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Abstract

We apply the Euclidon method [1], for generating axisymmetric stationary so-

lutions of Einstein's equations, to four static solutions with Newtonian potential

describing semi-in�nite line mass with linear mass density 1/2. The new solutions

thus obtained are either the extreme Kerr black hole or the Kerr black hole.
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I The Euclidon method

GCE [1] built a method, called the Euclidon method, allowing, in principle, to obtain

a new vacuum axisymmetric stationary solution from Einstein �eld equations, which we

call daughter-solution, from any given vacuum solution, which we call seed-solution. The

process of starting with a seed-solution to arrive to the daughter-solution needs an inter-

mediary vacuum solution that we call matrix-solution. The matrix-solution chosen has

null curvature, where the name Euclidon arises from. GCE make use of a method of

variation of constants.

In the case where the seed-solution is static, the method is much simpli�ed and the

daughter-solution becomes stationary.

The Euclidon method, di�erently from the Herlt method [2], says nothing about the

asymptotic behaviour of the new solutions thus obtained. However, in certain cases, using

the corresponding Ernst potential and applying an Ehlers transformation [3], we can build

a solution with a suitable asymptotic 
atness.

We have presented the Euclidon method in its general form and for the case when its

seed-solution is static in [4]. The stationary axisymmetric spacetime we described in its

Papapetrou-Lewis metric form in Weyl coordinates, r and z, given by

ds2 = f(dt � !d�)2 �
1

f
[e2
(dr2 + dz2) + r2d�2]; (1)

where f , ! and 
 are functions of r and z. Here we apply this method for four di�erent

simple static seed-solutions, presented in the following four sections. For these static

seed-solutions we choose, their Newtonian potentials, describing a semi-in�nite line mass

along the axis of symmetry. Its linear mass density, �, is assumed to be 1=2. The reason

for choosing this value is linked to its peculiar properties, which we brie
y recall in the

�nal section of the paper. We �nd that, using the same matrix-solution, the new solutions

thus generated are either the extreme Kerr black hole or the Kerr black hole.

The formulae refered in [4] are followed by an asterix.

II Extreme Kerr black hole

We choose for the vacuum seed-solution (17*),

f0 = q1(� � 1)(1 + �); (2)

where q1 is a real constant, and expressed in Weyl coordinates r and z (26*)-(27*), it

becomes,

f0 = q1(z � z1 +R): (3)

We can see that (3), is a special Euclidon solution (8*), with constant U0 !1.
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The system of partial di�erential equations (20*)-(21*) for U , when expressed in terms

of spheroidal coordinates (26*)-(27*), becomes,

U;� =
1

�� �
[(�� � 1)�;� + (1� �2)�;�]; (4)

U;� =
1

� � �
[�(�2 � 1)�;� + (��� 1)�;�]; (5)

where � satis�es (19*). After integrating (4)-(5) we obtain

U = ln

"
q1(� � �)2

(�� �)(1 + �)

#
; (6)

where q1 has been chosen as integration constant. Consequently the solution (14*)-(16*)

becomes

~f =
(�2 � 1)(1� �2) + q2

1
(� � �)4

(�� 1)2(1 + �)2 + q2
1
(�� �)4

; (7)

~� =
2q1(� � �)3

(� � 1)2(1 + �)2 + q2
1
(� � �)4

; (8)

~! =
2k

q1

(
�+

(1 � �2)[(�2 � 1)(1 + �)� q2
1
(� � �)3]

q2
1
(�� �)4 � (�2 � 1)(1 � �2)

)
: (9)

The solution (7)-(9) is not asymptotically 
at, like in the Demianski-Newman solution

[6]. When � ! 1, from (9), ~! � 2k�=q1 ! 1. Then we can make transformations on

this solution to shape it with asymptotical 
atness. Since these transformations on the

solutions, producing new ones, are well known, we simply state them without making any

remarks. In order to do that we �rst determine the Ernst potential �(�; �) from (7)-(9).

The Ernst equation is given by,

(��� � 1)�� = 2��~r� � ~r�; (10)

where

� = P (�; �) + iQ(�; �); (11)

and � and ~r are, respectively, the usual Laplacian and gradient operators in prolate

spheroidal coordinates (26*)-(27*). The potential � is linked to ~f and ~� by �, an inter-

mediate potential, given by,

� = ~f + i~�; (12)

with,

� =
� � 1

� + 1
: (13)

From (11)-(13) we obtain,

P =
1� ~f2 � ~�2

(1 � ~f)2 + ~�2
; Q =

2~�

(1 � ~f)2 + ~�2
; (14)
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and with (7)-(8) and (14), from (11) we have,

� =
�� � 1

�� �
+ iq1(� � �): (15)

Another solution, �1, of Ernst equation can easily be obtained through the transformation

�1 = i� = �q1(�+ �) + i
�� + 1

� + �
; (16)

which produces, with (11), the following solution,

~f =
(�� + 1)2 + (�+ �)2[q2

1
(� + �)� 1]

(�� + 1)2 + (�+ �)2[q1(� + �)� 1]2
; (17)

~� =
2(�� + 1)(� + �)

(�� + 1)2 + (�+ �)2[q1(� + �)� 1]2
; (18)

~! = �
2k(�2 � 1)(1 � �2)[q1(� + �)� 1]

q1[q21(�+ �)4 � (�2 � 1)(1 � �2)]
: (19)

This solution, (17)-(19), is discussed in [7], and has been found too by Das [8] and Bonanos

and Kyriakopoulos [9] by using a method proposed by Herlt [2]. They have demonstrated

that this solution corresponds to the extreme Kerr black hole solution, as it can be easily

seen by determining the asymtotic behaviour of solution (17)-(19) by using the Boyer-

Lindquist coordinates, R and �,

� =
R�M

k
; � = cos �; (20)

leading to M = a, where M is the mass and a is the angular momentum of the source.

III Schwarzschild and Kerr black holes

Another possible seed-solution is

f0 = q1(�+ 1)(1 + �); (21)

which we considered in a previous article [4]. It is a static solution of the form (17*). The

corresponding potential U is

U = ln

"
� + 1

a0(1 + �)

#
; (22)

where a0 is a constant of integration. The daughter-solution becomes,

~f =
�2 � 1 � a2(1� �2)

(�+ 1)2 + a0(1 + �)2
; (23)

~� =
2a0(�� �)

(�+ 1)2 + a2
0
(�+ 1)2

: (24)
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It follows the corresponding solution of the Ernst equation,

� =
� + a2

0
�

1 + a2
0

+ i
a0(� � �)

1 + a2
0

: (25)

This solution can easily be transformed into the Kerr solution,

�K = ei�� = p� � iq�; (26)

with

a0 = � tan�; p = (1 + a2
0
)�1=2; q = a0(1 + a2

0
)�1=2: (27)

Furthermore, if we choose the asymptotic expression, � ! 1, of U in (22), we reobtain

the Schwarzschild metric, as it can be directly seen from (14*)-(16*).

IV Kerr black hole

Considering,

f0 = q1(�� 1)(1 � �); (28)

the potential U(�; �) becomes,

U = ln

"
q1(� � �)

�� 1

#
; (29)

where q1 is an integration constant. The daughter-solution then becomes,

~f = �
�2 � 1� q1(1 � �2)

(�� 1)2 + q2
1
(1� �)2

; (30)

~� =
2q1(�� �)

(�� 1)2 + q2
1
(1 � �)2

: (31)

The solution of the Ernst equation that follows is

� = P + iQ; (32)

where

P = �
� + q2

1
�

�2 + q2
1
�2

; Q =
q1(� � �)

�2 + q2
1
�2

: (33)

We can make a unitary transformation on (32), of the form

�1 = ei�0 = (m+ in)�; (34)

where �0, m and n are real constants, we obtain from (32)

� = (mP � nQ) + i(nP +mQ); (35)
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and �1 is still solution of the Ernst equation. Considering

q1 =
n

m
; m2 + n2 = 1; (36)

we obtain for the daughter-solution

~f1 =
1�m2�2 � n2�2

(1�m�)2 + n2�2
; (37)

~�1 =
2n�

(1 �m�)2 + n2�2
: (38)

Finally making the transformation ~f1 ! � ~f1 and m ! �m, the solution thus obtained

corresponds to the Kerr solution.

However, contrary to solution (22), the asymptotic behaviour, � ! 1, of (29) does

no more allow us to obtain the Schwarzschild solution.

V Extreme Kerr black hole

Finally considering,

f0 = q1(� + 1)(1� �); (39)

we calculate the potential U(�; �) giving

U = ln

"
(� + 1)(1� �)

q1(� � �)2

#
; (40)

where q1 is an integration constant. The corresponding daughter-solution is

~f =
(�2 � 1)(1 � �2)

1 + �)2(1� �)2 + q2
1
(�� �)4

; (41)

~� =
2q1(� � �)3

(1 + �)2(1� �)2 + q2
1
(� � �)4

: (42)

The solution of the Ernst equation, becomes

� = P + iQ; (43)

where,

P = �
(� � �)(�� � 1)

(�� � 1)2 + q2
1
(�� �)4

; (44)

Q =
q1(�� �)3

(�� � 1)2 + q2
1
(� � �)4

: (45)

We can rewrite (43) like

� =

"
(�� � 1)2

(� � �)2
+ q2

1
(�� �)2

#�1
�1; (46)
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where,

�1 = �
��� 1

�� �
+ iq1(� � �): (47)

We see that �1 is a solution of Ernst equation, since from (46)-(47) we can further rewrite

(46), becoming

� =
1

��1
: (48)

Through a simple transformation (46) reduces to (15), hence it represents also an extreme

black hole.

VI Conclusion

For the seed-solutions of the Euclidon method, we have chosen the static solutions (2),

(21), (28) and (39). They represent Newtonian potentials of semi-in�nite lines of mass

with di�erent orientations in the prolate spherical coordinates (26*)-(27*). Semi-in�nite

lines of mass have been throughly studied by Bonnor and Martins [10]. We chose them

with � = 1=2, being � their mass per unit lentgh. The reason for choosing this particular

value lies in the peculiar properties of � in Weyl solutions [11]. One of its family of

solutions is the 
 metric [12], which has limit, when its Newtonian source length tends

to in�nity [13], the Levi-Civita spacetime [14]. For � = 1=2 the Levi-Civita spacetime

becomes 
at and the 
 spacetime becomes the Schwarzschild spacetime [15].

With the semi-in�nite line mass as seed-solutions, with � = 1=2, we generated, using

the Euclidon method, the extreme Kerr black hole and Kerr black hole spacetimes. This

might suggest that when the Kerr metric [16] has its source length tend to in�nity, we

may obtain the Lewis spacetime [17] with � = 1=2.
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