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Abstract

We study the structure of Robinson-Trautman solutions of Einstein's equations for which

the angular dependence of metric functions is non-analytic. We show that the non-

analyticity produces new physical e�ects, in the sense that Einstein's equations demand

the presence of an equatorial shell of matter that can modelled by neutrinos, strings and

gravitational waves propagating radially on the shell. The presence of the shell allows us

to characterize unambiguously the mass-energy loss or mass-energy accretion due to the

emission or absorption of neutrinos, strings and gravitational waves. In the light of these

models, we discuss the connection of the non-analiticity with processes that extract mass

from the con�guration, in the realm of Robinson-Trautman spacetimes. We also present

a simple, though contrived model in which gravitational waves sent from the past null

in�nity collapse to form a Schwarzschild black-hole with in�nitesimal mass.
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1 Introduction

Robinson-Trautman (RT) metrics are the simplest known exact solutions of vaccum

Einstein's equations which may be interpreted as representing an isolated gravitationally

radiating system [1, 2]. By construction, RT spacetimes are assumed to admit a shearfree

null congruence of geodesic [3] which is hypersurface-orthogonal. This family of null

hypersurfaces foliates the spacetime and, in a coordinate system where they are labeled

by u = constant, the metric can be expressed [3]

ds2 = �2(u; �)du2 + 2edudr + r2K2(u; �)
�
d�2 + sin2 �d'2

�
(1)

where r is an a�ne paramete de�ned along the congruence of the shear-free null geodesics.

We use the angular coordinates (�; �) to label locally the points of the spacelike surfaces

u = const.,r = const., and we assume that these two-dimensional manifolds are compact

and orientable. We use the symbol e = �1 to characterize the coordinate u as having

the asymptotic nature of a retarded or advanced time coordinate, respectively. The

geometry is non-stationary and axially symmetric, admitting the obvious Killing vector

@=@�. Einstein equations in vacuum result in

�2(u; r; �) = �(u; �) +
B(u)

r
+ 2re

K 0(u; �)

K(u; �)
(2)

where �(u; �) is the Gaussian curvature of the surfaces (u = const., r =const.) de�ned by

�(u; �) =
1

K2
� K��

K3
+
K2
�

K4
� K�

K3
cotg� (3)

and

3B(u)
K 0

K
+B0(u) + e

(�� sin �)�
2K2 sin �

= � (4)

In the above, a prime denotes @=ôu and subscript � denotes @=@�. Equations (3) and (4)

will be the basis of our analysis in this paper. Note that � is determined from K(u; �)

through equation (3). Equation (4) is denoted the Robinson-Trautman (RT) equation

and allows to evolve initial data K(u; �) prescribed on a given null surface u = u0 (except

for the case B(u) = 0). If B(u) is non-zero, it can be always reduced to a constant by a

coordinate transformation. Yet in the physical situations discussed in this paper B will

a determined function of u, and its derivative will be proportional to the 
ux of particles
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on a time-like shell of matter present in the model, as we will see, thus providing a more

transparent physical interpretation when emission processes are analysed.

There is a respectable body of results on the existence of solutions of the RT equation

and on their global structure [4{13]. The paper by Foster and Newman [4] is very illustra-

tive of the above questions. They studied solutions of the RT equation linearized about

the Schwarzschild values � = 1 = K and showed that, for analytic perturbations (small

analytic inital data), the Robinson-Trautman vacuum solutions will tend towards the

Schwarzschild solution will tend towards the Schwarzchild solution in the in�nite future.

The existence question for solutions of the full non-linear equation was �rst examined

by Schmidt [5]. Showing that a solution exists locally in times for arbitrarily prescribed

initial data of appropriate di�erenciability. Later Rendall [6] showed global existence for

su�ciently small initial data with antipodal symmetry. The most general analysis of the

existence and behaviour of solutions of the Robinson-Trautman equation (4) was given

by Chrusciel [9, 10] and by Chrusciel and Singleton [11]. The established result is that

the Robinson-Trauman spacetimes exist globally for all positive \u-times" and conver-

gence asymptotically to a Schwarzschild metric, this global time extension being realized

for arbitrary, su�ciently smooth initial data in the family of Robinson-Trautman space-

times; the extension of these spacetimes across the Schwarzschild-like event horizon is not

analytic. In the present paper we make an analysis of solutions of Robinson-Trautman

equations (3)-(4) for which the initial data are continuous but not di�rerentiable, namely,

the metric functions are of class C0 in the coordinate �. As we will show, under this

assumption Einstein's equations demand the presence of an equatorial shell of matter,

which can be appropriately modelled and can provide an unambigous de�nition of energy

loss by the sources, and also allows to attach a meaning to the time-dependence of B.

This shell model actually substitutes lines of sigularities in the metric functions through

which a balance of energy emitted or absorbed by the source could be realized. In the case

B(u) = O, the spacetime is more degenerate in the sense of the Petrov classi�cation, and

the metric functions will contain an artibtrary function of u, typical of free gravitational

wave.

We organize the paper as follows. In section 2 we brie
y examine the algebraic struc-

ture of Weyl tensor and the characterization of a gravitational wave zone based in the

Petrov classi�cation and Peeling properties. We exhibit the three distinct principal null
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directions of the Weyl tensor and show that only one is globally non-twisting, de�ning

unambiguously the gravitational wave fronts of the spacetime. Although this Section

is basically a review, it contains the necessary material to characterize the presence or

not of gravitational waves in the spacetime solutions discussed in the following Sections.

Sections 3 and 4 are the bulk of the paper, exhibiting RT solutions with non-analytic

metric functions, and the consequent physical structures. Section 5 deals with gravita-

tional waves non-analytic perturbations of the Minkowski spacetime. With the exception

of Section 5, in the remaining of the paper we restrict ourselves to e = 1 and m > 0.

Throughout the paper we use units such that 8�G = c = 1.

2 The Structure of the Weyl Tensor and the Char-

acterization of the Gravitational Wave Zone

In order to de�ne distinct classes of perturbations of the solutions of the RT equa-

tions (3)-(4) and to characterize the possible radiative nature of the associated Robinson-

Trautman spacetimes, we now proceed to discuss the algebraic structure of the Weyl

tensor of the geometries (1)-(2). Let us introduce the semi-null tetrad basis determined

by the 1-forms

O0 = du ;

O1 = �2=2 du+ dr ;

O2 = rKd� ; (5)

O3 = rK sin �d�

In this basis, the non-zero Weyl tensor components are given by

C2323 = �C0101 = 2C0212 =
B(u)

r3
(6.a)

C0303 = �C0202 = �A(u; �)
r2

� F (u; �)

r
; C0323 =

��
2Kr2

(6.b)

where the functions A and F are

A(u; �) =
1

4K2

 
�� � 2

��K�

K
� ��cotg�

!

F (u; �) =
1

2K2
@u

"�
K�

K

�
�
� K�

K
cotg� �

�
K�

K

�2#
(7)
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Equations (6a,b) can be expressed as

CABCD =
IIABCD
r3

+
IIIABCD

r2
+
NABCD

r
(8)

where IIABCD; IIIABCD and NABCD are of algebraic type II, type III and type N in

the Petrov classi�cation [15{18], respectively. The Robinson-Trautman spacetime is in

general of Petrov type II; the principal null direction presenting multiplicity two is de�ned

by the shear free geodesic [3] vector �eld (in the basis (5))

kA = �A1 (9.a)

while the remaining two distinct principal null are de�ned by

nA = (���; 1; (�� + ��)=2; �(� � ��)=2) ; (9.b)

where

� = �2Q

C
�
s
4Q2

C2
� 3F

C

and the coe�cients (Q;C;F ), given in terms of the components (6b) of the Weyl tensor,

have the form

Q = �
p
2

4

��
2Kr2

C =
A(u; �)

r2
+
F (u; �)

r

F =
B

r3

They satisfy CABCDn
D = O(r�2). In other words, for r large the two principal null direc-

tions (9b) coincide with the repeated principal null direction kA (9a), which is shear free

and orthogonal to the surfaces u = const. If the spacetime is such that NABCD is non-zero,

then for large values of the distance parameter r the curvature tensor has the approximate

asymptotic expression CABCD = NABCD=r, that is, it is of Petrov type N , with the degen-

erate principal null direction given by k. This is the curvature tensor of a gravitational

wave spacetime, with propagation vector k. The wave fronts are the u =const. surfaces

and the �eld looks like a plane wave at large distances. The nonvanishing of the scalars

NABCD is then taken as an invariant criterion for the presence of grativational waves, and

the asymptotic region (where the O(1=r) term in (8) is dominant) de�ned as the wave

zone. The above characterization is based on two pilars: (i) the Peeling Theorem (for the
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linearized Riemann tensor of retarded multipole �elds, see Refs. [19, 20]; for the general

Ref. [21]: for a review, including peeling properties of the Maxwell tensor, see Ref. [22]);

(ii) the analysis of the spacetime of gravitational wave solutions of Einstein's equations,

and their relation to electromagnetic wave in Maxwell's theory [1, 22, 23, 24]. It is worth

remarking that the principal null directions (9b) are not surface orthogonal, except for

large r where they coincide with (9a); they are actually twisting (to O(r�2)), and hence

the de�nition of the gravitational wave fronts as u=const. is unambigous.

We are now able to make and invariant characterization of distinct classes of Robinson-

Trautman spacetimes arising from solutions of the Robinson-Trautman equation (4), with

or without gravitational waves. This will be the object of the next section.

3 Robinson-Trautman Spacetimes in a Non-Analytic

Regime

According to the criteria of the previous Section, a Robinson-Trautman geometry (1)

describes a spacetime with gravitational waves if and only if the quantity F (u; �) =

1=2K2@u [(K�=K)�)�K�=Kcostg� � (K�=K)2] given in (7) is non-zero. In particular, if

the metric function K(u; �), solution of (3)-(4), is separable (what is equivalent to K

being independent of u, modulo a coordinate transformation) gravitational waves are not

present.

Let us then consider a particular solution of RT equation having the form K = k(�)

and B = b(u), so that the associated Weyl curvature tensor has no Petrov type N sector

[14]. The function � = g(�) is related to k(�) by Eq. (3). An example is the solution � =

1 = K; B = �2m that corresponds to the Schwarzschild metric expressed in Eddingto-

Finkelstein coordinates, with the only non-zero Weyl tensor tetrad components C2323 =

�C0101 = 2 C0212 = 2m=r3. As expected, only type D terms are present. Let us now

consider a class of solutions of the RT equation (3)-(4) of the form

� = g(�)(1 + "W (u; �))

K = k(�)(1 + "Y (u; �)) (10)

B(u) = b(u) + "Z(u) ;

where " is a small arbitrary parameter. Solutions (10) may, in principle, change the
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algebraic type of the Weyl tensor, and introduce a radiative sector in the Weyl tensor,

namely, a Petrov type N region in the spacetime. If this is the case, (10) constitutes a

true perturbation of the geometry, in the sense that Weyl scalars (6) which are zero for the

unpertubed metric become of O(") for the perturbed metric. These radiative solutions

restore the algebraic structure (8) of the Weyl tensor for the Robinson-Trautman metrics.

Let us examine (10) for the case " = 0. From (4) we obtain

b0(u) = c ; (11.a)

(g� sin �)� = �2ck2 sin � ; (11.b)

where c is a separation constant. The functions g(�) and k(�) are related through Eq.

(3)

1� 1

sin �

�
sin �

K�

K

�
�
= k2g (12)

Equation (11a) can be immediately integrated,

b(u) = �2M + cu ; (13)

where M is an arbitrary constant. For c = 0, it is easy to see that the only non-singular

solution of (11b) is g constant, which we take g = 1 due to the assumed compact topology

of the u; r = const surfaces. In this case, a general solution of (12) can be reduced to

k = 1 by a convenient coordinate transformation, and it corresponds to the Schwarzschild

spacetime, with M interpreted as the geometrical mass.

In general, the function b(u) will be associated to the mass function of the con�gura-

tion. Although its form is dependent on the coordinates used, in the present coordinate

system it may be unambiguously interpreted as the mass function of the con�guration

in the sense that its u-derivative is proportional to the 
ux of matter (neutrinos and

strings) emitted in the equatorial plane � = �=2, as we shall see. We also note that b(u)

typically plays the role of mass function as it appears as the factor in the O
�
1

r3

�
Petrov

D components of the Weyl tensor (6).

The case c 6= 0 corresponds to a situation in which the spacetime is asymptotically 
at

but not asymptotically Minkowskian. To solve Eqs. (11b) and (12) for c 6= 0 turns out

to be very di�cult. However, if we assume that the solutions are analytic in c, it can be

shown [27] that these solutions are singular at � = 0 and/or � = �. A concrete example of
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this is provided by exhibiting an approximate solution of (11)� (12) for jcj << 1, namely,

g(�) = 1 + c [�1 + 2 ln(1� cos �)]

k(�) = 1� 2c ln(1� cos �) : (14)

The + solution is regular at � = 0, and the { solution is regular at � = �. In order to get

rid of the undesirable singularities at � = 0 or � = �, we cover the whole spacetime by

using the + solutions for 0 � � � �=2 and the { solutions for �=2 � � � �. This is carried

out by matching the two sets at the equatorial plane � = �=2, since are continuous there,

yielding a metric that is of class C0. Noticing that the �rst derivatives of the metric are

not continuous at � = �=2, a timelike shell must therefore be present at the equatorial

plane, in accord to Israel formalism [27]. Evidently the appeal to the introduction of the

equatorial shell is only justi�ed if we are able to give a satisfactory physical interpretation

to the shell dynamics. The introduction of a shell and the physical modeling of it will be

discussed in the next Section.

Solutions of type (10) must satisfy equations (3)-(4); it then follows that, to �rst order

in ", the functions W and Y must be separable.

W (u; �) = w(�)N(u)

Y (u; �) = w(�)N(u) ;

resulting in the temporal equations

3b(u)
N 0

N
+ 2b0 = a0 (15.a)

Z 0

N
= b0 (15.b)

and in the angular equations

(y� sin �)� = � (w + 2g(�)y) k2 sin � ; (16.a)

(w� sin �)� = �2k2 sin �(b0 + a0y) ; (16.b)

where a0 and b0 are arbitrary separation constants. Here the functions k(�) and g(�) are

the solutions of the " = 0 problem (11)-(13). The integration of (15) is immediate and

results

N(u) = N0

h
� 6M + 3cu

ia0 � 2c

3c (17.a)

Z(u) = Z0 +
3b0cN0

(a0 + c)

h
� 6M + 3cu

ia0 + c

3c (17.b)
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where N0 and Z0 are integration constants. Integration of (16) for several situations will

be discussed in the next Sections.

4 The Physics of the Non-Analytic Solutions and the

Shell Structure

We �rst approach the case c = 0, with the functions k(�) = 1 = g(�). This corresponds

to O(") solutions of RT equations, and yields 0(") perturbations of the Schwarzchild

metric, including the analytic Foster-Newman solution [4] given here in another coordinate

system. In the limit c = 0 solutions (17) result

N(u) = N0 exp
�
�a0u
6M

�

Z(u) = Z(u) +

 
�6Mb0

a0

!
N0 exp

�
�a0u
6M

�

with a0 6= 0. Regularity requirements at � = 0 and � = � demand that the solutions of

(16) have the form

w` =
2b0
a`

+ w0`P`(co�)

y` = �b0
a`

+
`(` + 1)

2a`
wo`P`(cos �)

a0 � a` = 2

 
`(` + 1)

2

! 
`(` + 1)

2
� 1

!

where ` is a non-negative integer and w0`, is an arbitrary constant. The solution with

w0` = 0 corresponds to the Schwarzschild geometry in another temporal gauge. Here

P`(cos �) is the Legendre polynomial of order `. The condition a0 6= 0 implies that ` � 2,

that is, only quadrupole or higher order poles gravitational radiation �elds are present, as

expected, with wave zone de�ned by the O(1=r) non-zero components of the Weyl tensor

C0202 = �C0303 = �`(` + 1)a0w0`

24Mr

"
�2 cos �dPd`

d�
+ `(` + 1)P`

#
N0 exp

�
� a`u
6M

�

The non-radiative modes l � 1 correspond to the case a0 = 0. Solutions of eqs. (16) for

a0 = 0 and b0 6= 0 are in general given singular at � = 0 and/or � = �, formally analogous

to solutions (13), being also interpreted as having a shell structure at � = �=2, as we will

see below. As an example, we select the particular set.

w = w0 + 2b0 ln(1 + cos �) ; y = (w0 + b0)=2� b0 ln(1 + cos �) ;
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for 0 � � < �=2, and

w = w0 + 2b0 ln(1� cos �) ; y = (w0 + b0)=2� b0 ln(1� cos �) ;

for �=2 < � � �, which are regular at � = 0 and � = � respectively. These nonanalytic

solutions complete the Foster-Newman class for all `.

Let us now examine the general properties of the solutions of Eqs. (11b)-(12) and (16),

and the nature of the resulting spacetime when non-analyticity is admitted. We initially

restrict ourselves to Eqs. (11b)-(12), but our discussion will equally apply to Eqs. (16),

where " 6= 0. As we remarked before, if we assume that the solutions of (11b)-(12) are

analytic in c, then these solutions are either singular at � = 0 and/or � = �. Let us

consider the exact solution fg(�); k(�)g singular at � = 0, say. Due to the symmetry of

equation (11b) under the change �! � � �, the solution fg(� � �); k(� � �)g is singular
at � = �. We can get rid of the undesirable singularities at � = 0 or � = � if we use the

set fg(���); k(���)g, de�ned for 0 � � < �=2 and fg(�); k(�)g, de�ned for �=2 < � � �

to cover the whole spacetime. The sets are matched at the equatorial plane � = �=2,

since they are continuous there, resulting in a metric that is of class C0. However, the

�rst derivatives of the metric are not continuous at � = �=2 implying that a timelike shell

must therefore be present at the equatorial plane. To describe the geometry of the 1 + 2

spacetime of the shell, we introduce the local triad basis on the 3-dim surface � : � = �=2

e�(0) =
�
�̂�1(u; r); 0; 0; 0

�

e�(1) =
�
�̂�1(u; r); �̂(u; u); 0; 0

�
(18)

e�(3) =
�
0; 0; 0;

1

rk̂

�

with e�(a)e�(b) = diag(1;�1;�1); a; b = 0; 1; 3, where ^ denotes the restriction of the re-

spective function to
P
. In accord to Israel's formalism [28], the discontinuity of the �rst

derivatives of the geometry across the surface
P

demands the presence of a shell of matter

in
P
, with energy-momentum tensor given in the triad basis (18) by [29]

T̂ab = [Kab]� � gab
h
gcdKcd

i
�

where Kab is the extrinsic curvature of
P

de�ned by Kab = �e�(a)n�;�e�(b), with n� the unit
normal the

P
, and [ ]� denoting discontinuity across �. Using (2) and (18) we derive that

T̂ab = NTab + STab + GTab (19)
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where

NTab = �
(

[��]�

2rK̂�̂2

)0BBBB@
1 1 0

1 1 0

0 0 0

1
CCCCA ;GTab = �

8<
:
h
K0

K�

i
�

K̂�̂2

9=
;

0
BBBB@

1 1 0

1 1 0

0 0 0

1
CCCCA

STab =
[K�]�

rK̂2

0
BBBB@

1 0 0

0 �1 0

0 0 0

1
CCCCA

Our task now is to show that this energy-momentum tensor can be modelled by neutrinos,

strings and gravitational waves propagating radially on the 1+2 spacetime
P

of the shell.

To this end let us discuss the dynamics of massless neutrinos �rstly in the 1 + 3

spacetime, and secondly in the 1+2 spacetime
P

of the shell, which are basically distinct.

Neutrinos in interaction with the gravitational �eld are described by spinor �elds in curved

spacetime via the prescription of Brill and Wheeler [30]. In a local tetrad basis, Dirac's

equation for neutrinos is expressed as

�i
A
�
e�(A)@� � �A

�
	 = 0; (20)

where the �A are the Fock-Ivanenko coe�cients associated to the tetrad �eld. If we restrict

our considerations to radial neutrinos only, de�ned by 
0	 = 
1	 such that the null four

current JA = (	y)
A	 has components JA = (	y	)(1; 1; 0; 0), it is straightforward to

check that Dirac's equation (20) for the four dimensional RT metric has no solution for

radial neutrinos, even as test particles.

However in
P

radial neutrinos are admissible and generate the �rst parcel of the right

hand side of the energy-momentum tensor (19) of the shell. Radial neutrinos in
P

are

also de�ned by 
0	 = 
1	 (with 
A now given in Ref. [31]) resulting in the radial null

current on the shell JA = 	y	(1; 1; 0). For these neutrinos the general solution of Dirac's

equation in the triad basis (18) is given by the two-spinors

	 =
1p
r�̂

0
B@ �i�(u)

�(u)

1
CA (21)

where �(u) is an arbitrary complex function. The corresponding surface stress-energy
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tensor, NTab = i
h
 +
0
(aDb) �D(a 

+
0
b) 
i
, associated with (21) reads

NTab = � 4i

r�̂2
((@u�

�)�� ��@u�)

0
BBBB@

1 1 0

1 1 0

0 0 0

1
CCCCA ; (22)

where Da = e�(a)@� � �a is the spinor covariant in the 1 + 2 spacetime of the shell. The

above tensor models the �rst parcel of T̂ab provided we identify

[��]�

2K̂
� 4i ((@u�

�)�� ��@u�) : (23)

By construction this surface stress-energy tensor is independently conserved, and the null

radial current associated with the two-spinor solution (21), ja =
2���

r�̂
(1; 1; 0) propagates

outwardly, in the direction of increasing r (cf. the de�nition of e�(1) in eqs. (18)). We

note that the LHS of (23) is constant

E(c) � [g�]�

2K̂
' �2c = �4i ((@u��)�� ��@u�)

the second equality holding for the approximate solutions (14). In view of eqs. (11a) or

(13) we can see the outward radial propagation of neutrinos in the shell corresponds to a

decrease of the mass function of the con�guration.

The second term in (19) has the structure of a perfect 
uid stress-energy tensor in

which the pressure is negative. This suggests that we take it as corresponding to a gas of

strings with energy density �S given in the form

STab = �S(�
)�1=2�ac�
c
b : (24)

Here the skew-symmetric tensor
Pab represents the kinematics of the gas of strings and

must satisfy the normalization condition
P

ab

Pab = 2
. Due to the symmetry of the

shell we assume that
P01 is the only nonvanishing component on the tensor

Pab. As a

consequence, (24) takes the form

STab = �S(�
)1=2

0
BBBB@

1 0 0

0 �1 0

0 0 0

1
CCCCA (25)

which could model the second term in (19). Let us �rst restrict ourselves to the case

" = 0. Noting that the stress-energy tensor of the neutrinos is independently conserved,
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we have from the conservation law (�S
P

ab)jjb = 0 that �S(�
)1=2 �const=r. Comparing

(25) with the second term in (19) we are led to identify this constant with

G(c) � [k�]�

k̂2

and the modelling is complete. We remark that the present result holds for the case of

solution with " = 0, where gravitational waves are absent and GTab = 0. In the use of the

approximate solutions (14)

G(c) ' �2c = r�S(�
)1=2 :

It follows then that the decrease of the mass function of the con�guration corresponds to

the outward radial emission of neutrinos and strings on the shell.

Our task now is to interpret the third term in (19), GTab occurring in the class of so-

lutions with " 6= 0, where gravitational waves are present. In the realm of these solutions,

the form of the stress-energy tensors on the shell NTab and STab will be same, with the

corrections

[��]�

2K̂
= E(c) ! [��]�

2K̂
= E(c) + " ([w�]� � [y�]�)

N

�̂2
+O("2) (26.a)

[K�]�

K̂�
= G(c) ! [K�]�

K̂2
= G(c) + " (k[y�]� � y[k�]�)N +O("2) (26.b)

NTab is still modelled by the class of radial neutrinos, with the identi�cations (23) and

(26a), and by construction it is independently conserved. The parcel STab can still be

modelled by radial strings with the identi�cation [K�]�=K2
# = �S(�
)1=2 but now it

is not in general independently conserved and must satisfy the local conservation law�
ST

ab + GT
ab
�
kb
= 0. It results that

ST
ab

kb = Ja = �GT
ab

kb ; (27)

where Ja = (J; J; 0), with

J =

8<
:
h
K0

K�

i
�

rK̂�̂

9=
; = "[y�]�

N 0

r�̂
(28)

From (6)-(7) and (27) we can see that whenever gravitational waves are present the stress-

energy tensor of the radial strings is not conserved, this non-conservation being at the

expenses of gravitational waves (an exception would be gravitational waves for which wave
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fronts are not discontinuous at � = �=2, in O(") of perturbation; this in principle would

be possible but we were not able to exhibit a solution with the mentioned property).

Furthermore

GT
ab = �"[y�]�N

0

�̂2

�
�a0�

a
0 + �b1�

a
1 + �a0�

b
1 + �a1�

b
0

�
(29)

is di�erent of zero if and only if gravitational waves are present. These facts led us to

interpreted the stress-energy tensor GT
ab as describing the dynamics of the discontinuity

of gravitational wave fronts in
P
, and which behave dynamically as a null 
uid intrinsic

to the 1 + 2 spacetime
P

of the shell; we were not able to model this tensor from the

dynamics of a geometrical object de�ned intrinsically in
P
.

For the approxiamte solutions with c = 0 we have [w�]� = [y�]� = 2b0. We may note

that the O(") corrections in this case reproduce the same structure of the shell modelled

by radially propagating neutrinos, strings and gravitational waves, with the N(u) function

having the standard exponential from and b0 playing a role analogous to c in measuring

both the rate of decrease of the mass function and the break of analyticity.

5 The Collapse of a Pulse of Gravitational Waves

There is still a class of solutions of RT equations with gravitational waves (" 6= 0)

which may be of physical interest. This class corresponds to taking g(�) = 1 = k(�) and

b(u) = 0. In O(") eqs. (15) and (16) reduce to

Z 0

N
= b0 (30)

(y� sin �) = � (w + 2y) sin � (31)

(w� sin �)� = �2b0 sin � :

The associated geometry is given by the line element

ds2 =

"
1 + "w(�)N(u) + "

Z(u)

r
� 2"rN 0

#
du2 � 2dudr � r2 [1 + "y(�)N(u)]2

�
d�2 + sin2 �d�2

�
(32)

Our use of e = �1 (cf. eq. (1)) here implies that the coordinate u has the asymptotic

nature of an advanced Eddington-Finkelstein coordinate, that allows us to give a physical

signi�cance to the present solution, as we will see.
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The C0 solution constructed from the above functions exhibits a O(") shell in the

equatorial plane � = �=2, which can be modelled exactly analogous to previous cases

examined, where the parameter b0 is associated with quantities intrinsic to the shell

through [w�]� = �2[y�]� = �[y�]� = �4b0. However for the geometry (33) and its

restriction to the 1 + 2 spacetime of the shell, the vector e(1)� of the triad basis in which

the stress-energy tensors (19) are expressed now has the form

e�(1) =
�
��̂�1(u; r);��̂(u; r)0; 0;

�
:

Therefore the 
ux of neutrinos, strings and gravitational waves discontinuities now prop-

agate radially inwards, namely, in the direction of decreading r.

Now, in the order of approximation considered the function N(u) is arbitrary, and can

be prescribed at the past null in�nity as an advanced time analytic pulse of gravitational

waves with �nite duration �u : �1 � u � �2. The pulse is sent inwards from the

past null in�nity of the RT geometry (33). The past null asymptotic region can be

here approximately de�ned using the retarded null coordinate of the underlying " = 0

Minkowski geometry1. For u � �1 we have the Minkowski spacetime in the null advanced

coordinate system (u; r; �; '), In interval �1 � u � �2 the spacetime is described by (33);

a shell forms in u = �1 with neutrinos, strings and gravitational wave front discontinuties

propagating inwards, and disappears in u = �2, when an event horizon forms. The mass

function Z(u) is given by

Z(u) = �"b0
Z u

�1
N(u)du+O("2) :

It is zero for u � �1 and increases continuously in the interval �1 � u � �2 reaching the

constant value Z(�2). For u � �2 an event horizon forms and the solution (33) describes

a Schwarzschild black-hole with in�nitesimal mass �"Z(�2)=2. For �1 � u � �2 an

apparent horizon is present in (33), described by r = �"Z(u) +O("2).

The above solution may be considered a simple but contrived model of the collapse

of a �nite pulse of gravitational waves to form a Schwarzschild black hole of ini�nisimal

mass. During the duration of the pulse there occurs the formation of an equatorial shell

of matter, modelled by strings, neutrinos and gravitational wave front discontinuities

1The geometry (33) is a time perturbation of the Minkowski geometry, in the sense that its non-null

curvature components are all O("). This could be seen move immediately from the geometry itself with

the use of Bondi-Sachs coordinates [26].
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propagating radially inwards. The apparent horizon of the geometry as well as its mass

function increases continuously, and reach a constant value when an event horizon forms.

6 Final Comments and Conclusions

In this paper we have studied a class of Robinson-Trautman metrics, solutions of Ein-

stein's equations, for which the angular dependence of the metric functions is non-analytic.

These functions are chosen to be of class C0 in the angular coordinates having �nite dis-

continuous �rst derivatives through the � = �=2 timelike hypersurface
P
. We show that

in general such discontinuities in the Robinson-Trautman geometries demand the pres-

ence of a shell of matter localized in
P

and that the associated stress-energy tensor of the

shell can be modelled by neutrinos, strings and gravitational wave front discontinuities

propagating radially on
P
. The bulk of the paper are Sections 3 and 4, where discuss

we and exhibit solutions describing the above con�gurations. Due to the di�cuties in the

equations for the gravitational dynamics of the problem, our explicit solutions were given

as perturbative con�gurations of the Minkowski solution or of the Schwarzschild solution,

the pertubations involving expansion in two parameters, a separation constant c closely

connected to the non-analyticity of the angular funtions and a perturbative parameter "

describing gravitational wave solutions of the RT equation (in some class of solutions a

unique " parameter has both roles). The separation constant c turns out to be a phys-

ically meaningful quantity related to the ratio of decreasing of the mass function of the

con�guration due to the emission of neutrinos and strings radially in the equatorial plane

of the shell. This fact furnishes us with one possible physical characterization of the mass

function b(u) in the sense that the time derivative of the latter (cf. Eqs. (11a) or (13))

is proportional to the 
ux of radial neutrinos in 1 + 2 spacetime of the shell, de�ned by

the (01) component of the stress-energy tensor (22). The (u; r; �; �) coordinate system in

which b(u) has the from (13) seems to be more appropriate for the physical interpretation

of the solutions. Non-analytic solutions with gravitational waves (" 6= 0) present the same

shell structure
P
, but the associated stress-enegy tensor of the shell has one additional

parcel which describes the dynamics of gravitational wave front discontinuities occuring

in
P
, and is di�erent of zero if and only if gravitational waves are present. This of the

stress-energy tensor is dynamically the one of a null intrinsic to the 1 + 2 spacetime
P
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of the shell, but we were not able to model it from the dynamics of a geometrical ob-

ject intrinsically in
P
. It also has the important property that it is not independetly

conserved but it changes current with the strings present in the shell. In other words,

the non-conservation of the 
ux strings is made at the expenses of gravitational waves

and vice-versa. Non-analyticity in metric functions of bounded gravitational con�gura-

tions emitting gravitational waves and matter appears to be intuitively a demand for

the balance of energy in the spacetime, and is the source of the presence of line singu-

larities in exact Robinson-Trautman solutions for Einstein's vacuum equations. In our

present model, the shell structure actually substitutes lines of singularities in the metric

functions through which a balance of energy emitted or absorbed by the source could be

realized, and allows us to characterize unambiguously the mass-energy loss or mass-energy

accretion due to the emission or absorption of neutrinos, strings and gravitational waves.
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