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Abstract

We derive the exact expression of the angular size-distance redshift relation for a 
at

Friedmann-Robertson-Walker universe with a cosmological constant, depending on the

parameters 
� and 
M . Expressions in terms of 
 = (
�=
M )1=6 and its inverse are

given, in particular reproducing Mattig's relation with a O(
5) correction due to the

cosmological constant.
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There is now strong observational evidence that the expansion of the universe is ac-

celerating [Perlmutter et al. 1999; Perlmutter, Riess et al., 1998; Schmidt et al., 1998;

Turner and White, 1999]. The results are fully consistent with the existence of a cosmo-

logical constant, whose contribution to the total energy density of the universe amounts

to 70% of the critical density (
� � 0:7). Since matter alone is considered to contribute


M � 0:4: � 0:1, taken together matter and cosmological constant energy account for a

critical density Universe, consistent with measurements of the anisotropy of the cosmic

microwave background. In this context, we may be led to consider that the large scale ge-

ometry of the Universe is approximately described by a 
at Friedmann-Robertson-Walker

universe with a cosmological constant and that large scale measurements (e.g., deep sur-

veys at z � 1) should take into account this spacetime structure.

In this vein, the aim of the present note is precisely to derive an exact analytic ex-

pression of the proper angular size distance-redshift relation for a FRW universe with

dust plus a cosmological constant, having zero curvature spatial sections. The interest

of such exact analytic expression lies in the possibility of expanding it to any order of

perturbation in the parameters � = (
M=
�)1=6 or 
 = (
�=
M )1=6 obtaining analyt-

ically the distante-redshift relation constribution to any order of perturbation in these

parameters and testing all possible orders of perturbations in �tting experimental data.

The present observational data obviously favours the expansion in �. There is also an

interest per se in the exact relation since it is new in the literature. As we will see, the

expansion of our expression in O(
2) will furnish the exact well-known Mattig's relation

for a matter dominated 
at universe, and further terms in the expansion in 
 will furnish

the �rst corrections to Mattig's relation in the case the universe has a small component


�. The expansion in O(�2) gives the distance-redshift relation in a DeSitter universe;

higher order terms in the expansion in � will show us the corrections to the DeSitter

distance-redshift relation due to the presence of a matter distribution component. Actu-

ally, in the latter case, corrections to all orders in � may straightforwardly be obtained

by a direct expansion of our exact relation.

Our derivation considers basically the FRW 
at universe

ds2 = dt2 � a2(t)
n
dr2 + r2

�
d�2 + sin2 �d�2

�o
; (1)

with a(t) the scale factor of the universe, and satisfying Einstein's equations with dust



{ 2 { CBPF-NF-022/00

and a cosmological constant �. The �rst integral of Einstein's equations gives

(da=dt)2 = 8�G�0a
3
0=3a� (�=3)a2 ; (2)

where �0 is the present matter density of the universe and a0 is the present value of the

scale factor of the universe. De�ning the Hubble constant H0 as the present value of the

paramenter H = [(da=dt) =a], equation (2) can be expressed as

H2 = H2
0

h

M (a0=a)

3 � 
�

i
(3)

where we have de�ned


M = 8�G�0=3H
2
0 ; 
� = �=3H2

0 : (4)

Let us consider now that we are an observer located at the origin of the coordinate

system r = 0 and receive light signals from a source located at (r1; �; �). Radial null

signals emitted by the source must satisfy (cf. (1))

dt=a(t) = �dr (5)

and we obviously adopt the minus sign since the observer is located at the origin r = 0. If

the source emitted a signal at t1 with corresponding scale factor a1, we receive this signal at

the present time t0 with corresponding scale factor a0. Due to the cosmological expansion,

the wavelenght spectrum of the signal emitted will reach us redshifted according to

1 + z = �0=�1 = a0=a1 : (6)

From (2) equation (5) can be straightforwardly integrated

Z r1

0
dr =

Z a0

a0(1+z)

daq
[(8�G�0=3) a30a+ (�=3)a4]

: (7)

The crux of our problem corresponds to solve analytically the integral equation (7). Al-

though a nontrivial task, we were able to realize it by using standard methods in the

treatment of elliptic integrals [Abramowitz and Stegun, 1989]. Equation (7) is solved by

the Jacobian elliptic function cn(u=m) according to

F (z) =
q
(7 + 4

p
3)
�
cn

�
K0 + (

qp
3)
1=6

� 
1=3
M H0a0r1

���(2 +p3)=4�� (8)
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where

F (z) =

h
1� (

p
3 + 1)(
M=
�)1=3(1 + z)=2

i
h
1� (

p
3 � 1)(
M=
�)1=3(1 + z)=2

i (9)

and K0 is a pure number, depending on �2 only, de�ned by

K0 � cn�1

0
@ F (z = 0)

(
q
(7 + 4

p
3))

����(2 +p3)=4
1
A (10)

Eqs. (8)-(10) constitute the basic results of this note, relating the redshift z to the proper

angular size distance [Peebles, 1993] a0r1 in a 
at accelerating universe.

For illustration, let us now expand (8)-(9) in powers of �2; according to recent ob-

servational data the paramete �2 is evaluated to be a number of the order of 0:75. We

obtain from the expansion up to O(�8) that the redshift-distance law is given by

z �
n
(
p
3� 1)3(1 + z)4=8

o
�6 =

q

� H0a1r1 +

+
1

8

("
(11 � 6

p
3)
�
1 +

q

�H0a0r1

�4
� 1

#)
�6 + 0(�8) : (11)

This expression holds for all values of z and a0r1. We note that at any order of expansion

obtained we have that z = 0 corresponds to a0r1 = 0. For neglegible �2 the expression

reduces to the usual redshift-distance relation in a DeSitter Universe, namely.

z �
q

� H0a0r1 = 0 :

In the case of a matter dominated universe, in which the value of 
 = (
�=
M )1=6 is

small, we would obtain form the expansion of (8)-(9) that

1=(1 + z) =
�
1 �

q

M H0a0r1=2

�2
+O(
5) (12)

Neglecting the contributions of O(
5), this gives the well-known Mattig's relation [Mattig,

1958] for a spatially 
at universe with dust. The �rst correction O(
5) to Mattig's relation

due to the presence of a cosmological constant is only of pure academic interest, due to

the present observational status, and will not be given here. It can however be derived

without di�culty, in a procedure analogous in obtaining expansion (11).

Finally, for z small, the distance-redshift relation (11) simpli�es to

z �
q

� H0a0r1

n
1 + 4(11 � 6

p
3)�6

o
n
1 � 4(

p
3 � 1)3�6

o = 0(�8)

All our calculations were checked with Maple V package programs.
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APPENDIX

A useful relation in expansing the equations (8)-(9) in terms of the parameters is the

exact expression of the derivative of K0.

dK0=d(�
2) =

(
qp

3)q
(1 + �6)

:

The corresponding derivative with respect to 
 can be easily obtained by noting that

� = 1=
.
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