Evaluation of higher twist corrections to Gottfried sum rule

Mauro Anselmino
Dipartimento di Fisica Teorica, Università di Torino and Istituto Nazionale di Fisica Nucleare, Sezione di Torino Via P. Giuria 1, I-10125 Torino, Italy
Francisco Caruso*
Centro Brasileiro de Pesquisas Físicas/CNPq
Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil

Abstract

Higher twist corrections to the Gottfried sum rule are estimated in the framework of a quark-diquark model of the nucleon. The parameters of the model have been previously fixed by fitting the measured higher twist corrections to the proton unpolarized structure function $F_{2}^{p}\left(x, Q^{2}\right)$. The resulting corrections to the Gottfried sum rule turn out to be very small, as for the Bjorken sum rule, previously calculated. The physical features of the diquark model from which these results follow are discussed.

Key-words: Higher twist; Gottfried sum rule; Diquark.

[^0]More and more accurate measurements of the neutron and proton structure functions $F_{2}\left(x, Q^{2}\right)$ allow a precise determination of the Gottfried sum rule integral (EISELE, 1995)

$$
\begin{equation*}
S_{G} \equiv \int_{0}^{1} \frac{d x}{x}\left[F_{2}^{p}\left(x, Q^{2}\right)-F_{2}^{n}\left(x, Q^{2}\right)\right]=\frac{1}{3}+\frac{2}{3} \int_{0}^{1} d x\left[\bar{u}\left(x, Q^{2}\right)-\bar{d}\left(x, Q^{2}\right)\right] \tag{1}
\end{equation*}
$$

and a possible evaluation of the isospin symmetry violation of the sea which results from the measured value of $S_{G} \neq 1 / 3$.

However, in order to extract a reliable value of $\int d x\left[\bar{u}\left(x, Q^{2}\right)-\bar{d}\left(x, Q^{2}\right)\right]$ from Eq. (1) one should take into account all possible corrections, both perturbative QCD ones and higher twist ones. The former are known to be rather small, less than 1% (HINCHLIFFE \& KWIATKOWSKI, 1996); we give here an estimate of the latter using a specific quark-diquark model of the nucleon recently used to compute higher twist corrections to $F_{2}^{p}\left(x, Q^{2}\right)$ (ANSELMINO et al., 1996) and to Bjorken sum rule (ANSELMINO, CARUSO \& LEVIN, 1995); they also will turn out to be negligibly small, so that Eq. (1) can be safely used to extract precise information on the isospin asymmetry of the nucleon sea.

Higher twist corrections induced by a quark-diquark structure of the valence component of the proton were already discussed in (ANSELMINO et al., 1992), where it was shown that such corrections, at moderate Q^{2} values, give positive contributions to S_{G}, thus increasing the value $1 / 3$ obtained in case of equal contributions from u and d sea quarks. We compute here these actual numerical contributions by exploiting the parameters of the model as fixed in (ANSELMINO et al., 1996), considering a most general derivation of diquark contributions to the nucleon structure functions that can be found in (ANSELMINO et al., 1990).

According to the notations of (ANSELMINO et al., 1996) and (ANSELMINO et al., 1990) one has

$$
\begin{align*}
\int_{0}^{1} \frac{d x}{x} & {\left[F_{2}^{p}\left(x, Q^{2}\right)-F_{2}^{n}\left(x, Q^{2}\right)\right]_{q-D}=\frac{1}{3}+\frac{2}{3} \int_{0}^{1} d x[\bar{u}(x)-\bar{d}(x)] } \\
& -\frac{4}{9} \sin ^{2} \Omega D_{1}^{2}+\frac{8}{27} \sin ^{2} \Omega \int_{0}^{1} d x f_{V_{u u}}(x) \times \tag{2}\\
& \times\left\{\left[D_{1}+Q^{2}\left(1+\frac{Q^{2}}{4 m_{N}^{2} x^{2}}\right) D_{3}\right]^{2}+2\left(1+\frac{Q^{2}}{4 m_{N}^{2} x^{2}}\right) D_{1}^{2}\right\}
\end{align*}
$$

where the first line is the usual quark parton model result, the first term on the second line, with the negative sign, originates from the inelastic scattering off a diquark and the last term from the elastic scattering off a diquark (ANSELMINO et al., 1996). Many diquark contributions cancel in the $p-n$ difference and one remains only with the contribution of vector diquarks made of $u u$ quarks; $\sin ^{2} \Omega$ is just the probability of having a vector diquark in the proton and the $D_{1,3}$ are form factors explicitely given in (ANSELMINO et al., 1996) and (ANSELMINO, CARUSO \& LEVIN, 1995) and in Eq. (4) below. The vector diquark distribution function $f_{V_{u u}}(x)$ integrates to 1 .

The higher twist contributions to the Gottfried sum rule, as modeled by the quark-diquark model, are then positive and are given by the last two lines of Eq. (2), which can be rewritten as

$$
\begin{align*}
{\left[\delta S_{G}\right]_{q-D} } & =\frac{4}{9} \sin ^{2} \Omega\left[D_{1}^{2}+\frac{4}{3} Q^{2} D_{1} D_{3}+\frac{2}{3} Q^{4} D_{3}^{2}\right] \\
& +\frac{8}{27} \sin ^{2} \Omega \frac{Q^{2}}{2 m_{N}^{2}}\left[D_{1}^{2}+Q^{2} D_{1} D_{3}+Q^{4} D_{3}^{2}\right] \int_{0}^{1} \frac{d x}{x^{2}} f_{V_{u u}}(x) \tag{3}\\
& +\frac{8}{27} \sin ^{2} \Omega \frac{Q^{8}}{16 m_{N}^{4}} D_{3}^{2} \int_{0}^{1} \frac{d x}{x^{4}} f_{V_{u u}}(x)
\end{align*}
$$

$\left[\delta S_{G}\right]_{q-D}$ vanishes at large Q^{2} according to the form factor behaviours. We evalwate it here at $Q^{2}=4(\mathrm{GeV} / c)^{2}$ by using, from (ANSELMINO et al., 1996), the same parameters which fit the higher twist corrections to $F_{2}\left(x, Q^{2}\right)$:

$$
\begin{align*}
\sin ^{2} \Omega & =0.19 \\
f_{V_{u u}} & =N x^{7.93}(1-x)^{3.32} \\
D_{1} & =\left(\frac{1.21}{1.21+Q^{2}}\right)^{2} \tag{4}\\
D_{3} & =\frac{Q^{2}}{m_{N}^{4}} D_{1}^{2}
\end{align*}
$$

where $N=1 / B(8.93 ; 4.32)$ is the normalization constant $(B$ is the Euler beta function).

Eqs. (3) and (4) yield

$$
\begin{equation*}
\left[\delta S_{G}\right]_{q-D}\left(Q^{2}=4\right) \simeq 0.0061 \tag{5}
\end{equation*}
$$

thus showing that such corrections are less than 1% at $Q^{2}=4(\mathrm{GeV} / c)^{2}$, which is the Q^{2} value at which we have the most accurate data on S_{G} (EISELE, 1995). Eqs. (3) and (4) allow an explicit determination $\left[\delta S_{G}\right]_{q-D}$ at any Q^{2} value and one sees that it decreases from 2% at $Q^{2}=1(\mathrm{GeV} / c)^{2}$ to 0.2% at $Q^{2}=10$ $(\mathrm{GeV} / c)^{2}$. Fig. 1 shows the behaviour of $\left[\delta S_{G}\right]$ as a function of Q^{2} in this range.

Fig. 1 Behaviour of $\left[\delta S_{G}\right]$ as a function of Q^{2} in a kinematical region where diquarks are relevant.

In conclusion we have evaluated the higher twist corrections to Gottfried sum rule in an explicit phenomenological model which takes into account quark correlations and clustering; the concept of diquarks and its phenomenological importance
is by now well established (ANSELMINO et al., 1993) and this same model has been previously applied to a very accurate description of higher twist corrections to F_{2}^{p} so that its parameters are now fixed. We have shown that higher twist corrections to S_{G} are indeed very small (and comparable to the perturbative QCD ones) and one can safely use the experimental values to obtain information on the difference between the total amount of u and d quarks in the proton sea.

Fig. 2 This figure shows the prediction of our model for the generalized partonic distributions $x f_{C}(x)$, as a function of x, for each constituent $C=S, V, q$; the quark and diquark distributions $f_{C}(x)$ and the values of their parameters are given in (ANSELMINO et al., 1996). The quark content of S is always (ud) while vector diquark V may be made of $(u u)$ or (ud) system; u_{S} and u_{V} refer to u quarks inside a particular scalar and vector diquark, respectively.

Why are diquark corrections to Gottfried and Bjorken sum rules so small? Considering that only vector diquarks contribute to these sum rules, one can easily conclude that the smallness of the diquark contributions to both of them is due to some intrinsic features of the quark-diquark model of the nucleon (ANSELMINO et al., 1996), namely: the strong $S U(6)$ violation ($\sin ^{2} \Omega=0.19$) favouring scalar diquarks; the mass scale of the vector diquark form factor which turns out to be small, $Q_{V}^{2}=1.21(\mathrm{GeV} / \mathrm{c})^{2}$, thus corresponding to a large size; and the vector diquark x distribution which is found to be peaked at $x \simeq 0.7$, suggesting that vector diquarks consist of two almost uncorrelated quarks ($C f$. Fig. 2).

Acknowledgements - M.A. would like to thank the members of the LAFEX at CBPF, where most of this work was done, for the kind hospitality. Both authors are in debt with CNPq of Brazil for financial support.

References

ANSELMINO, M., CARUSO, F., LEADER, E. and SOARES, J., (1990), Zeitschrift für Physik C, 48, 689.
ANSELMINO, M., BARONE, V., CARUSO, F. and PREDAZZI, E., (1992), Zeitschrift für Physik C, 55, 97.
ANsELMino, M., EKELIN, S., FREDRIKSSON, S., LICHTENBERG, D. B., and PREDAZZI, E., (1993), for a review on Diquarks see, e.g., Rev. Mod. Phys., 65, 1199.
ANSELMINO, M., CARUSO, F. and LEVIN, E., (1995), Phys. Lett., B358, 109.

ANSELMINO, M., CARUSO, F., DE MELLO, J.R.T., PENNA FIRME, A. and SOARES, J., (1996), Zeitschrift für Physik C, 71, 625.
EISELE, F., (1995), For the latest experimental result see, e.g., Europhysics Conference on High Energy Physics, Brussels 1995, DESY preprint, DESY 95-229.

HINCHLIFFE, I. and KWIATKOWSKI, A., (1996), for a recent review see, e.g., Berkeley preprint LBL-38549.

[^0]: * Also at Physics Institute of the Universidade do Estado do Rio de Janeiro, 20559-900, Rio de Janeiro, Brazil

