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Abstract

Using the Dyson-Schwinger equation, we re-examinate the behavior at �nite tempera-

ture of the massless �'4 model in a generic D-dimensional Euclidean space. An analysis

of the thermal behavior of the renormalized self-energy is done for all temperatures. It

results that the thermal renormalized self-energy is positive and increases monotonically

with the temperature.
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1 Introduction

Studying the Casimir e�ect for a massless scalar �eld in a D-dimensional spacetime [1],

it was obtained a generalization of the Debye integrals [2]. The purpose of this letter is

to show how this result can be used in the resummation program in the massless �'4

theory. It recent papers it has been used this above metioned useful result [3][4], together

with the CJT formalism [5][6] and the Dyson-Schwinger equations, in order to obtain the

behavior of the thermal mass and coupling constant assuming that the quantum system

is in equilibrium with a thermal reservoir.

The Dyson-Schwinger equations (DSE) provide a non-perturbative approach to solving

quantum �eld theories. The DSE are a in�nite tower of coupled equations for the n-point

functions of the theory, and a tractable problem is only obtained if one truncates the

system. One systematic way of truncating the system is the weak coupling expansion. In

this way the DSEs contain perturbative theory, since the weak coupling expansion of the

equations generates all the diagrams obtained in perturbation theory. There are many

di�erent examples of DSEs. For example, since the phenomenon of supercondutivity in

the BCS theory [7] is related to electron pair condensation and display a non-perturbative

character of such condensation, the gap equation that describes Copper pairing is simply

a truncated DSE for the fermion �eld two-point function. Bethe-Salpeter equations are

also DSEs for four-point functions.

In interacting relativistic quantum �eld theories two types of divergences appear. The

�rst one are the ultraviolet divergences that arises because quantum �elds are operator-

value distributions. Consequently, the singular ultraviolet behavior of a theory is indepen-

dent of the sector (vacuum, thermal, etc.). The secong group are the infrared divergences

and they strongly depends on the sector in which a given theory is being examinated [8].
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Using dimensional regularization [9] it is very hard to see the physical signi�cance of the

infrared divergences. It is clear that infrared divergences should be absence in the cross

section of a physically observed process. In (QED)4 is refered to the Bloch-Nordsieck

theorem [10]. In QCD the same mechanism is expected to work. Nevertheless the situ-

ation is quite di�erent since in the (QED)4 one enconters only soft divergences and in

the second one appear colinear divergences. In QCD soft cancelations was demonstrated

at the one-loop level in some processes where also the colinear divergences cancel out.

There is a powerful theorem: The Kinoshita-Poggio-Quinn (KPT) theorem [11], i.e. the

absence of infrared divergences in o�-shell Green's functions in massless renormalizable

�eld theories. In other words: the proper (one-particle irreducible) Green's functions with

Euclidean non-exceptional external momenta are free of infrared divergences in massless

renormalizable theories.

Temperature e�ects also can solve the infrared problem in some models in QFT [12].

For a recent treatment in non-abelian gauge theories at high temperature see for example

Ref.[13] Also in the massless �'4 theory, if we assume thermal equilibriumwith a reservoir

the infrared problem can be solved after a ressumation procedure [14][15][16][17]. For a

recent reatment of the �'4 theory, see for example Ref.[4] [17]. The purpose of this letter

is to calculate the gap equation in the massless (�'4)D theory at �nite temperature. In

this paper we use �h = c = kb = 1.
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2 The thermal gap equation in the massless �'4
D

model

In this section we will calculate the temperature dependent self-energy �(�) using an

alternative method developed by de Calan et al [3] and Ananos et al [4]. Let us suppose

that our system is in equilibrium with a thermal bath. At the one-loop approximation

the thermal mass and coupling constant for the �'4 model in a d-dimensional Euclidean

space have been obtained in a previous work [18] and are given by
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where K�(z) is the modi�ed Bessel function and m2 and g are the zero temperature renor-

malized squared mass and coupling constant respectively. Note that since we are using

dimensional regularization there is implicitly in the de�nition of the coupling constant

g a factor �4�d. It is possible to improve the above results using the CJT formalism

or the Dyson-Schwinger equations. In imaginary time formalism, the Dyson-Schwinger

equation give us a self-consistent equation. (In this case we adopt the notation �(�) for

the temperature dependent self-energy and we are in D=4).
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Note that we are working in the massless case and the Matsubara frequencies are !n =

2n�
�
. Since we use a mix between dimensional and zeta function analytical regularizations

to evaluate formally the integral over the continuous momenta and the summation over
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the Matsubara frequencies, let us write the above expression in a general D = d + 1

dimensional Euclidean space and introduce g = �4�D�. Since we are working in imaginary

time formalism, the Euclidean time is restricted to the interval 0 � � � � = 1
T
, and the

functional integral is de�ne over the �eld '(�; ~x) satisfying periodic boundary in Euclidean

time. All the Feynman rules are the same as in zero temperature case, except that that the

momentum space integral over the zeroth component is replaced by a sum over discrete

frequencies. In a D dimensional Euclidean space the gap equation becomes

�(�) =
g

2�

1X
n=�1

Z
ddp

(2�)d
1

!2
n + ~p 2 +�(�)

(4)

To perform the sum over n many authors use a countour integral in the complex

energy plane, and after they perform the integral in the continua momenta. We use

an alternative procedure. First we will use dimensional regularization an the continua

momenta and after this we use the principle of the analytic extension to evaluate the

divergent sums over the Matsubara frequencies.

3 The solution of the thermal gap equation

In this section we will show how the generalization of the Debye integrals can be used to

solve the �nite temperature gap equation. As we discussed, from the Dyson-Schwinger

equation it is possible to write the self-energy gap equation:

�(�) =
g

2�

1X
n=�1

Z
ddp

(2�)d
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!2
n + ~p 2 +�(�)

(5)

To use dimensional regularization we have that �(�) 6= 0. If we assume �(�) = 0 we

have an trivial identity, consequentely let us assume �(�) 6= 0. After a straighforward
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calculation using dimensional regularization and de�ning f(d) = �
d

2
�2

8
we have:

�(�) = g�1�df(d)�(1 � d

2
)

1X
n=�1

1

(n2 + �2�(�)
4�2 )1�

d

2

(6)

Let us de�ne the Hurwitz zeta function �(z; a) as:

�(z; a) =

1X
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(n2 + a2)z
(7)

The Hurwitz zeta function �(z; a) is analytic for Re(z) > 1
2
. It is possible to analytic

extend it for the whole complex plane and an useful representation which is valid for

Re(z) < 1 was given by Ford and used by Ford and Svaiter [19]:
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It is clear that the most interesting case is the even dimensional Euclidean space.

Consequently, let us study the even dimensional case. Substituting the analytic extension

of the Hurwitz zeta function in the self-energy we get a sum of a polar (temperature

independent) term plus a thermal analytic correction. The pole is suppressed by the

renormalization procedure. Then after some technical manipulations, if we de�ne h(d) =

4�(1 � d
2)

��
d

2
�1

2d+2 , the gap equation may be rewritten in the form,
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From the above expression some authors claim that there is a breakdown of the per-

turbation theory due to infrared divergences and the consequence is the fact that the

functional dependence of �(�) is not in powers of g as we would expect from perturba-

tion theory, but appears an non-analytic behavior. The purpose of this calculations is

analyse the exact form of �(�). De�ning a new variable � =
p
�(�)�t it is easy to show

that
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Since we are studying the even dimensional case the use of the Newton binomial theo-

rem will give a very direct way for evaluating �(�). The expansion of

�
( �p

�(�)�
)2 � 1

� d

2
�1

yields a in�nite power series, and the expression for the thermal squared mass becomes
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are a generalization of the binomial coe�cients. Note that for small values of k the integral

that appear in eq.(11) is a Debye integral of the type
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which is valid for x > 0 and n � 1 [2]. For k satisfying k > D�4
2
, which corresponds to

n < 1 in the preceeding equation, it is necessary to generalize the Debye integral (the case

n = 0 is trivial). Let us investigate the case n < 0. This generalization has been done by

Svaiter and Svaiter [1] and the result reads,
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(for odd n), Re(x) > 0, 2� > jxj > 0 and 
n�1
2

being a constant. The quantites Bn are the

Bernoulli numbers. Note that this generalization can be used only for high-temperatures

i.e. m(�)� < 2�. Thus, in the high temperature regime, if we de�ne

I(x;D� 3 � 2k) =

8<
: I1(x;D � 3 � 2k); for x > 0; k � D�4

2
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(16)
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we may write

�(�) = g�2�D
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The above equation gives a non-perturbative expression for the thermal squared mass

in the high temperature regime in the case of even dimensional Euclidean space. All the

calculations can be done in a odd dimensional space, and in tis case the summation in k

�nishes at D�3
2
. For any dimension, it is possible to perform a numerical analysis of the

behavior of the renormalized self-energy for all temperatures using eq.(11). It was found

that in both cases D = 3, and D = 4, the thermal squared mass appears as a positive

monotonically increasing function of the temperature.

4 Conclusions

We have done in this paper an analysis of the �'4 model in a 
at D-dimensional Euclidean

space in equilibriumwith a thermal bath. The form of the thermal corrections to the self-

energy have been discussed using resummation methods. We have chosen this way of

working, in order to get answers as much as possible of a non-perturbative character.

In what concerns the thermal behavior of the self-energy, we have shown that it is a

monotonic increasing function of the temperature for any Euclidean dimension.
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