical grounds of causality, a deeper discussion about its physical

interpretation have been left for subsequent papers on speci�c �elds. This discussion will

be retaken here with the simplest structure of a �eld, the scalar one. It would be a too easy

posture to see the discrete �eld as just an ancillary mathematical construct devoid of any

physical meaning, a vision that could be re-enforced with the discrete �eld as a pointlike

signal. The idea of a pointlike �eld may sound weird at a �rst sight but this represents

the same symmetry of quantum �eld theory where �elds and sources are equally treated

as quantized �elds. Here they are seen from a reversed classical perspective. Besides,

pointlike object is not a novelty in physics and one of the major motivations of the string

theory is of avoiding [2] in�nities and acausalities in the �elds produced by point sources;

problems that do not exist for the discrete �eld, according to the reference [3].

This paper is structured in the following way. Section II, on the sake of a brief review of

the mathematical de�nition of discrete �elds, is a recipe on how to pass from a continuous

to a discrete �eld formalism, and vice-versa. The discrete scalar �eld, its wave equation,

its Lagrangian and its energy tensor are discussed in Section III. The paper major contri-

bution begins in Section IV that discusses the consequences of discrete interactions for the

mathematical description of the physical world. Then it gains generality as the discussions

leaves the speci�city of scalar interactions widening to the universality of all fundamental

interactions. Calculus (integration and di�erentiation) which is based on the opposite idea

of smoothness and continuity, has its full validity for describing dynamics restricted then

to a very e�cient approximation in the case of a high density of interaction points, such

that the concept of acceleration as a continuous change of velocity may be introduced in

an e�ective physical description of fundamental interactions. This seems to be an answer

to the Wigner's pondering [4] about the reasons behind the unexpected e�ectiveness of

mathematics on the physical description of the world. It is argued in Section V, after the

results of the Section IV, that the scalar �eld must necessarily describe the gravitational

interaction of general relativity whose character of a second-rank tensor is assured by the

way the scalar �eld is attached to the de�nition of the metric tensor. After decoding
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the physical meaning of the scalar-�eld sources one is led to the unavoidable conclusion

that there is no place, in this context, for the existence of any other fundamental scalar

�eld. This has deeper theoretical and observational implications, discussed in Section VI,

where the possibility that consequences of discrete gravity have already been observed is

considered. This would set experimental limits on the validity of general relativity as an

e�ective �eld theory. Contact is made, on passing, with in
ationary cosmology and with

the Tsallis's statistics. The paper ends with some concluding remarks in Section VII.

II. FROM CONTINUOUS TO DISCRETE

For a concise introduction of the discrete-�eld concept it is convenient to replace the

Minkowski spacetime 
at geometry by a conical projective one in an embedding (3+2)


at spacetime:

fx 2 R4g ) fx; x5 2 R5j(x5)2 + x2 = 0g; (1)

where x � (~x; t) and x2 � ���x
�x� = j~xj2 � t2: So a change �x5 on the �fth coordinate,

allowed by the constraint (�x5)2+(�x)2 = 0; is a Lorentz scalar that can be interpreted

as a change �� on the proper-time of a physical object propagating across an interval

�x : �x5 = �� = �
q
(�t)2 � (�~x)2:

The constraint

(� � �0)
2 + (x� x0)

2 = 0 (2)

de�nes a double hypercone with vertex at (x0; �0); whilst

(� � �0) + f�(x� x0)
� = 0 (3)

de�nes a family of hyperplanes tangent to the double hypercone and labelled by their

normal1 f�, a constant four-vector. The intersection of the double hypercone with a

hyperplane de�nes its f -generator tangent to f� (f� := ���f�): A discrete �eld is a �eld

de�ned with support on this intersection (extended causality) in contraposition [1] to the

continuous �eld, de�ned with support on a hypercone (local causality):

�f(x; � ) := �(x; � )
��� ��+f:�x=0

��2+�x2=0

:= �
���
f
: (4)

The symbol jf is a short notation for the double constraint in the middle term of Eq. (4).

The constraint (4) induces the directional derivative (along the �bre f , the hypercone

f -generator)

1The Eq. (3) can be written in R5 as fM�xM = 0; M = 1; 2; 3; 4; 5 with fM = (f�; 1)
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r��f (x; � ) := (@� � f�@� )�f(x; � ): (5)

An action for a discrete scalar �eld is

Sf =
Z
d5x

n1
2
���r��f (x; � )r��f (x; � )� �f(x; � )�(x; � )

o
; (6)

where d5x = d4xd� , and �(x; � ) is the source for the scalar �eld. There can be no mass

term in a discrete-�eld Lagrangian because it would imply on a hidden breaking of the

Lorentz symmetry with non-propagating discrete solutions of the �eld equations. In other

words no physical object could be described by such a Lagrangian with an explicit mass

term. Nevertheless, as discussed in paper I, the action (6) still describes both, massive

and massless �elds. The mass of a massive discrete �eld is implicit on its propagation

with a non-constant proper-time. Eq. (6) is a scale-free

action expressing the (1+1)-dynamics of a discrete �eld, massive or not, on a �bre f ;

a mass term would break its conformal symmetry [1].

Then the �eld equation and the tensor energy for a discrete �eld are, respectively,

���r�r��f (x; � ) = �(x; � ); (7)

T ��
f = r��fr

��f �
1

2
���r��fr��f : (8)

They must be compared to the standard expressions for the continuous �eld:

(���@�@� �m2)�(x) = �(x); (9)

T ��(x) = @��@���
1

2
���@��@�� (10)

which can be obtained from the action

S =
Z
d4x

n1
2
���@��f@��f �

m2

2
�2 � �(x)�(x)

o
; (11)

So, the passage from a continuous to a discrete �eld formalism can be summarized in the

following schematic recipe (the arrows indicate replacements):

8><
>:
fxg ) fx; x5g;

�(x) =) �(x; � )
���
f
;

@� )r�;

(12)

accompanied by a dropping of the mass term from the Lagrangian. Moreover a discrete

�eld requires a discrete source [1]. A continuous �(x) is replaced by a discrete set of

pointlike sources �(x; � ). Any apparent continuity is reduced to a question of scale in the

observation. �(x; � ) is, like �f(x; � ), a discrete �eld de�ned on a hypercone generator too,

which just for simplicity, is not being considered here. This is a symmetry between �elds
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and sources: they are all discrete �elds, and the current density of one is the source of

the other.

Reversely, in the passage from discrete to continuous, the continuous �eld and its �eld

equations are recuperated in terms of e�ective average �elds smeared over the hypercone

�(x; � ) =
1

2�

Z
d4f�(f2)�f (x; � ): (13)

This passage provokes the appearing of the mass term and the breaking of the conformal

symmetry of the action (6). This has been explicitly proved, for both the massive and

the massless �elds, in the reference [1].

III. THE DISCRETE SCALAR FIELD

Comparing the actions of Eqs. (6) and (11) one should observe that the �rst one con-

tains explicit manifestations only of the constraint (3) through the use of the directional

derivatives (5), but not of the constraint (2). This one is only dynamically introduced

through the solutions of the �eld equation, like it happens also (local causality) in the

standard formalism of continuous �elds [6]. As a matter of fact all the information con-

tained in the new action (6) can be incorporated in the old action (11), without its mass

term, with the simple inclusion of the constraint (3)

SP =
Z
d4xd��(�� + f:�x)

n1
2
���@��@��� �(x; � )�(x; � )

o
; (14)

as the very restriction to the hyperplane (3) by itself implies on the whole recipe (12). P

in Eq. f(14) stands for any generic �xed point, the local hypercone vertex: P = (x0; �0);

�� = � ��0 and �x = x�x0: Local causality, dynamically implemented through the �eld

equations, imply that the �eld propagates on a hypercone (the lightcone, if a massless

�eld) with vertex on P; which is an event on the world line of �(x; � ). The constraint

(3) included in this action (14) further restricts the �eld to the �ber f , expressing an

extended concept of causality [1,5].

Whereas there is no restriction on �(x) for a continuous �eld, for a discrete one, as

already mentioned, it must be a discrete set of point sources. A continuously extended

source would not be consistent as it would produce a continuous �eld. The source of a

discrete scalar �eld is given by

�(x; tx = tz) = q(�z)�
(3)(~x� ~z(�z))�(�x � �z); (15)

where z(� ) is its world line parameterized by its proper time � ; q(� ) is the scalar charge

whose physical meaning will be made clear later. The sub-indices in t and � specify the

respective events x; y and z. That tx must be equal to tz on the left-hand side of Eq. (15)

is a consequence of the deltas on its right-hand side and of the constraint (2). Initially, it
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is assumed that both _q � dq

d�
and �q � d _q

d�
exist and that they may be non null. The �eld

eq. (7) is solved by

�f (x; � ) =
Z
d5yGf(x� y; �x � �y)�(y; �y) (16)

with

���r�r�G(x; � ) = �(5)(x) = �(� )�(4)(x): (17)

The discrete Green's function associated to the Klein-Gordon operator is given [1] by

Gf (x; � ) =
1

2
�(bf4t)�(b� )�(� + f:x); ~xT = 0; (18)

where b = �1; and �(x) is the Heaviside function, �(x � 0) = 1 and �(x < 0) = 0:

The labels L and T are used as an indication of, respectively, longitudinal and transversal

with respect to the space part of f : ~f :~xT = 0 and xL =
~f:~x

j~fj
.

Remarkably Gf (x; � ) does not depend on anything outside its support, the �bre f , as

stressed by the append ~xT = 0. One could retroactively use this knowledge in the action

(6) for rewriting it as

Sf =
Z
d5x�(2)(~xT)

n1
2
���r��fr��f � �f(x; � )�(x; � )

o
; (19)

just for underlining that the �bre f induces a conformally invariant (1+1) theory of

massive and massless �elds, embedded in a (3+1) theory, as generically discussed in

paper I. Actually, the factor �(2)(~xT) is an output of the actions (6) or (14) (it is not

necessary to put it in there by hand) and it can never be incorporated as a factor in the

de�nition (18) of Gf (x; � ), except under an integration sign as in Eqs. (16) and (19).

Then one could, just formally, use

�[f ](x� z; �x � �z) = q(� )�(�x� �z)�(tx � tz)�(xL � zL); (20)

where �[f ] represents

the source density � stripped of its explicit ~xT-dependence, for reducing the action to

Sf =
Z
d�xdtxdxL

n1
2
���r��fr��f � �f(x; � )�[f ](x; � )

o
; (21)

by just omitting the irrelevant transversal coordinates. Eq. (6) then, after its output Eq.

(18), is formally equivalent to Eq. (21). But we should observe that this is no more than a

formal expression once �[f ] then represents just an event, the intersection of the worldline

of �(x), whose support is not f , with the �bre f , support of �f (x). See the Figure 1.
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f

ρ[f]

ρ(x)

ρ(x)

Fig. 1. The meaning of �[f ]: the value of �(x) at the speci�c point de�ned by the

intersection of the worldline of �(x), whose support is not f , with the �bre f , support of

�f (x).

The solutions from Eq. (9), with m = 0, for a point source are well known massless

spherical waves propagating (forwards or backwards in time) on a lightcone in contradis-

tinction to the solutions (18) that are, massive or massless point signals propagating

always forwards in time on a straight line, a generator of the hypercone (2). Being mas-

sive or massless is determined by � being constant or not, as discussed in paper I. For a

massive �eld, its mass and its timelike four velocity are hidden behind a lightlike f and a

non-constant � ; they become explicit only after the passage from discrete to continuous

�elds. But as it will be made clear in Section V, there is no point on considering a massive

discrete scalar �eld because any discrete scalar �eld must be associated to the gravita-

tional �eld of general relativity. So massive discrete scalar �elds will not be considered

here any further. With b = +1 and f4 � 1 which implies an emitted �eld, one has from

Eqs. (18) and (15) that

�f (x; �x) =
Z
d5y�(tx � ty)�(�x � �y)�[�x � �y + f:(x� y)]q(�z)�

4(y � z) =

=
Z
d�y�(tx � ty)�(�x � �y)�[�x � �y + f:(x� y)]q(�z); (22)

where an extra factor 2 accounts for a change of normalization with respect to Eq. (18) due

to the exclusion of the annihilated �eld (which corresponds in Eq. (13) to the integration

over the future lightcone). Then,

�f (xL; ~xT = ~zT; tx; �x = �z) = �(tx � tz)�(�x � �z)q(�z)
���
f:(x�z)=0

(23)

or for short, just

�f (x; � ) = q(� )�(t)�(� )
���
f
: (24)
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r�(t) and r�(� ) do not contribute [1] to r�f ; except at x = z(� ); as a further

consequence of the �eld constraints. So, for t > 0 and (therefore) � � 0 one can write

just

�f(x; �x) = q(�z)
���
f

(25)

r��f = �f� _q
���
f

(26)

With Eq. (26) in Eq. (8) one has

T ��
f (x; �x) = f�f� _q2

���
f

(27)

The �eld four-momentum, given by
R
T ��n�d� for a continuous �eld, is reduced, thanks

to the �eld pointlike character and to its independence from the transversal coordinates,

to

p�f = T ��
f n� = f� _q2

���
f

(28)

where n is a spacelike four vector [1] such that n:f = 1. The conservation of the energy-

momentum content of �f is assured then just by f being lightlike, f2 = 0;

r�T
��
f = �2f�f

�f� _q�q
���
f
= 0: (29)

It is justi�ed naming �f a discrete �eld because although being a �eld it is not null

at just one space point at a time; but it is not a distribution, a Dirac delta function,

as it is everywhere and always �nite. Its di�erentiability, in the sense of having space

and time derivatives, is however assured by its dependence on � , a known continuous

spacetime function. It is indeed a new concept of �eld, a very peculiar one, discrete

and di�erentiable; it is just a �nite pointlike spacetime deformation projected on a null

direction, with a well de�ned and everywhere conserved energy-momentum. It is this

discreteness in a �eld that allows the union of wave-like and particle-like properties in a

same physical object (wave-particle duality); besides this implies [13] �niteness and no

spurious degree of freedom (uniqueness of solutions).

IV. DISCRETE PHYSICS

According to Eq. (25), the �eld �f is given, essentially, by the charge at its retarded

time, i.e. the amount of scalar charge at z, the event of its creation. It has a physical

meaning, in the sense of having an energy-momentum content, when and only when

_q 6= 0. So, the emission or the absorption of a scalar �eld is, respectively, consequence

or cause of a change in the amount of scalar charge on its source. This is so because

emitting or absorbing a scalar �eld requires a change in the state of its source which is so
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poor of structure that has nothing else to change but itself, and this is fundamental for

determining the scalar-charge nature. The picture becomes clearer after recalling that we

are dealing with discrete �eld and discrete interactions which implies that the change in

the state of a �eld source occurs at isolated events. q(� ) is not a continuous function:

q(� ) :=
X
i

q�i+1
��(�i+1 � � )��(� � �i); (30)

where

��(x) =

8><
>:
1; if x > 0;

1=2; if x = 0;

0; if x < 0,

(31)

and the index i labels the interaction points on the source worldline, i = 1; 2; 3 : : :. For a

given � only one, or at most two terms contribute to the sum in Eq. (30)

q(� ) =

8>>>>>><
>>>>>>:

q�j; if �j < � < �j+1;

q�j�1+q�j
2 ; if � = �j;

q�j�1; if �j�1 < � < �j ,

(32)

as indicated in the graph of the Figure 2.

j-1

j+1

q

q

j
q

j-1 jτ τ j+1
τ

q(τ)

τ

Fig. 2. Discrete changes on a discrete scalar charge along its worldline. A discrete scalar

charge is so poor of structure that there is nothing else to change but itself. There is

change in the state of a scalar source only at the interaction points on its worldline which

is labelled by its proper time. If only the (discrete) interaction points are relevant the

proper time may be treated as a discrete variable. In the limit of a worldline densely

packed of interaction points a continuous graph is a good approximation.
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The change in the state of the scalar source is not null only at the (discrete) interac-

tion points and so, rigourously, it cannot be de�ned as a time derivative, as there is no

continuous variation, just a sudden �nite change. The naive use of

_q = q(� )�(� � �z); (33)

would be just an insistence on an unappropriate continuous formalism, besides arti�cially

introducing in�nities where there is none. It means that one must replace time derivatives

by �nite di�erences

_q(� ))

(
�q�j if � = �j;

0 if � 6= �j,
(34)

and a proper-time integration by a sum over the interaction points on the charge. The ex-

istence and meaning of any physical property that corresponds to a time derivative must

be reconsidered at this fundamental level. Velocity (v) exists as a piecewise smoothly con-

tinuous function (discontinuous at the interaction points). Acceleration (a) and derivative

concepts like force (F ), power (P ), etc rigorously do not exist. We must deal with �nite

di�erences, respectively, the sudden changes of velocity (v), momentum (p) and energy

(E): 8><
>:
a) �v

F =) �p

P ) �E

(35)

The observability of an interaction discreteness is in fact controlled by the ratio (�qj
��j

) of

the two parameters �qj and ��j shown in the Figure 2, as the validity of an approximative

continuous description of fundamental interactions requires the existence of

_qj =
�qj ! 0

��j ! 0
6= 0; (36)

which is interpreted as a time derivative of q(� ); taken as a smooth continuous function

of �: But actually

�Xj ! 0 (37)

has the meaning that both discrete changes, �qj and ��j , are smaller than their re-

spective experimental thresholds of detectability, which, of course, is existing-technology

dependent. For two-body interactions ��j is twice the 
ying time between them and is

then proportional to their space separation,

��j =
2R

c
:

See the Figure 3. For a large number of interacting bodies ��j is a statistical average time-

interval between two consecutive interaction events on one body worldline. It decreases
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with the number of participants, and therefore, in the case of gravitational interaction,

with the masses of the macroscopic interacting bodies.

∆τ

R

Fig. 3. Discrete two-body interactions. ��j is the time interval between two consecutive

interaction events on a worldline.

�qj is interaction dependent. It de�nes the interaction symmetry. Therefore, �qj
��j

would diverge if ��j; but not �qj, would satisfy Eq. (37), and it would unduly2 be

null in the case of only �qj; but not ��j; satisfying it. The interaction strenght is

described by the limit of �qj
��j

(as a time derivative of q(� )) for a continuous interaction,

and by both independent parameters �qj and ��j for a discrete one. For a discrete

interaction the ratio �qj
��j

has no special meaning. Both results, in�nity and an undue

zero, evince the existence of two demarcating points, a near and a far one, signalizing

the inadequacy of the approximative continuous-interaction description. The two points

delimit the range of the ratio-parameter �qj
��j

where there is no observationally detectable

di�erence between a discrete and a continuous interaction. This de�nes the domain of

validity of a continuous �eld as an e�ective physical description. A continuous �eld is then

stronger below the near point and weaker above the far one than its corresponding discrete

�eld. Outside the range delimited by these points a discrete-interaction description must

be used. This is schematically represented in Figure 4 that superposes, with two graphs

q�R, both the continuous and the discrete descriptions of a given interaction. For the sake

of simplicity, the discrete description is also represented by a smooth and continuous curve.

The region delimited by the two curves and the demarcating points is, by de�nition, not

resolved with the present technology. The two demarcating points, near and far, represent

2Because the actual interaction is not null.
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the experimental resolution thresholds of the two descriptions. They are, by de�nition,

dependent of the existing technology but there is, inside this region, a critical point

of absolute equality of the two descriptions, de�ned by the two-curve crossing, which is

technology independent. The existence of this critical point sets a scale for the interaction

strenght in terms of an e�ective time derivative of q(� ). The discrete �eld formalism, we

remind, being conformally symmetric [1], is scale free.

R

c

d

CritNear Far

Int

Fig. 4. Two descriptions for a same interaction: continuous (cc) and discrete (dd). For

convenience the discrete one is approximated by a smoothly continuous curve. The near

and the far demarcating points delimit the thresholds of existing technology for resolving

the two curves. The critical point, de�ned by the two-curve crossing is technologically

independent and represents a fundamental scale for the interaction intensity in terms of

an e�ective derivative of q(� ).

The two curves are just, respectively discrete and continuous, representations of a given

generic interaction. We are interested on their asymptotic regions where, in principle,

discrepancies between them can be detected. An interaction where ��j but not �qj goes

to zero with the distance R, diverges in the continuous description as �qj
��j

goes to in�nity

whereas it remains �nite in the discrete one. In the discrete description the interaction is

always �nite, no matter how strong. It has been discussed in [3,5,7] for both the gravity

and the electromagnetic �eld. The inconsistencies of the continuous �elds, made explicit

through divergences and causality violations, disappear with the discreteness, with the

existence of a non null lapse of time between two consecutive interaction points, or in

other words, with the recognition that each interaction point is an isolated event.

In the far asymptote, for an interaction with

�qj � const > 0; (38)

_q in the continuous description goes to zero as R (and therefore ��j) goes to in�nity

whereas the discrete one tends to a �nite and constant value. It just becomes more and

more intermittent but not necessarily goes to zero.
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At very large distances where ��j becomes detectable the �eld asymptotic limit should

reveal its discrete nature. Actually this possibility is spoiled, in the case of a matter-

polarizing �eld like the electromagnetic one, by the shielding e�ect: The �eld is canceled

before ��j grows to the point of detectability. This, of course, does not happen to gravity

and so e�ects of this expected discreteness must be observed but this discussion will be

deferred to Section VI.

Careful observation at both small and large distances for these cases should reveal that

the strength of the actual interaction (�qj), respectively, grows and decreases at a smaller

rate than the theoretical prediction from a continuous interaction. When observed, in a

context of continuous interactions, these e�ects may require the use of regularization and

renormalization techniques or may give origin to various misleading interpretations like

the existence of new forms of fundamental continuous interactions or of strange and yet

to be observed form of matter, for example. Calculus (integration and di�erentiation) in

a discrete-interaction context becomes useless for a rigorous description of fundamental

physical processes. But in practice such a detailed strictly discrete calculus is not always

necessary and in some cases may not even be feasible. What e�ectively counts is the

scale determined by ��j, the time interval between two consecutive interaction events,

face the accuracy of the measuring apparatus. The question is if ��j is large enough

to be detectable, or how accurate is the measuring apparatus used to detect it. The

density of interaction points on the world line of a given point charge is proportional to

the number of point charges with which it interacts. Let one consider the most favorable

case of a system made of just two point charges. As the argument is supposedly valid

for all fundamental interactions one can take the hydrogen atom in its ground state for

consideration, treating the proton as if it were also a fundamental point particle. The

order of scale of ��j for an electron in the ground state of a hydrogen atom is given then

by the Bohr radius divided by the speed of light

��j � 10�18s

which corresponds to a number of �
�
� 400 interactions per period (� is the �ne-structure

constant) or � 1010 interactions/cm. So, the electron worldline is so densely packed with

interaction events that one can, in an e�ectively good description for most of the cases,

replace the graph of the Figure 2 by a continuously smooth curve. The validity of calculus

in physics is then fully reestablished in the interval between the two demarcating points

as a consequence of the limitations of the measuring apparatus. The Wigner's questions

[4] about the unexpected e�ectiveness of mathematics in the physical description of the

world is recalled. The answer lies on the huge number of point sources in interaction (a

su�cient condition), the large value of the speed of light and the small (in a manly scale)

size of atomic and subatomic systems, which indirectly is a consequence of h, the Planck

constant.

Even in these situations where ��j may not be measurable, at least with the present

technology, the discrete formalism is justi�ed not for replacing the continuous one where
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it is best, which is con�rmed by high precision experiments [23,20] but mostly for de�ning

and understanding its limitations. There are, besides this very generic justi�cation, many

instances of one-interaction-event phenomena, like the Compton e�ect, particle decay,

radiation emission from bound-state systems, etc, where discrete interactions are the

natural and the more appropriate approach. These are, of course, all examples of quantum

phenomena, but primarily because quantum here implies discreteness.

A. Discrete-continuous transition

It would be interesting to have a framework where this change from continuous to

discrete interaction and vice-versa could be formally realized in a simple and direct way.

One can deal with them considering the behaviour under a derivative operator of ��(� )

which is the mathematical description of the interaction discreteness. Then one must

require that, symbolically

@

@�
��(� � �i) := ���i; (39)

with ���i the Kronecker delta

���i =

8><
>:
1; if � = �i;

0; if � 6= �i,

(40)

with the meaning that at the points where the left-hand side of Eq. (39) is not null, which

are the only relevant ones, � must be treated as a discrete variable and that the operator
@
@�

must be seen as (or replaced by) just a sudden increment � and not as the limit of

the quotient of two increments.

Then with such a convention one has from Eq. (30) that

r�q(� )
���
f
= �f�

X
i

q�if
��(�i+1 � � )���i � ��i+1�

��(� � �i)g := �f� _q(� ); (41)

which implies that _q(� ) is null when z(� ) is not a point of interaction on the charge world

line. For such an interaction point �j one has

_q(�j) = q�j
��(�j+1 � �j)� q�j�1

��(�j � �j�1) = q�j � q�j�1 (42)

or, generically

_q(� ) =

8><
>:
�qi = q�i � q�i�1 for � = �i;

0 for � 6= �i,

(43)

and, from the middle term of Eq. (41)
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rf
�r

f
�q(� ) = �2f�f�

X
i

q�i���1��i+1� = 0: (44)

In Eq. (41) i labels the vertices and only these points on the world line contribute. That is

why one has to de�ne Eq. (39). In a limit where a summation over imay be approximated

by a time integration the Kronecker delta may be replaced by a Dirac delta function and

then one may have Eq. (33) as a good operational approximation to Eq. (43).

Therefore we understand Eqs.(25,26) as meaning, respectively

�f(x) = q(� )
���
f
=

8>>>>><
>>>>>:

q�j+1

���
f

if �j < �ret < �j+1

q�j+1+q�j
2

���
f

if �ret = �j

(45)

and

r��f(x) = �f��q(� )
���
f
=

8>><
>>:
�f�(q�j+1 � q�j)

���
f

if �ret = �j

0 if �ret 6= �j

(46)

The �eld �f (x; � ) is just like an instantaneous picture of its source at its retarded time;

a travelling picture. If z(�ret) is not a point of change in the source's state, �f(x) is not

endowed with a physical meaning as its energy tensor is null. A physical discrete �eld

always corresponds to a sudden change in its source's state at its retarded time. If there

is no change the �eld is not real, in the sense of having zero energy and zero momentum.

Having no physical attribute it corresponds to a pure \gauge �eld" of the continuous

formalism.

V. SCALAR FIELD AND GENERAL RELATIVITY

It takes an external agent to cause a change �q on the charge q of a scalar source; a

positive �q means that a scalar �eld �f (x; � ) has been, say, absorbed whereas a negative

one means then an emission. Therefore, a discrete scalar �eld carries itself a charge �q

and can, consequently, interact with other charge carriers and be a source or a sink for

other discrete scalar �elds. It carries a bit of its very source, a scalar charge; it is an

abelian charged �eld. On the other hand a new look at equations (28) and (43) reveals

that (�qj)2 describes the energy-momentum content of the �eld. So, the source of a

discrete scalar �eld is any physical object endowed with energy which corresponds then

to the scalar charge. Energy, of course, is a component of a four-vector and not a Lorents

scalar. Its four-vector character comes from the f� factor in Eq. (28): the energy of

�f (x; � ) is the fourth component of the current of its squared scalar charge. The scalar

charge conservation is therefore assured by and reduced to the conservation of energy

and momentum given by Eq. (29). Considering the relativistic mass-energy relation this
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implies that the discrete scalar �eld satis�es the Principle of Equivalence and that all

physical objects interact with the scalar �eld through its energy-tensor. This is a form

of the Principle of Universality of gravitational interaction, introduced by Moshinski [25].

So, �f(x; � ) must necessarily be connected to the gravitational �eld. Having necessarily

energy for source implies on an important consequence of uniqueness, of excluding the

existence of any other distinct fundamental discrete scalar �eld as it must necessarily

be taken as the gravitational �eld3. Moreover, as energy is not a scalar, the symmetry

between discrete �elds and sources, both taken as fundamental �elds, implies also that

there should be no fundamental scalar source representing an elementary �eld; it must

be a scalar function of a non-scalar fundamental �eld, like the trace of an energy tensor,

for example. This lets then explicit a known symmetry of nature: the four fundamental

interactions are described by gauge �elds having vector currents for sources (j = qv; as

they are pointlike sources), including gravity since the energy tensor is just a current of its

charge, the four-vector momentum. So, this symmetry is not broken with gravity being a

second-rank tensor �eld.

This possible physical interpretation is compatible with the General Theory of Relativity,

according to the work done in the references [7,26], where a discrete gravitational �eld

de�ned by

gf��(x) = ��� � �f�f��f(x; � ); (47)

as a point deformation in a Minkowski spacetime, propagating on a null direction f , upon

an integration on f , in the sense of Eq. (26), reproduces the standard continuous solutions.

That gravity be either totally [8] or partially [19,20] described by a scalar (continuous)

�eld is an old idea [10{12], but Eq. (47) implies on regarding gravity as being ultimately

described by a discrete scalar �eld in a metric theory. With the metric in this form the

Einstein's �eld equations

R�� �
1

2
g��R = �T�� (48)

is reduced [7] to

f�f��
��r�r��f(x; � ) = �T��; (49)

as the gauge condition used in [7]

f�r��f(x; � ) = 0 (50)

becomes an identity after Eq. (26), as f2 = 0.

3There would be no point on assuming that a same charge could be the source of two or more

distinct �elds with the same characteristics
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Inherent to discrete �elds, irrespective of their tensor or spinor character, is the implicit

conservation of their sources as a consequence of their (discrete �elds) very de�nition4.

This is discussed in Section V of paper I. So, whereas T ��;�= 0 is assured by the symmetry

of the Einstein tensor on the left-hand side of Eq. (48), in Eq. (49) it is just a consequence

(see Eq.(29)) of Eq. (26). This symmetry of the Einstein tensor is in this way similar to

the one of the Maxwell tensor that assures charge conservation in the standard continuous-

�eld formalism but that is a consequence of extended causality (discrete-�eld de�nition)

and Lorentz symmetry [13] in a discrete-�eld approach.

The Eq. (47) reminds an old derivation [24] of the �eld equations of general relativity

by consistent re-iteration of

g�� (x) = ��� + �h(x)��; (51)

as solution from a gauge invariant wave equation for the �eld g�� (x) in a Minkowski

spacetime. The non-linearity of the Einstein's equations comes from contribution to

g�� (x) from all terms of higher orders in h��. Therefore, the results obtained in the

reference [7] imply that if h�� is ultimately a discrete scalar �eld

h�� = f�f��f (x; � );

there is no higher order contribution essentially because f2 = 0. A discrete �eld has no

self-interaction, a consequence of its de�nition (4) and that is explicitly exhibited in its

Green's function (18). Discrete �elds are solutions from linear equations. Whereas this

is true for gf�� of Eq. (47) it is not for its f -averaged g�� of Eq. (51). The non-linearity

of general relativity appears here then as a consequence of the averaging process of Eq.

(13) that e�ectively smears the discrete �eld over the

lightcone, erasing all the information contained in f . The interested reader is addressed

to the references [7] and [26].

On the other hand the energy tensor in Eq. (49) must be traceless, also a consequence

of f2 = 0. This reminds an old known problem in standard �eld theory that comes when a

massless theory is taken as the (m! 0)�limit of a massive-�eld theory [15{19], but for a

discrete �eld, in contradistinction, a traceless tensor does not necessarily mean a massless

source [1]. The wave equation (49) must be preceded by some careful quali�cations,

however. A discrete �eld requires a discrete source. The source in Eq. (49) must be

treated as a discrete set of point sources T f
��(x; � ) for which f�T f

��(x; � ) = 0. This implies

that there is no exterior solution for a discrete gravitational �eld, only vacuum solutions.

Any interior continuous solution must be seen then as an approximation for a densely

packed set of point sources. From the discrete vacuum solution of Eq. (49) one can,

in principle, with an integration over its f -parameters, obtain any continuous vacuum

4Schematically: j� = qv� ) r�j
� = �qa�f� � 0 as a:f � 0; according to Eq. (22) of [1].
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solution of an imposed chosen symmetry5 [7]. This justi�es, up to a certain point, not

regarding the right-hand side of Eq. (47) as just the �rst two terms of a series of possible

contributions from higher rank tensors. Even for a massive point-source, however, being

itself a discrete �eld, T f
�� cannot be expressed in terms of its mass and of its actual four-

velocity v. A traceless T f
��(x; � ) with f�T f

��(x; � ) = 0 does not necessarily represent a

massless source nor f represents its four-velocity, as discussed in Section V of paper I.

The geometrical description of gravity as the curvature of a pseudo-Riemannian space-

time has its validity, in the range of the ratio parameter (36) limited by the two demarcat-

ing points of the Figure 4, always assured as an absolutely good approximation due to the

high density of interaction points in any real measurement, as discussed in the previous

section.

VI. THEORY AND OBSERVATIONS: POSSIBLE LINKS

In this section we want to make some brief comments on some possible theoretical and

observational evidences of direct consequences of interaction discreteness, particularly in

gravity. The comparison between the discrete and the continuous description of an in-

teraction leads to the existence of the critical point and of experimental thresholds (near

and far) for resolving the interactions, as shown in the Figure 4. The interior segment,

between these two values, de�nes the domain of validity of the continuous-interaction

approximation where the polygonal worldline of the sources are so densely packed of in-

teraction points that they can be e�ectively replaced by smoothly continuous curves and

the concept of acceleration and of spacetime curvature at a point on the worldline make

sense. We are not proposing, it is worth emphasizing, the replacement of general relativity

in its domain of validity by a discrete scalar �eld theory of gravity, and similar statements

should be assumed for other �eld theories. The point is that in this domain, i.e. for �qj
��j

between the two demarcating points, it cannot make, by de�nition, any experimentally

detectable di�erence. Considering the small strength of its coupling the gravitational in-

teraction is irrelevant for physical systems involving relatively few fundamental elements.

Even a gravitational Aharanov-Bohm-like experiment [21] would require the gravitational

�eld of a macroscopically large object, like the Earth. The su�cient condition for a high

density of interaction points is assured and justi�es continuous descriptions of gravity, of

which general relativity seems to be the best proposal [20]. Moreover the undectability

of discrete gravity in this region is tantamount to the unobservability of the Minkowski

spacetime. At this level of approximation the Minkowski spacetime becomes the local

tangent space of an e�ective curved space-time and f a generator of the local hypercone

in its tangent space. This would lead to full general relativity in accordance to a general

5From the superposition of the discrete �elds of a spherical distribution of massless dust one

retrieves the Vaydia metric [22].
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uniqueness result [9,27] that any metric theory with �eld equations linear in second deriva-

tives of the metric, without higher-order derivatives in the �eld equations, satisfying the

Newtonian limit for weak �elds and without any prior geometry must be exactly Einstein

gravity itself. This reminds again the already mentioned [24] derivation of general relativ-

ity from 
at spacetime but now with the distinctive aspect that the e�ective Riemannian

spacetime comes not from a consistency requirement but as an approximation validated

by the limitation of our experimental capacity, which can always be improved, be placed

on more stringent limits, but never be totally eliminated.

On the other hand, outside this region, i.e. below or above the thresholds, the discrep-

ancies between a discrete and a continuous interaction cannot be overlooked. This casts

doubts on the results about asymptotic �elds and their singularities of any continuous-

�eld theory. By the way, considering that the discrete �eld is weaker than the continuous

one in the origin neighborhoods we can suggest or expect that the discrete �eld may give

an explanation to in
ation or at least alleviate its need in cosmological theories.

A. Discrete Newtonian potentials

The evolution of a system through a sequence of n discrete interactions is described

by a series involving combinatorials of n, i.e. n(n � 1)(n � 2) : : : This is a natural con-

sequence of discrete interactions: power series replacing continuous functions obtained

from integrations of di�erential equations. The evolution of any system is given in terms

of power series. A continuous interaction, irrespective of its duration, would always be

equivalent to an in�nite n. This is the meaning of a conservative potential and this is

why a continuous interaction invariably has problems with in�nities. Just for the sake

of illustrating this very important point let us, anticipating some results6, consider the

much simpler case of a radial motion with a non-relativistic axially symmetric interac-

tion (a logarithmic e�ective potential, an e�ective inversely-proportional-to-the-distance

acceleration). This symmetry implies that the change in speed at each interaction is a

(very small) constant �. For initial conditions taken, right after an interaction event, as

r(t0) = r0;

v(to) = v0;

the next interaction will occur at

t1 = t0 +�t0 = t0 + �r0;

6This will be presented with details elsewhere. Its anticipation here is just for the sake of

illuminating the arguments.
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where � is also a very small constant, and

v(t1) = v1 = v0 ��;

r(t1) = r0 + v0�r0 = (1 + �v0)r0;

as there is free propagation between any two consecutive interactions. Therefore, for the

nth interaction

rn = rn�1 + vn�1�tn�1 = (1 + �vn�1)rn�1 = r0 q
n�1
i=0 (1 + �vi); (52)

with

vi = v0 � i�: (53)

Then, from Eq. (52),

rn
r0

= 1 + �
n�1X
i1=0

vi1 + �2
n�1X
i1=0

n�1X
i2=i1+1

vi1vi2 : : :+ �n�1(
n�1X
i1=0

n�1X
i2=i1+1

: : :
n�1X

in�1=in�2+1

)vi1vi2 : : : vin�1;

(54)

a �nite series that with the use of Eq. (53) exhibits the following structure

rn
r0

= 1 + �(
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If n >> 1, by considering just the largest contribution from each term in this �nite series

we have

rn
r0

= 1 + �n(v0 �
n�

2
) +

�2n2

2
(v0 �

n�

2
)2 +O(�3); (56)

or

rn
r0

=
n�1X
k=0

1

k!
[�n(v0 �

n�

2
)]k: (57)

From Eq. (53), we have

n =
v0 � vn

�
;

which in Eq. (57) produces

rn
r0

=
n�1X
k=0

1

k!
[
�

�

(v20 � v2n)

2
]k: (58)
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The bigger is n the better this �nite series can be approximated by an exponential

rn
r0
� exp(

�

�

(v20 � v2n)

2
); (59)

which can be re-written as

v20
2
+

�

�
ln r0 �

v2n
2
+

�

�
ln rn = const: (60)

This is energy conservation with an e�ective potential energy given by

U(r) =
�

�
ln r: (61)

Then, for the gravitational interaction we identify the constants as

GM =
�

�
;

where M is the central mass. An in�nite n would make the right-hand side of Eq.

(61) to be an exact expression (in the corresponding classical, non-relativistic limit) for

the e�ective potential energy but as n may at most be a huge but �nite number this

represents just the sum of the largest contribution from each term in this series. In other

words, the right-hand side of Eq. (61) is just an e�ective expression with a large but

limited domain of validity due to neglecting the smaller terms in the combinatorials. So,

remarkable here is not only the appearing of the Newtonian potential as an e�ective �eld

but also its asymptotic character: Energy is conserved at each interaction but the exact

mathematical expression of the potential energy is given by Eq.(61) only after an in�nite

number of interactions.

B. The essential question

The essential question that is posed now is which is the true nature of fundamental

interactions: Continuous or discrete? This must be an experimentally based decision but

there are some arguments favoring7 the discrete case:

Continuous interactions are plagued by in�nities and causality problems. They are

inherent to the continuous hypothesis. The discrete interaction is free of them and can

pro�tably reproduce the entire continuous formalism in terms of e�ective continuous in-

teractions. The continuous case is contained in the discrete one. The immediate pro�ts

are the many ad hoc features of continuous �elds but that are natural consequences of

either a discrete �eld or from the discrete-to-continuous passage. The following subsection

considers further implications of interaction discreteness.

7The reasons have been detailed on the references [1,3,5,7,13,14,26]. Parts of the old ones may

have been superseded by the more recent ones.
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C. Boltzmann and Tsallis Statistics

With discrete interactions we, rigorously, do not have di�erential equations nor integra-

tions. The evolution of any system is done through sudden and discrete �nite di�erences

that are just superimposed. Between two consecutive interaction points every point like

component just moves freely on straight lines. All exact physical statements are expressed

as �nite power series involving those combinatorials. This is a general statement in the

sense that any physical system, even a macroscopic one, composed by an immense number

of point like fundamental elements has its states, its conservation laws, its evolution, its

statistical distributions, etc. described in terms of power functions. This is so because

there are no exact smoothly continuous solutions but segments of straight lines or as an

idealized limit which should be attainable only after an in�nite number of steps. An

in�nite number does not exist, and in�nity is just an idealized concept of a limit, of an

unreachable boundary. Being so, the world is surprisingly simpler and our standard vision

of it is richer of such idealized, unreachable concepts than we had previously conceded.

A whole paraphernalia of mathematical tools, so useful in physics - di�erential equations,

integrations, di�erential geometry, topology, just for citing a few - and so many familiar

and daily used mathematical functions like sine, exponentials, harmonic and coulombian

potentials, circles, ellipses, etc., etc., do not belong to the realm of the physical world;

they are just unreachable, idealized limiting boundaries as much as an ideal gas and a

macroscopic reversible process.

This supports the generalized one-parameter power function de�nition of entropy in-

troduced in 1988 by Tsallis [35], which provides a power-law distribution of probabilities.

The number of its application to the most diverse systems has, since then, steadily and

rapidly increased [36]. It is reduced to Boltzmann statistics when its parameter is equal

to unity. This parameter is then a measure of how close the system is from its idealized

asymptotic state, that rigorously, is reachable only after an in�nite number of interactions.

It is a proper statistics for a world made of discretely interacting point like objects. The

Boltzmann statistics, as any mathematical formulation for physics, based on continuous

interactions, is displaced, according to this viewpoint, to these idealized boundaries. But,

of course, an immense n, in most cases, is an excellent approximation to in�nity. The

extensive applicability of Tsallis statistics on the most diverse real systems may be an

indication of the true nature of the world, if continuous or absolutely discrete.

D. Possible experimental evidences

On the observational side we note that for the asymptotic region above the critical

point the continuous asymptotically null �elds are replaced by discrete interactions that

become more and more intermittent with the distance, but do not necessarily go to zero.

This may be detectable for the gravitational �eld as it does not have shielding e�ects

although it requires huge masses for detecting very weak gravitational �elds and huge
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distances for producing a detectable ��j; both conditions found at and above galactic

scales. Therefore, a right place for checking for signs of discreteness may be the rotational

dynamics of galaxies which is essentially given by

GMm

R2
=

mv2

R
; (62)

so that the orbital velocities of galaxies would be expected to be inversely proportional to

the square root of the radial distance from the central mass. But both sides of this equation

are heavily dependent on the assumption of a continuous interaction. The Newtonian �eld

is a consequence, in a discrete interaction context, of a large frequency of interaction points

and, therefore, of a small ��j. This is explicitly shown in [1,7,14]. The centripetal force

is an expression of inertia in a circular motion but for discrete interaction the circle is

replaced by a polygon as the body freely moves on a straight line between two consecutive

interaction events. Let us consider a polygon circumscribed on a circle of radius R. Then

v

c
=

�x

2R
�

2�R

n2R
=

�

n
; (63)

where c is the speed of light, n is the (enormous) number of interaction events (the

number of vertices) that, may depend on v, but not on R. Then the orbital velocity

becomes independent8 of R after the critical point.

So, 
at rotation curve is something very natural in a discrete-�eld context! It is

therefore a real possibility that the critical point for gravity has already been detected in

the 
at rotation curves of galaxies [28]. The 
atness feature of a rotation curve of a galaxy,

as remarked by Milgrom [29], is determined not by its central mass M alone nor just by

the distance R but by the acceleration which is equivalent to the ratio-parameter (36) as

�qj for gravity corresponds to a change of speed. Therefore the existence of the critical

point in the continuous/discrete physical description justi�es the introduction of a new

fundamental scale for the interaction strength in terms of an e�ective acceleration. This

may put Milgrom's MOND [29] on a more sound physical basis. The actually prevailing

wisdom that a 
at rotation curves is the (ad hoc) indication of some strange, ubiquitous

but still to be detected cold dark matter is not free of problems and is far from being

unanimous [29{32,34,33].

Another possible evidence of discrepancy that must be considered is the apparent

anomalous, weak, long-range acceleration observed in the Pioneer 10/11, Galileu, and

Ulysses data [35]. Due to their spin-stabilization and to the great distance (30 t0 67 AU)

from the Sun the spacecrafts are excellent for dynamical astronomy studies as they permit

precise acceleration estimation to the level of 10�10cm=s2:The detected anomalous acceler-

ation comes from the second largest contribution from those mentioned n-combinatorials.

8Another way of seeing it is that both �xj and ��j are proportional to R.
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Eq. (52) is, of course, not valid for circular motion, and so there is no second largest

contributions and, therefore, no Pioneer e�ect on planetary orbits [36]. Both cases, the

rotation curves and the spacecraft dynamics, in the context of discrete interactions, will

be discussed with details elsewhere.

VII. CONCLUSIONS

The thesis that fundamental interactions are discrete is being developed. If this is the

case there is no really compelling reason for excluding gravity from such a unifying idea.

The knowledge of a supposedly true discrete character of all fundamental interactions is

a permanent reminder of the limits of a continuous approximate description. The idea

of an essential continuity of any physical interaction allows unlimited speculations that

will always go beyond any level of possible experimental veri�cations which brings then

the risk of not being able of distinguishing the reign of possibly experimentally-grounded

scienti�c

research from plain philosophical speculation or even just �ction. Regardless the possi-

bility that some of its consequences have already been experimentally detected, a discrete

gravitational interaction, even in the range where it is not experimentally detectable, still

for a long time to come, may just make sense of existing theories for delimiting their

domain of validity as it has historically happened with all new discreteness introduced in

the past, like the ideas of molecules, atomic transitions, and quarks, for example.
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