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Abstract

A rigorous algebraic proof of the full �niteness in all orders of perturbation theory is

given for the Yang-Mills-Chern-Simons theory in a general three-dimensional Riemannian

manifold. We show the validity of a trace identity, playing the role of a local form of

the Callan-Symanzik equation, in all loop orders, which yields the vanishing of the �

-functions associated to the topological mass and gauge coupling constant as well as the

anomalous dimensions of the �elds.
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The �niteness of the Yang-Mills-Chern-Simons (YMCS) theory [1{5] in D = 3 has

been pursued since its evidence was �rst detected by one-loop order calculations [2,3],

and later on up to two-loops [5]. Recently, the �niteness of the N = 1 super-YMCS

theory [6] has been shown. A partial proof on the �niteness of N = 2 super-YMCS theory

in the Wess-Zumino gauge is given in [7]. Since the pure Chern-Simons (CS) theory is

�nite to all orders in perturbation theory [8], two recent papers [9,10] have claimed the

equivalence of the YMCS theory with a pure CS theory at the quantum level to argued

the �niteness of YMCS up to �eld amplitude renormalizations.

In this letter we present a rigorous proof of the full �niteness of the YMCS theory

in a general three-dimensional Riemannian manifold. The approach we propose here to

quantum scale invariance of the YMCS is based on the energy-momentum (EM) tensor

trace identity, playing the role of a local form of the Callan-Symanzik equation. It means

exact quantum scale invariance, with vanishing �-functions and anomalous dimensions as

well.

The same technique [11]) has been used to prove the full �niteness of the BF-Yang-

Mills theory in D = 3 [12]. To give such a proof on the full quantum scale invari-

ance of YMCS we use the algebraic renormalization method [13{15]. It is based on the

BRS-formalism [13] together with the Quantum Action Principle [16], which leads to a

regularization independent scheme. We think indeed that, due to the presence of the

antisymmetric Levi-Civita tensor, it is di�cult to establish an invariant regularization

scheme without encountering problems at some or other stage of the argument.

Since we are working with an external curved dreibein, our results hold for a curved

manifold, as long as its topology remains that of at R3. This allows us to use the general

results of renormalization theory [16,17] established in at space.

The three-dimensional space-time is a Riemannian manifold described by a dreibein

�eld em� . The spin connection !mn
� depends on the dreibein due to the vanishing torsion

condition. The metric tensor reads g�� = �mne
m
� e

n
� , with �mn being the tangent at space
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metric. We denote by e the determinant of em� .

The YMCS classical action (in the Landau gauge) in a three-dimensional curved man-

ifold reads:
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Z
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where m is the topological mass [1] and g is the gauge coupling constant. The �eld

strength is de�ned as F a
�� = @�A

a
��@�A

a
�+ gfabcA

b
�A

c
� and ca, �ca and ba are the ghost, the

antighost and the Lagrange multiplier �elds, respectively. A��
a and c�a are the \anti�elds"

(tensorial densities) coupled to the nonlinear variations of the �elds Aa
� and ca under BRS

transformations s:

sAa
� = �D�c

a � �(@�c
a + gfabcA

b
�c

c) ;

sca =
g

2
fabcc

bcc ; s�ca = ba ; sba = 0 : (2)

The action (1) is also invariant under di�eomorphisms

�
(")
di�� = L"� ; (3)

where � = (Aa
�; e

m
� ; c

a; ba; �ca; A��
a ; c�a) and L" the Lie derivative along the in�nitesimal

vector �eld "�; and under in�nitesimal local Lorentz transformations

�
(�)
Lorentz� =

1

2
�mn


mn� ; � = any �eld ; (4)

with 
[mn] acting on � as a Lorentz matrix in the appropriate representation.

The BRS invariance of the action is expressed in a functional way by the Slavnov-

Taylor (ST) identity

S(�) =

Z
d3x

�
��

�A��
a

��

�Aa
�

+
��

�c�a

��

�ca
+ ba

��

��ca

�
= 0 (5)

where the corresponding linearized ST operator reads
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d3x
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The operators S and B obey the following nilpotency identities: BF S(F) = 0 8F ,

and (BF)2 = 0 if S(F) = 0. In particular, since the action � obeys the ST identity (5),

we have the nilpotency property (B�)2 = 0.

In addition to the ST identity (5), the action (1) satis�es the constraints: the Landau

gauge condition

��

�ba
= @�(eg

��Aa
�) ; (7)

and the \antighost equation" (in the Landau gauge [8])

�Ga� =

Z
d3x

�
�

�ca
+ gfabc�cb

�

�bc

�
� = �a

cl ; (8)

with �a
cl = g

R
d3xfabc(A��

b Ac�� c�bcc). Note that the right-hand side of (8) being linear in

the quantum �elds, will not be submitted to renormalization.

The Ward (W) identities for the di�eomorphisms (3) and the local Lorentz transfor-

mations (4) read:

WX� =

Z
d3x

X
all �elds

�X�
��

��
= 0 ; (9)

where X = (di�;Lorentz).

Commuting (5) and (7) we obtain

Ga� =
��

��ca
+ @�

�
eg��

��

�A��
a

�
= 0 ; (10)

which is the \ghost equation" [15]. It implies that the theory depends on the �eld �ca and

on the anti�eld A��
a through the combination Â��

a = A��
a + eg��@��ca.

Moreover, the action (1) is invariant under the rigid gauge transformations, given by

the W identity
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Wa
rigid� =

Z
d3x

X
�=A;c;�c;b;A�;c�

fabc�b
�

��c
= 0 ; (11)

by anticommuting (5) and (8).

In order to give a proof of the renormalizability of (1), we have to show that all

constraints de�ning the classical theory also hold at the quantum level, i.e. that we can

construct a renormalized vertex functional � = � + O(�h), obeying the same constraints

and coinciding with the classical action at order zero in �h.

The �rst point to be checked is the power-counting renormalizability. The ultraviolet

dimension, as well as the ghost number and the Weyl dimension of all �elds and anti�elds

are collected in Table I.

In order to explicitly �nd the possible renormalizations and anomalies of the theory,

we can use the following result [7]: the degree of divergence of a 1-particle irreducible

Feynman graph  is given by

d() = 3�
X
~�=�;g

d~�N~� ; with dg =
1

2
: (12)

Here N� is the number of external lines of  corresponding to the �eld �, d� is the

dimension of � as given in Table I, and Ng is the power of the coupling constant g in

the integral corresponding to the diagram . In order to apply the known results on the

quantum action principle [16] to the present situation, we have considered g as an external

�eld of dimension 1
2 .

Thus, including the dimension of g into the calculation, we may state that the dimen-

sion of the counterterms of the action is bounded by 3. However, since they are generated

by loop graphs, they are of order 2 in g at least. This means that, not taking now into

account the dimension of g, we can conclude that their real dimension is bounded by 2.

The same holds for the possible breakings of the ST identity.

The second point to be discussed concerns about the functional identities to be obeyed

by the vertex functional �. The gauge condition (7), antighost equation (8), ghost equa-

tion (10) as well as rigid gauge invariance (11) can be easily shown to hold at all orders,
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i.e. are not anomalous [15]. The validity to all orders of the W identities of di�eomor-

phisms and local Lorentz will be assumed in the following: the absence of anomalies for

them has been proved in [19,20] for the class of manifolds we are considering here.

It remains now to show the possibility of implementing the ST identity (5) for the

vertex functional �. As it is well known [15], this amounts to study the cohomology of

the nilpotent operator B�, de�ned by (6), in the space of local integrated functionals �

of the �elds involved in the theory. The cohomology classes of B� are de�ned such that

� and � + B��̂ belong to the same equivalence class. The set of these classes is called

the cohomology group Hp(B�) = Zp(B�)=Qp(B�); Zp(B�) being the space of cocycles

(the nontrivial part of the general solution) and Qp(B�) being the space of coboundaries

(BRS-variation) both of ghost number p. The cohomological groupH0(B�) constitutes the

non-trivial invariants of the theory, i.e. the arbitrary invariant counterterms we can add to

the action at each order of perturbation theory which correspond to the renormalization of

the physical parameters (coupling constants and masses), whereas Q0(B�) represents the

non-physical renormalizations (�eld amplitudes). On the other hand, H1(B�) is related

to the possible anomalies.

In the both cases, H0 and H1, the super-renormalizability by power-counting restricts

the dimension of the integrand of � to 2. Moreover, the constraints (7{11), valid now for

the vertex functional �, imply for � the conditions

�

�ba
� =

Z
d3x

�

�ca
� = Ga� =WX� = 0 ; (13)

where X = (di�;Lorentz; rigid).

It has been proven in quite generality [20,21] that in such a gauge theory the coho-

mology in the sector of ghost number 1 is independent of the external �elds (anti�elds).

We can thus restrict the �eld dependence of � to Aa
� and ca, with the dependence on ca

being through its derivatives due to the second of the constraints (13).

Beginning with the anomalies, we know [19,21] that, in three dimensions, the coho-

mology in this sector is empty, up to possible terms in the Abelian ghosts. However, they
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can be seen, by using the arguments of [22], not to contribute to the anomaly, due to

their freedom or soft coupling. We thus conclude to the absence of gauge anomaly, hence

to the validity of the ST identity (5) to all orders for the vertex functional �.

Going now to the sector of ghost number 0, i.e. looking for the arbitrary invariant

counterterms which can be freely added to the action at each order. According to the

above discussion the counterterm is at least of order g2. Thus, the most general expression

for the nontrivial part of � reads

�phys: = zmm
@

@m
� ; (14)

where zm is an arbitrary parameter. Eq.(14) shows that, a priori, only the parameter

m can get radiative corrections. This means that the �g-function related to the gauge

coupling constant g is vanishing to all orders of perturbation theory, and the anomalous

dimensions of the �elds as well. This concludes the proof of the renormalizability of the

theory: all functional identities hold without anomaly and the renormalizations might

only a�ect the CS coupling, i.e. the topological mass m. But the latter turns out to be

not renormalized, too. We shall indeed show that its corresponding �m-function vanishes

at all orders, which yields the full �niteness of the YMCS theory in a three-dimensional

Riemmanian manifold.

Now, a precise study on the quantum scaling properties of the YMCS theory demands

a local version of the Callan-Symanzik equation. Its local form arises from the \trace

identity". It will be useful to exploit the fact that the integrand of the CS action is not

gauge invariant, in spite of its integral be. This strong constraint upon the quantum inser-

tions, together with the others, will guarantee that no insertions survive at all, therefore,

as a consequence, the vanishing of the topological mass �m-function. Above all, let us

introduce the EM tensor, de�ned as the following tensorial quantum insertion:

� �
� � � = e�1e m

�

��

�e m
�

: (15)

The integral of the trace of the tensor � �
�
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Z
d3x e � �

� =

Z
d3x e m

�

��

�e m
�

� Ne� (16)

follows from the identity

Ne� =

" X
all �elds

dW (�)N� +m@m +
1

2
g@g

#
� ; (17)

where the operators N� =
R
d3x � �

��
are the counting operators and dW (�) the Weyl

dimension (see Table I) of the �eld �. It should be noticed that (17) is nothing else than

the W identity for the rigid Weyl symmetry [23].

The trace � �
� � � turns out to be vanishing up to total derivatives and dimensionful

couplings, in the classical approximation, due to the �eld equations, which means that

(15) is the improved EM tensor. It is easy to check that from the classical action the

following equation holds

w� �

"
e m
�

�

�e m
�

�
X

all �elds

dW (�)�
�

��

#
� = � ; (18)

with � being B�-invariant. It should be pointed out that � is the e�ect of the breaking

scale invariance caused by the dimensionful couplings. In fact, it is a soft breaking, since

its dimension is lower than 3 (the dimensions of m and g are not taken into account)

To promote the trace identity (18) to the quantum level, we �rst note that the following

conditons for the insertion w� hold

B�w(x)� = 0 ; �Gaw(x)� =
1

2

��

�ca(x)
;

�

�ba(y)
w(x)� = �

3

2
@x��(x� y)(eg��Aa

�)(y) ; (19)

Ga(y)w(x)� =
3

2
@x��(x� y)

�
eg��

��

�A��
a

�
(y) ;

where we use again the fact that the constraints (7), (8) and (10) can be maintained at

the quantum level [15].

The quantum version of (18) is written as

w� = � � � +� � � ; (20)
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where � �� is some quantum extension of the classical insertion �, subjected to the same

constraints (19) as w� (see [12]). It follows that the insertion � �� de�ned by (20) obeys

the homogeneous constraints

B�[� � �] =
�

�ba
[� � �] = �Ga[� � �] = Ga[� � �] = 0 (21)

beyond the conditions of invariance or covariance under Wdi�, WLorentz and Wrigid.

By power-counting the insertion � � � has dimension 3, but being an e�ect of the

radiative corrections, it possesses a factor g2 at least, and thus its e�ective dimension is

at most 2. It turns out that there is no insertion obeying all these constraints, the power-

counting selects the CS Lagrangian, but the latter is not BRS invariant. Therefore,

� � � = 0: there is no radiative correction to the insertion � � � describing the breaking

of scale invariance. It follows that (20) becomes

e � �
� � � =

X
all �elds

dW (�)�
��

��
+ � � � : (22)

This local trace identity leads to a Callan-Symanzik equation (see Section 6 of [11]):

�
m@m +

1

2
g@g

�
� =

Z
d3x � � � ; (23)

where no radiative e�ect contributes, that results in the vanishing �-functions associated

to the parameters g (�g) and m (�m) as well as the anomalous dimensions of the �elds.

The scale invariance remains a�ected only by the soft breaking �. We have thus shown

that there is no renormalization at all: the Yang-Mills-Chern-Simons theory in D = 3 is

UV �nite.

In conclusion, the method we have presented here has been allowed us to give a rigorous

proof based on general theorems of renormalization theory on the full �niteness of the

YMCS theory in a three-dimensional Riemannian manifold at all orders in perturbation

theory. Also, this method turns out possible the identi�cation of the real causes that are

from behind the �niteness of the YMCS theory.
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A� b c c A�� c� g

d 1=2 3=2 �1=2 3=2 5=2 7=2 1=2

�� 0 0 1 �1 �1 �2 0

dW �1=2 3=2 �1=2 3=2 1=2 1=2 1=2

TABLE I. Ultraviolet dimension d, ghost number �� and Weyl dimension dW .
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