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Abstract

The large N limit of an extreme type II superconductor in a magnetic �eld

H is considered at �xed dimensionality d = 3. It is shown that the e�ective

interaction remains always positive, contrary to earlier claims. However,

it is shown that no �xed point is reached in the infrared if H 6= 0, which

could be interpreted as a �rst-order transition. The important role of the

two scales of the problem is discussed.
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High temperature superconductors have a very large Ginzburg parameter, typically

� � 100. For this reason, it seems to be a good approximation to neglect magnetic

thermal 
uctuations in the Ginzburg-Landau (GL) model. For � � 1 the Hamiltonian

density of the GL model in an external magnetic �eld is written as

H = j(r� ieA)�j2 + u

2

�
j�j2 + m2

u

�2

; (1)

where r�A = H and m2 = a(T � Tc) with a > 0. This model Hamiltonian describes

superconductors in the extreme type II limit.

Early renormalization group calculations performed by Br�ezin et al. [1] using the model

(1) indicated that the phase transition is of �rst-order. This result has been obtained in

the lowest Landau level (LLL) approximation with an � = 6�d-expansion. Later, A�eck

and Br�ezin [2] carried a large N calculation and have obtained also a �rst-order phase

transition. The situation seems to be di�erent from the Halperin et al. calculation [3] in

zero �eld but with magnetic 
uctuations. In that case the � = 4� d-expansion leads to a

�rst-order transition while a large N analysis gives a second-order transition.

A large N analysis performed by Radzihovsky [4] leads to an opposite conclusion to

that of A�eck and Br�ezin [2]. This author obtained instead that the transition is of

second-order. His analysis, however, is con�ned to 4 < d < 6 while A
leck and Br�ezin

discuss also the interval 2 < d < 4.

In order to solve the controversy, in this paper we revisit the problem by performing a

simpler analysis with respect to the previous ones. Let us point out the main di�erences

between the present work and the preceding ones. First, we will work directly in d = 3,

which is the physically meaningful dimension. When only the LLL is considered, the

upper critical dimension is six while the lower one is four. Nevertheless, as remarked

by A�eck and Br�ezin [2], in large N there is no problem to consider dimensions less

than four. Second, we will use the gauge A = (0; xH; 0) instead of the symmetric gauge

A = H(�y; x; 0) considered in the previous works [1,2,4]. Although the symmetric gauge

simpli�es the renormalization group (RG) analysis in d = 6� �, it will not be particularly

useful in the large N three-dimensional analysis. The third point is that we will integrate

out all the N components, without leaving an unintegrated �eld, as done in Refs. [2] and

[4]. This brings some simpli�cation to the analysis. We will see that the leading order is
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just the Hartree approximation considered by Lawrie [6] in his thorough study of the LLL

scaling. Our main results are the following. The e�ective j�j4 interaction is found to be

always positive, in contrast to the result of Ref. [1] where a sign change is found, leading

these authors to conclude that the transition will be of �rst-order. A positive e�ective

interaction is also found by Radzhovsky in his large N analysis at 4 < d < 6. However,

our analysis reveal that there is also a runaway in the infrared, indicating the absence

of an infrared �xed point. This behavior is not characteristic of systems exhibiting a

second-order phase transition.

In the following we will assume that the external magnetic �eld is parallel to the z axis

and that the gauge A = (0; xH; 0) has been chosen. We will consider the model (1) with

N complex components and take the large N limit at Nu �xed. In order to treat the large

N limit, we will introduce an auxiliary �eld � and obtain the transformed Hamiltonian:

H 0 = j(r� ieA)�j2 + i�

�
j�j2 + m2

u

�
+

1

2u
�2: (2)

The new Hamiltonian H 0 is Gaussian in �. This allows a straightforward integration of �

to obtain the following e�ective action:

Seff = NTr ln(�@2 + 2i!x@y + !2x2 + i�) +

Z
d3r

�
m2

u
i� +

1

2u
�2

�
; (3)

where ! = eH. The leading order in 1=N is obtained through the minimization of Seff

with respect to �. We will take � as being uniform and given by � = �i�0. In this way we

can easily evaluate the trace of the logarithm in (3) using the eingevalues of the operator

�@2 + 2i!x@y + !2x2 + �0, which are the well known Landau levels. Close to the critical

line Hc2(T ) [7], the most relevant of the Landau levels is the lowest one. By doing the

minimization of (3) taking only the LLL simpli�es considerably the calculation. The �eld

� should be written in terms of the Landau level basis as follows:

�(r) =
X
n

Z
dpy
2�

Z
dpz
2�

�̂n;py;pz�n;py;pz(r); (4)

where �n;py;pz(r) are the Landau level eingenfunctions given by

�n;py;pz(r) =
1p
2nn!

�!
�

�1=4
ei(pzz+pyy)e�!(x�py=!)

2=2Hn

�p
!x� pyp

!

�
; (5)
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with energy eigenvalues En(pz) = p2z + (2n + 1)! + m2 and where Hn are the Hermite

polynomials. The LLL approximation correspond to taking only the n = 0 eingenfunction.

By minimizing Eq. (3) with respect to �0 we obtaine the gap equation:

(! + �0)(�0 �m2)2 � N2!2u2

16
= 0: (6)

The critical �eld is obtained from Eq. (6) by setting �0 = 0. The result is

Hc2 (T ) =
16a2(Tc � T )2

N2eu2
: (7)

Since Hc2 � (Tc�T )2�, we obtain the critical exponent � = 1, in agreement with Ref. [6].

Let us calculate the quadratic 
uctuations in �. This will allow us to obtain the �

propagator which corresponds to the e�ective j�j4 coupling. In order to perform this

calculation, we will substitute in Eq. (3) i� = �0 + i��, where i�� is a small 
uctuation

around �0. Thus, up to quadratic order in ��, the e�ective action is

Seff = S
(0)
eff +

1

2u

Z
d3r

Z
d3r0[�3(r� r0) +Nug0(r; r

0)g0(r
0; r)]��(r)��(r0) + (h:o:t:); (8)

where S0
eff corresponds to the saddle point solution and g0(r; r

0) is the LLL Green function

of the operator �@2 + 2i!x@y + !2x2 + �0. Thus, the e�ective j�j4 interaction is given in

momentum space by

U�(p) =
u

1 + Nu!
2�

e
�

1
2! (p2

x
+p2

y
)

p
�0+![p2z+4(�0+!)]

: (9)

Before proceeding, it is useful for the sake of clarity to compare the above e�ective inter-

action with the one obtained from the well known large N solution of the �4 theory [5].

In that case, the e�ective interaction V� is given in d = 3 by

V�(jpj) = u

1 + Nu

4�
p
p2
arctan

�q
p2

4~�0

� ; (10)

where ~�0 = ��2. As the critical point is approached, ~�0 ! 0 and the denominator of Eq.

(10) becomes 1 +Nu=(8jpj). By writing � = jpj and de�ning the dimensionless coupling

g = V�(�; ~�0 = 0)=�, we can obtain easily the beta function �(g) = �@g=@�:

�(g) = g

�
Ng

8
� 1

�
: (11)
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This beta function has an infrared stable �xed point g� = 8=N . This �xed point can be

obtained directly from Eq. (10) by taking the following limit:

lim
�!0

lim
~�0!0

V�(�)

�
= g�: (12)

Alternatively, we could set p = 0 in Eq. (10) to obtain V�(0) = u=(1 + Nu=8�~�1=2
0 ) and

take the scale as being �� = �~�
1=2
0 . By de�ning the coupling constant as �g = V�(0)=��,

we obtain the beta function for this coupling with the same functional form as Eq. (11).

This argument shows that scaling holds in the large N solution of the �4 theory.

In the case of the e�ective interaction U�, the problem is more subtle. Let us take

�rst px = py = 0 and choose � = jpzj. Remember that the critical point corresponds to

�0 = 0. Thus, in contrast to the pure �4 case, being at the critical point does not mean

a massless propagator. If we take the analogous limit of Eq.(12) in Eq. (9), we obtain

lim
�!0

lim
�0!0

U�(px = 0; py = 0; jpz j = �)

�
!1: (13)

The behavior (13) implies a runaway of the de�ned coupling constant in the infrared.

Thus, there is no evidence for a �xed point using the above scaling, which is analogous to

the scaling de�ned by Eq. (12) in the case of the �4 theory. However, we must remember

that when �0 = 0, ! = !c2 = eHc2(T ), and therefore there is still one scale left in the limit

(13). Thus, we can de�ne a coupling ~g = U�(0;�0 = 0)=~� where ~� = �!
1=2
c2 . It is then

straightforward to obtain the beta function for the coupling ~g as �(~g), where �(x) is the

function given by Eq. (11). Now we have obtained an infrared stable �xed point but this

should not be a surprise since this �xed point is reached when ~�! 0 which means T ! Tc.

Since our theory is not rotation invariant in momentum space, we can consider a third

situation where we de�ne the coupling constant as ~g = U(� = jp?j; pz = 0;�0 = 0)=�,

where p2
? = p2x + p2y. Now the scale � is associated to the degeneracy of the LLL. We

obtain the following 
ow equation:

�
@~g

@�
= �~g + N

8�

�3

!
3=2
c2

exp

�
� �2

2!c2

�
~g2: (14)

For a given �xed temperature, no nontrivial �xed point is reached from Eq. (14).

If �=!c2 = c, where c is a nonuniversal constant, we can rescale the coupling ~g !
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c exp(�c2=2)~g=� to obtain once more the beta function �(~g). Thus, the scaling where

the coupling constant is de�ned at �0 = 0 through p = 0 and � = !c2 is equivalent to

the scaling where pz = 0 and � = jp?j = c!
1=2
c2 . We could choose alternatively p? = 0

and � = jpzj = c!
1=2
c2 , or � = jpzj = jp?j = c!

1=2
c2 and obtain the same result. Thus, a

second-order �xed point is obtained only if the scaling � � !
1=2
c2 holds. Therefore, we �nd

no evidence for a second-order phase transition over the line Hc2 , except for the point

T = Tc in the phase diagram in the TH-plane. However, it is di�cult to conclude that

the phase transition is of �rst-order as one crosses over the Hc2 line. The point is that

we have two scales in this problem and the propagator for �0 = 0 becomes critical only

for T = Tc. Note that the e�ective interaction is always positive, in contrast to the con-

clusions of Refs. [1,2]. The e�ective interaction obtained for arbitrary 4 < d < 6 in Ref.

[4] is similar to ours and is also always positive. This fact suggests that the mechanism

for the �rst-order phase transition, if it takes place, is more subtle and does not rely on

a simple sign change of the e�ective j�j4 interaction.
We must be aware that the phase diagram may be even more complicated. As pointed

out in Ref. [8], the vortex 
uid phase would be constituted by two phases separated by a

second-order line terminating in a tricritical point. This scenario is con�rmed by recent

Monte Carlo simulations [9]. Roughly speaking, the theoretical argument leading to such

a phase diagram is the same that shows that the Halperin et al. [3] �rst-order scenario

breaks down in the type II regime [10]. It consists of a duality argument in the lattice

superconductor that allows to construct a �eld theory of vortex lines [11]. In this duality

context, the magnetic �eld plays the role of a charge [8].
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