
CBPF-NF-022/97

Gravitational Particle Production in Spinning Cosmic String

Spacetimes

V. A. De Lorenci (a), R. De Paola (a);(b) and N. F. Svaiter (a)

(a) Centro Brasileiro de Pesquisas F��sicas,

Rua Dr. Xavier Sigaud 150, Urca,

CEP 22290-180 { Rio de Janeiro { RJ, Brazil.

(b) Pontif��cia Universidade Cat�olica do Rio de Janeiro,

Rua Marquês de S~ao Vicente, 110, G�avea

CEP 22453-000 { Rio de Janeiro { RJ, Brazil.

Abstract

The spontaneous loss of angular momentum of a spinning cosmic string due to

particle emission is discussed. The rate of particle production between two assymp-

totic spacetimes: the spinning cosmic string spacetime in the in�nite past and a

non-spinning cosmic string spacetime in the in�nite future is calculated.
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There is a broad class of predictions of various models in grand uni�ed theories

(GUT's). Between them, phase transitions may result in the formation of cosmic strings

[1]. They are extended one dimensional in�nite topological defects. The cosmic strings

a�ect the spacetime mainly topologically, given a conical structure to the space region

around the cone of the string. The conical topology may be responsible for several grav-

itational e�ects, e.g., gravitational lense [2] and particle production due to the changing

gravitational �eld during the formation of such object [3]. There are a lot of papers

studying quantum processes in a cosmic string spacetime. Of special interest for us are

the following: Ref. [4] where pair production in a straight cosmic string spacetime is

discussed, Ref. [5] where the rate of transition of a two-level system coupled with a scalar

�eld in the presence of a cosmic string is analysed, and �nally Ref. [6] where spinning

cosmic string spacetime is investigated.

In this paper we are interested in evaluate the particle production due to the changing

of the gravitational �eld in the situation of gradual loss of angular momentumof a spinning

cosmic string. We set �h = kB = c = 1.

Let us consider the following metric structure for the spacetime in the exterior of a

straight cosmic string:

ds2 = fdt+ �(t)d'g2 � dr2 � b2r2d'2 � dz2; (1)

where x� = ft; r; '; zg are the usual cylindrical coordinates with the range: (0 � r <

1; �1 < z < 1; 0 � ' � 2�). The constant b is called the conical parameter and is

related with the de�cit angle of the conical singularity by

b = 1� 4�G; (2)

where � is the linear density of the string. The function �(t) appearing in Eq. (1) is

de�ned by

�(t) � 2GJ

�
1 � tanh

�
t

t0

��
; (3)

and the others constants are the gravitational Newton constant (G) and the angular

momentum (J) of the source.

From relation (3) we can stablish the following asymptotics conditions for the metric

structure:

lim
t!+1

�(t) = 4GJ; (4)
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lim
t!�1

�(t) = 0: (5)

In the two asymptotic regions | the in�nite past and in�nite future | the spacetime

metric structure reduces to:

ds2
�1

= (dt+ 4GJd')2 � dr2 � b2r2d'2 � dz2; (6)

ds2+1 = dt2 � dr2 � b2r2d'2 � dz2: (7)

As it is well know, the above metrics represent the structure of the spacetime in the

exterior region of a rotating and a non-rotating cosmic string1, respectively.

With this picture in mind we will analyse the rate of particle produced by changing

the gravitational �eld between the two asymptotic spacetimes. The same idea it was used

in a toy model by Bernard and Duncan [7]. These authors studied a two dimensional

Robertson-Walker model where the conformal scale factor has the same functional form

as Eq. (3). In the two asymptotics limits, the spacetime becomes Minkowskian, and these

authors were able to obtain the modes solutions of the Klein-Gordon equation in these

two limits. A straighforward calculation of the Bogoliubov coe�cients between the in

and out modes gives the rate of particle production during the expansion of the universe.

In this paper we will develop a similar idea. The mathematical treatment will follows

the same lines a Bernard and Duncan paper. We consider the case of a massive minimally

coupled Hermitian scalar �eld �(t; ~x) de�ned at all points of the 4-dimensional spacetime

with line element given by eq.(1). The Klein-Gordon equation is given by:

�
g��D�D� +M2

�
�(t; ~x) = 0; (8)

where the symbol D� represents the covariant derivative with respect to the metric g��,

and M is the mass of the quanta of the scalar �eld. For further reference we point out

that the determinant of the metric g�� for the general spacetime given by eq.(1) is:

det[g�� ] � g = �b2r2: (9)

Here we are interested in studying the process of creation of particles and radiation by

the gravitational �eld changing during the evolution of a cosmic string that looses angular

1By transforming the azimutal coordinate � = b' the line element reduces to

ds2 = dt2 � dr2 � r2d�2 � dz2;

where the azimutal angle is de�ned in the interval 0 � � � 2�b.
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momentum during the time. To mantain the particle produced in a limited region of the

space we impose Dirichlet boundary conditions at r = R,

�(t; r; '; z)j
r=R = 0; (10)

and periodic boundary conditions in z with period L.

It is well know that the geometry given by Eq. (6) generate closed time-like curves

(CTC). In order to circumvent this problem, we impose an additional vanishing boundary

condition at r = R0 > 4GJ=b. Thus, the radial coordinate has the domain R0 < r < R.

For a carefull study how to construct quantum �eld theory in a spacetime with CTC, see

for instance Ref.[8]. The same problem appear in (2 + 1) dimensional gravity since the

spinning cosmic string spacetime is exactly the solution of (2 +1) Einstein equations of a

spinning point source [9]. Deser, Jackiw and 't Hooft derived the solution to the D = 3

Einstein gravity with a massless spining source. The generalization for massive spining

sources was obtained by Clement [10]. As we point out the solution show that in both

cases the three dimensional geometry is the Minkowski space with a edge removed. In this

case a non-trivial physical situation arrises. The points that we have to identify across

the deleted edge di�er in the time coordinate by an amount proportional to the angular

momentum of the source.

In the asymptotic past | that corresponds a rotating cosmic string spacetime | the

Klein-Gordon equation given by Eq. (6) reduces to the form:��
1 �

a2

b2r2

�
@2

@t2
�

1

r

@

@r

�
r
@

@r

�
�

1

b2r2
@2

@'2
�

@2

@z2
+

2a

b2r2
@2

@t@'
+M2

�
�(t; r; '; z) = 0:

(11)

.

It is not di�cult to �nd the mode solutions uj and they are given by:

uj(t; ~x) = N1e
�i!lteikzeim'J�(qr); (12)

with

� �
jm+ 4GJ!lj

b
; (13)

q =
q
!2
l � k2 �M2 (14)

and

k =
2�n

L
: (15)
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We choose the constant N1 to make the set orthonormal. Thus,

N1 = (2!l)
�

1

2

�
V
h
J

0

�(qR)
i2
� V0

h
J

0

�(qR0)
i2�� 1

2

; (16)

where we de�ned the 3-volumes V � b�LR2 and V0 � b�LR2
0. The values of !l are

determined by the vanishing boundary conditions.

The modes uj(t; ~x) form a basis in the space of solutions of the Klein-Gordon equation

and can be used to expand the �eld operator in the following way:

�in(~x; t) =
X
j

n
ajuj(t; ~x) + a

y
j u
�

j(t; ~x)
o
; (17)

where we are using a collective index j � fl;m; ng.

The creation and anihilation operators a
y
j and aj satis�es the usual comutation rela-

tions:

[aj;a
y
j ] = �j;j0 ; (18)

and the in-vacuum state is de�ned by

aj j0; in >= 0 8 j: (19)

We can follow the same lines to canonical quantize the �eld in the in�nite future. The

Klein-Gordon equation in the non-rotating cosmic string spacetime given by eq.(7) reads�
@2

@t2
�
1

r

@

@r

�
r
@

@r

�
�

1

b2r2
@2

@'2
�

@2

@z2
+M2

�
�(t; r; '; z) = 0: (20)

The out modes solutions of the Klein-Gordon equation also form a complete set and can

be used to expand the �eld operator as:

�out(t; ~x) =
X
j

n
bjvj(~x; t) + b

y
j v
�

j (t; ~x)
o
; (21)

where the modes vj is de�ned by:

vj(t; ~x) = N2e
�i
lteikzeim'J�(�qr); (22)

with

� �
jmj

b
; (23)

�q =
q

2
l � k2 �M2: (24)
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Choosing the constant N2 in order to make the set of modes fvj; v�jg orthonormal, results:

N2 = (2
l)
�

1

2

�
V
h
J

0

�(qR)
i2
� V0

h
J

0

�(qR0)
i2�� 1

2

: (25)

Similarly the creation and anihilation operators b
y
j and bj satis�es the usual comuta-

tion relation:

[bj;b
y
j ] = �j;j0 ; (26)

and the vacuum state in the out-spacetime, is de�ned by

bjj0; out >= 0 8 j: (27)

Following Parker we will calculate the rate of particle production between two asymp-

totic spacetimes discussed above: the spinning cosmic string spacetime in the in�nite past

and a unspinning cosmic string spacetime in the in�nite future.

A important point is that in our model we have not to due with the problems of

junction conditions since there is no sudden approximation here. The metric evolves

continuously between both asymptotics states. The angular momentum of the spinning

cosmic string is lost by particle emission processes. The fundamental quantity we have

to calculate is the Bogoliubov coe�cients between the modes in the non-rotating and

rotating cosmic string spacetime. The average number of in-particles in the modes (l;m; n)

produced by this process is given by:

< in; 0jb
y
j bjj0; in >=

X
i

j�ijj
2 : (28)

Using the de�nition of the Bogoliubov coe�cients �ij given by

�jj0 = �(uj; v
y
j0) (29)

we have

�jj0 = �2�bL(
l + !l0)N1N2�(R;R0)�m;m0�n;n0 (30)

where

�(R;R0) �

Z R

R0

dr r J�(qr)J�(�qr): (31)
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Substituting (30) in Eq. (28) and use the de�nitions of the normalization constants N1,

N2, the average number of particles in the modes (l;m; n) produced is:

< in; 0jb
y
j bjj0; in > = �b2L2

"�

l

!l0

� 1

2

+ [

�
!l

l0

� 1

2

#2

�
nh

V J
0

�(qR)
2 + V0J

0

�(qR0)
2
i h

V J
0

�(�qR)
2 + V0J

0

�(�qR0)
2
io
�1

(32)

Let us sumarize the results obtained in the paper. We discussed particle production

by lost of angular momentum in a spinning cosmic string spacetime. To circumvent the

problem of CTC's we assume a cosmic string with a radius �xed. Moreover, to avoid the

problem of square of distribution we following Parker's arguments impossing vanishing

boundary conditions a cylinder with �nite radius R.

A possible continuation of this paper is to formulate the energy conservation law,

that is to show if there is a balance between the total energy of the particles creation

and the energy associated with loss of angular momentum. This can be done comparing

the vacuum stress-tensor of the massive �eld in the spinning and non-spinning cosmic

string spacetime. The calculation for a massless conformally coupled scalar �eld in the

non-spinning cosmic string spacetime has been done by many authors [11]. The same

calculation in the spinning cosmic string spacetime has been done by Matsas [12]. As far

as we know the renormalized stress tensor of a massive minimally coupled scalar �eld has

not been investigated in the literature. The evaluation of such quantite is fundamental

to investigate the model taken into acount the back reation problem. Note that the

source of Einstein's equations that generates the line element in the non asymptotic

limit in unknown. Actually, the particle production must be included in the energy

momentum tensor of the source and together with the matter energy momentum tensor

satisfy the semi-classical Eintein's equations. The calculation of the renormalized energy

momentum tensor of the massive scalar �eld and the corresponding energy balance in

under investigation.
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