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Abstract: In this paper we consider the process of diffraction dissociation in deeply
inelastic scattering in the region of small produced mass, which we define as production of
g g-pair and q g G system in the final state. We show that the small distance contributions
(r. o 1/@Q) to the longitudinal polarised virtual photon dominate. Formulae for the cross
section using the gluon structure function are written within the framework of perturbative
QCD. It is shown that the production of small masses by the transverse polarised photon
is concentrated at moderate values of r;, ~ 1GeV ™!, where the pQCD approach can be
applied. This could be responsible for a considerable part of the diffractive production.
It is shown that only g pair production contribute to the diffraction dissociation at
B > 0.4, the possibility to extract the value of the gluon structure function from the
measurements in this kinematic region is discussed. The evolution of the DD structure
function is studied, and a solution to the DD evolution equations is proposed.

Shadowing corrections are discussed for both the transverse and longitudinal polarised
photon, and estimates of the different damping factors are given. The relation between
diffractive production and the corrections to Fj, is alluded to.
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1 Introduction

For the past decade starting from the paper of Bartels and Loewe [1] diffractive processes
in deep inelastic scattering have attracted a great deal of attention, as these processes
can be calculated in the framework of perturbative QCD (pQCD)[2]. These processes are
of particular interest as the cross section turns out to be proportional to the square of
the gluon structure function, we denote the gluon structure function by pG(Q*,zp). QR?
denotes the virtuality of the photon and zp is equal to QE*;M : (s is the energy squared
of the reaction and M is the mass of produced hadron system ). The recent renewed
interest was triggered by Ryskin (3] and Brodsky et al[4], who proved that vector meson
production can be calculated in leading log approximation of pQCD. The non-perturbative
effects that comes fron large distances, can be factorized out in terms of the light-cone gg
wave function of the produced vector meson.

The goal of this paper is to study the diffraction production ( DD) of the hadron
system for small values of produced mass (M). We define small masses as the production
of gq -pair and ggG system in the final state of the diffraction dissociation process. We
will show that

1. This process describes a significant part of the experimental DD cross section;

9. The small distance contribution (7. o« 1/Q ) dominates the longitudinal polarised
virtual photon which induces DD. This justifies using of the perturbative QCD to calculate
the cross section in this case;

3. The production of small masses by transverse polarised photon are concentrated
at moderate values of 2 ~ 1GeV 2. This encourages us to believe, that our estimates
which are obtained in pQCD, could be responsible for a considerable part of the diffractive
dissociation cross section;

4. The shadowing corrections are not negligble in the region of low z and should be
taken into account.

In the next section we calculate the process of the diffraction dissociation for longitu-
dinal and transverse polarized photons into a gq - pair. This is doneinr, - representation,
which provides a more direct way to understand at what distances the processes is viable,
and provides the formalism for the calculation of the SC. Most of formulae which we
obtain for transverse polarised photon have been previously derived in the momentum
representation see refs.[5] [6] [7]".

In the third section we extend the formalism suggested by Levin and Ryskin [8] and
Mueller[9], to the case of the penetration of gg pair with definite value of ry through
the proton, as well as through the nucleus. We will show that for the case of diffractive

* As we learned during Durhan workshop (Durham, Sept. 1995) Mark Wuesthoff has done the calcu-
lation for longidudinal polarized photon in his PhD thesises
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production of small masses by longitudinal polarised photon, we obtain an elegant closed
expression for the damping factor. The damping factor is defined by:

b da(7‘+P:i((M)+P)[ with SC]
da(7*+p—d>X(M)+p)[ without SC|
t

Ji=o0 (1)

where t = —g? is the momentum transferred in the reaction.

Processes at large transverse distances do not enter the formula, allowing us to calcu-

late the SC within the framework of pQCD

We extend our formalism to diffractive dissociation by a transverse polarized photon.
We discuss the large distance contribution in this case and show that the SC lead to a
decrease of the typical distances that are responsible for the DD.

In the fourth section we compare the pQCD predictions with the experimental data
available from HERA [10] [11]. We show that pQCD is able to account for a considerable
part of the observed DD cross section, and discuss which distances contribute to the
different modes present in the final state of the produced system. In all our calculations
we use the GRV parametrization [13] for the gluon structure function, which is the main
ingredient in our work. The GRV parametrization which starts from a low value of the
photon virtuality, allows us to study the value of typical distances in the DD process.

In the fifth section we discuss the evolution equations for the DD processes.

A summary of our results and discussion are presented in the conclusions.

2 The diffractive production of g and §qG system
without shadowing corrections.

2.1 Notation:

We list below the notation that we use in this paper (see Fig.1).
1. Q? is the virtuality of the photon in DIS.

2. zp = taMz, where s denotes the square of the c.m. energy and M the produced
hadron mass. The Bjorken zp is given by ¢ = Q;
2 x
3.8 = g = o

4. a’=2(1-2)Q* + mz, where z is the fraction of energy of the photon that is
carried by the quark with mass my.

5. k. denotes the transverse momentum of the quark, and 7, the transverse distance
between quark and antiquark.
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6. b, is the impact parameter of the reaction and is the variable conjugate to momen-
tum transferred (¢ ), from the incoming proton to recoiled proton ,t = —q?.

7. 1, 1 denotes the transverse momentum of gluons, which are attached to the quark-
antiquark pair (see Fig.1).

8. We use the evolution equation for the structure function in moment space. For any
function f(z), we define the moment f(w) as

f) = [ dz e f(a) . (2)

Note that the moment variable w is chosen so that the w = 0 moment, measures the
number of partons, and the w = 1 moment measures their momentum. An alternative
moment variable N, defined such that N = w + 1, is often found in the literature.

The z - distribution can be reconstructed by considering the inverse Mellin transform.
For example, for the gluon structure function it reads

1 —w
20(Q%2) = 5 [ dwa g(Q*w) (3)
The contour of integration C is taken to the right of all singularities.

For the solution of the GLAP equation [14] , as well as the BFKL equation [15], one
has the following form:

9(Q%w) = g(w)e@n’ (4)
where y(w) denotes the anomalous dimension, which in the leading log % approximation
of pQCD, is the function of <% and can be presented as the following series [16]:

204N'¢(3) 1 :

agsN 1 a
v ot o) (5)

Y(w) = +

T w T4

9. Our amplitude is normalized so that

do

o = wlfsn)P

and the optical theorem can be written:
0wt = 4w Im f(s,0)

The scattering amplitude in b, -space is defined by

1 o
a(s,b) = o / d*q, eIt f(st = —q°)

In this representation
Ot = 2 /dzbl Im a(s,b,)
and

Ou = /d2bl |a(s,b. )|

In what follows we use the notation and normalization of Brodsky et al [4].
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2.2 The cross section for the diffractive dissociation.

The cross section for the diffractive process, or for the reaction ( see Fig.1 ):
7(Q%zs) + p — X(M*) + p (6)
can be written in the form:

do Sag, M 1 d k2
— S%m N g / d / 1
“Pdzpdt ~ 8(27)? 21: f AX; o 7 (@) (")

F7 42 = alek) + 60— 2=k + @) + 2)F (M + Q1) 6 — )
We have assumed in eq. (7) that the small masses are produced by the dissociation of the
gq system. We will consider later, the corrections resulting from the emission of gluons.
In eq. (7) A; denotes the polarisation of the quarks and Ny the number of quark flavours.
Z; the fraction of the charge of the electron carried by the quark with flavour f.

Integrating over z and summing over polarizations, we reduce the above equation to
the form:

do 3am 2k, k2 2
z = Jem NN g2y / 2 L 8
P depdt (2m)3 ; s N [l 1 -8 M? 1 _ 4}\—?; (8)

where z(1—2z) = % and a = \/z(l - 2)Q*+my= Q EL for massless quarks. The region

of integration with respect to k, is defined for k2 < MT2.
The factor Ny depends on the initial polarization of the photon. In the case of the

longitudital polarization: Ny= 4; for transverse polarized photon: Ny = z* + (1 — 2)°.

We follow refs. [9] [5] regarding normalization, and the definition of the photon wave
function. The main problem is the calculation of the amplitude f.

2.3 The amplitude in r;, representation

This approach was first formulated in ref.[8] and has been carefully developed in ref.[9].
During it’s time of passage through the target, the distance r; between quark and anri-
quark can vary by an amount Ar;, o R % E denotes the energy of the pair, R the size
of the target ( see Fig.1). The quark’s transverse momentum k; o . Therefore

N .

k
Ar; « REL L ry (9)

holds if
-5 >2mR (10)
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where s = 2mE.

The above condition can be rewritten in terms of zp as follows:

2

zp K m (11)

This means that at small values of zp the transverse distance between the quark and
antiquark is a good degree of freedom [8][9][17] and the interaction of virtual photon with
the target can be written in the following form ( we use the notation of ref. [4]:

d*r .
f= [ 52 k) o) (@, k) (12)

¥ denotes the wave function of the produced gg pair which is equal to e*™* ‘EL . After
integrating over the azimuthal angle we have Jo( kL. 7, ) and Ji( k.7, ) for longitudinal
and transverse polarised photon induced reaction, respectively.

¥ denotes the wave function of the longitudinally ( L ) or transverse ( T ) polarized
photon, which have been given in ref [9] [5] and are equal to

Ui(ri,z) = Qz(1—2)-Ko(ar,) = Q—Ko(a'rl) (13)

and

T}‘(Qz,rl,kL) = 1aKi(ary) - L (14)

We denote by o(r,,q%) the cross section of the gq pair with the transverse separation
r,, which scatters with transverse momentum ¢,. We will discuss it in detail below,
considering initially, the case where g, = 0.

2.4 o(r.,q%) at q¢ = 0.

The form for o(r,,q}) at g, has been found in ref. [8] ( see Eq.(8) of this paper). o can
be expressed in terms of the unintegrated parton density ¢ first introduced in the BFKL
papers [15] and widely used in ref. [18]. This function is clearly related to the Feynman
diagrams, and to the gluon structure function, and can be calculated using the following
equation:

2 2 LA 2
as(@%) - 2G(Q%e) = [ diE as() #(12,2) (15)
Using the above equation we obtain the result of ref. [8], which reads

160p as(BB)  d’ly

2w lf_

o(rs,ql) = wt [@i,e) - {1 - B} (16)

2
where ¢ = ?—i%(c%i”l.
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We calculate this integral using eqs. (3) and (4), and integrate over the azimuthal
angle. Introducing a new variable £ = 7, [, we can reduce the integral to the form:

IJSSFOLS /' = g(w) Y(w) (r2)- v(w)/ d¢ )3"20((3) 17

preforming the integration over d¢ (see ref.[19] 11.4.18) we have:

8Cras dw s P(y(w) T(A —~(w))
2y _ 2 [ 2% _Lyl=v(w)
orid) = o g ™ [ g 9 7@ () te—oy 1
In the double log approximation of pQCD, y(w) < 1, and we obtain the cross section
for N, =3:
as(;7)

i) = 5wt (26975 0) ) (19)
TL
This result coincides with the value for the cross section given in refs.[20] [21] if we neglect
the factor 4 in the argument of the gluon structure function. We have checked that the
Eq.(2.16) of ref. [4] also leads to the same answer, unlike the value for o quoted in the
paper (see Eq.(2.20) in ref. [4]).

G(Tla q_L) =

2.5 The amplitude for small mass production at ¢, = 0 by
longitudinal polarised photon.

In this section we calculate the amplitude for gg production with mass M. Substituting
in equation (9) our expression (14) for o, yields.

QK
M2

8C
Ko % kit NzFOCS / 2w (20)

oo Ty TO@) DO —yw)) o
9( )’Y( )( ) (I‘(2—'y(w))2 JO(kJ_ .L)

Making use of well known properties of the modified Bessel functions we can perform the
integration. The final general answer 1s

fo G 2 [ 2 o) 5 (5T (1)
T(1+7(w)) T(1=7(w)) T2 —7(w)) T(2—7(w))- B - 1F1(2 - 7(‘0),—1 +7(w),1,1 - 8)
where a = @ %‘i

In the case of the GLAP approach we can simplify eq. (21) considering y(w) < 1.
Neglecting y(w) with respect to 1, and using eq. (3) we get the result

f= /mdu

2
8Cras Qb K2
2 M 2 1
= — ——=) (1 -2 22
f T N(Zj—l(QZ&)Z'BmPG(mP,(l—'B))( /3) ( )
It is interesting to note that the argument of zpG is k3 /(1 — B) which means that small
distances of the order of 72 oc (1—/3)/k3 contribute to small mass diffractive production

especially at 8 — 1.
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2.6 The DD cross section for longitudinal polarised photon at
t=20.

Subtituting the amplitude in eq. (8) for the cross section, we have for three flavours and
three colours:

d 4r?
d—"dt| ™ 5 X Zemat o L g2 (1-2p) (23)
@ ki (PG( P,(].—,B)))

One can conclude from eq. (23) that only small distance processes contribute to the
cross section. This fact manifests itself in the log integration with respect to k3. Even in
the double log approximation of pQCD, this integral converges and can be rewritten in
the form:

do

An? agm
pn lico = Cem ZZZ—L —ﬁ3 (1-28)° (24)

Ca

zp

/1 dz)p 3($PG($P,4—(ng—)) 2

cp Th Oln(1/z’)

The above formula is the answer for the case of the production of two jets originating
from a gq- pair.

2.7 The amplitude at g, = 0 of the DD for transverse polarised
photon.

Using the formulae given in the previous subsections as well as eq. (19) and taking into ac-
count Egs.(3) and (4) for the gluon structure function, we obtain the following expression
for the amplitude f:

f= /TLer aKl(']%kLTJ_) SCFaS /27” (25)

W) ~(w) Ly . Lo Ia 7(w)> .
9(w) 7(w) () Ty i)

Making use of the properties of the modified Bessel functions we perform the integration
over r, and obtain:

8Cras 2 g = v(w)
N1 ™k L ow) 55 5 ) (26)

P(1+y(w)) (1 = y(w) T2 = 7(w)) T3 — 7(w))
P2 — g(w))T(2)

f =

B 1Ry (3 - y(w),9(w),2,1 — B)
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where a = Q %i

In the GLAP approach the above equation can be simplified considering v(w) < 1,
it reduces to the form:

ki
(1-8

16 Cf as k

f=rmT 5P 2rGler,

) - (27)
2.8 The cross section for the DD of the transverse polarised
photon in gq pair.

Substituting the amplitude f in the general formula for the cross section ( see eq. (8)) we
obtain for three flavours:

do
p m |t=0 = aem as sz ﬂa 1 - ,3) (28)
Mgk k2 k2 1
(zpG(zp, 77 )) - {1 - l} ——.
Q3 ki (1-8) ) |

2.9 The cross section for §qG production.

The emission of one additional gluon is shown in the diagrams of Fig.2. One can see two
different classes of Feyman diagrams describe gluon emission. In the first, the emitted
gluon does not interact with the target as shown in Fig.2a. The general way to take such
gluon emission into account, is to use the evolution equations, and we will discuss this
problem here. To provide a complete set of formulae, (which will enable us to compare
our calculation with experimental data), we write down explicitly all formulae for the
emission of one gluon, at the end of the section. The second class of diagrams describes
the process in which the emitted gluon interacts with the target ( see Fig.2b ). These
diagrams have to be calculated separately as they provide the contribution to the initial
condition for the evolution equations [7].

We start with the calculation of the diagrams of Fig.2b. We would like to determine
those contributions where the smallness of ag is compensated by a large logarithm. In
other words, we are looking for contributions of the order of asln(Q?/k?). Our first
observation is that such a term does not exist in the case of the longitudinal polarised
photon induced reaction. Indeed, this fact can easily be seen from the general structure
of the diagrams of Fig. 2b, namely, they can be written in a general form:

d . 1 dg’ d2r . .
Pz Udt li=o (Fig.2b) / dz / — = ¥ o(ry, ¢} =0,2")[ 8], (29)
zp

where o is defined by (see eq. (19) )

4
olri,q) = L g2 (m20<2><—4—,w>) (30)
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with z?G*(z,r7) that has been introduced in ref. [22]. . The explicit expression for
(22G?) was derived in ref [9] and it is equal to:

(2,0 2 2 e d2 ' 2 GG 2
60 = 5 ) / db? o562 (31)
where 3 4
o%C(r',2") = %rm (2'G(a',—)) - (32)
T

Substituting eq. (13) for ¥7 in eq. (31), after the integration over z using the properties
of the modified Bessel functions, we obtain

U(M,Qi) x /4 3

7 L

o dr? as(;r) 2 ( G(Z)(Tz’m)) (33)

1

Therefore, we have no log contribution from the , integration. However, if we calculate
the same integral for the transverse polarised photon, we find

© dr? o 4
otroal) o [T TG 7 (26050 ) (54)
o2 1

Q2 1

« [ dr In(Q*r'%) (mG(%,w)) .

1
oz L

Q
Finally, going to the k, representation eq. (34) yields the result of ref. [7]:

dUT 47[' aem Zf 1 dz Nf dk2 a3N2
Fig2b) = Y / E sV
zp dep It o (F2g.2b) = ~ s 2t 2 k' 32r (35)

{B°+ (2 = B }(1 -2’ (22 +1)* (2pClep, k)" .

Taking the integral over z we obtain the answer:

dor 47 Qo ZF M Ik? NZad = M?

d d It =0 (F’Lg 2b) ZF: Q2 Q_g k4 397 In m (36)

(e 5 O)4-318 - 636 +508° — 148" — lnB[1+108—26°]) (ep Glap, k)" .

We now calculate the diagrams of Fig.2a. For the transverse polarized photon, this has
been done in ref. [7] and the result in our notations is:

doy 472 O 22 M dk? 403 | M?
Fig.2a) = — s / —_— In — 37
Tp —- dzpd |t o(Fig.2a) ; 0’ s o5 @ K 3Nr n o (37)

L+ 2" (z=B) = 22B*(1-B)*} (2pGlzr, k) =
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3 47° Qom Z3 o dk® 403 M?
Q2 @ k' 3N | 4k

B(1 - BP{-28Inp + %[1 +68 —98° — 2482 — 68* — 45°] (.’ch(:cp,kz))z

One can calculate the one gluon emission for the longitudinal polarised photon, using
the general formula obtained in ref. [7]:

dor 47 Qem Z3 1 das

o) (igaa) = 3 Mom % e

" Gapa -0 (Fi920) = 2 —r— 8 |, (38)

F z

R o} | Q@

oz k' 32m .z

where & denotes the usual GLAP splitting function, and ®% the splitting function of the

Pomeron into quark - antiquark pair. For the transverse polarisation of the photon this

splitting function has been calculated previously in refs. [5] [7] and we have recalculated
it in 7, - representation ( see eq. (28) ):

#5(2) ¥ (2) (20 Gler, k)’

16
For the longitudinal polarization we obtain the same factorized answer with one important
difference, the integration over k* is logarithmic (see eq. (23)). However, as far as the
z - dependence is concerned, the formula is the same as eq. (38) with splitting function
which we calculated previously (see eq. (21) ) and which is equal to:

16 4 2
N ? (1-—22)%. (40)

c

F _
(}P;L -

Finally, the answer for the one gluon emission in the case of longitudinal polarised photon
is:

Q?

— In — 41
28 Jg2 k2 3N.w " k2 (41)

doy, ) 472 oy Z)% 1 dy M2 dR? 4 al
- 2 = E - — J /
TP dedt ,t_o (Fzg a) F Q4 8

11+_z,., {8°(z= =28 — 2" B*(1-28)"} (2r Glep, k")) =

5 AT G 23 /1 M dk? 4od L@
= Q1 s Joz k2 3N.w | k2

B

(-26°WB(L-28) + o+ 50 +38 —4p 198+ Lp - D2y
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3 Shadowing corrections for the diffractive produc-
tion of small masses.

The advantage of using the v, representation is not apparent in the calculation performed
in the previous sections, in that we obtain the same result as had previously been ob-
tained using momentum space calculation techniques ( see for example ref. [22][18][6]
[5] [7]). The above calculations are however, instructive in that they provide an explicit
example of relations between different variables, used to describe deep inelastic process
in different frames. In this section, where we calculate the shadowing corrections for the
various processes, the r, -representation simplifies the calculation. We will only calcu-
late the damping factors for the penetration of §g - pair through the target, assuming
that all shadowing corrections to gluon structure function have been included in the phe-
nomenological gluon structure function which we use in the calculations. The size of the
corrections due to damping in the gluon sector has been estimated in ref. [41].

3.1 The b, dependance of the amplitude.

To estimate the shadowing corrections, we need to know the profile function of the am-
plitude in impact parameter space, which means that we need to know the amplitude not
only at ¢, =0, but also at all values of the momentum transfer. The gluon structure func-
tion is weakly dependent on g, at small values of g, both in double log approximation (
see detail discussion in ref. [18]), and in the BFKL approach (see ref.[24] [25]). Therefore,
the leading ¢, -dependence comes from the form factor of the gq pair with the transverse
separation 7, and the form factor of the target (proton).

As the form factor cannot be treated theoretically in pQCD, and we will assume an
exponential parametrization for it, namely

Fp(qu_) = e_% qi

The slope B can be extracted from the experimental data on hadron-hadron collisions,
provided we take the Pomeron slope a’=0. Namely, B = BP(a’ = 0), where B, is
the slope in the differential cross section of proton-proton collision. For the numerical
estimates we use information from phenomenological sources to extract the value of B (

see ref.[31]).

It turns out that the value of B defined in a such way, is very close to the one obtained
from the proton electromagnetic form factor.

The form factor of the gg pair with the transverse separation r, is equal to

(R, — Eyy) -7 o — ).
Fuldl) = ¥ ((’““ ) ) ¥ ((’““ . ) (42

2 2
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where k; (k) denote the momentum of the quark 7 before and after collision. Each of the
wave functions is given by the exponent and simple sum of different attachment of gluon
lines to quark lines. Hence,

Fh(g?) = ™5 . {1 — ¢l ) (43)

The last factor is absorbed in the expression for the cross section, while the firstfactor
gives the ¢, dependence of the gg form factor, which after integration over the azimuthal
angle is

Foldh) = Jo(*5) (44)

To proceed with the calculation we require the profile function in b, space

1 i e
SE1) = 5 [ aw BT Fy(q?) Frleh) (45)
The explicit calculation gives
2
1 bJ_ Ty _ i+ :f‘
To simplify the calculation we replace the above function by
1 53
2 -5
SB) = e (47)

where

B-n5(1+2)x~58 (1 - )
- AB | ~ a?B
Equation (29) has the same value for the radius in the expansion at small b? as eq. (81).

For sufficiently large values of a, we consider a?B > 1, and neglect the second term in
our calculation.

3.2 Penetration of gg-pair through the target.

To calculate the shadowing correction we follow the procedure suggested in refs. [8][9].
Namely, we replace o(r.,q] = 0) in eq. (12) by

o%C(r) = 2 / &by (1 — ez otLdi=0StY) ) (48)
The above formula is the solution of the s-channel unitarity constrain:
2 Ima(s,b) = |a(s,b.)]° + Gin(s,bL) (49)

where a denotes the elastic amlitude for gg pair with the transverse separation 7, , while
Gin is the contribution of the all inelastic processes. The inelastic cross section is equal
to

Oin = /d2 b, Gin(syb_l_) — /dzbl (1 - e—o’(rJ_,Q?L=0) S(b'i)) (50)
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Eq. (45) is based on the physical assumption that the structure of the final state, is the
uniform parton distribution that follows from the QCD evolution equation. We neglect,
in particular the contribution to the inelastic final state of all diffraction dissociation
processes, with large rapidity gap. For example, “fan” diagrams that give the most
important contribution are neglected [18]), as well as the diffraction dissociation in the
region of small mass, which cannot be presented as the decomposition of the qq wave
function.

From the point of view of the Feyman diagrams, eq. (50) sums all the diagrams of
Figs. 1 and 2 -type in which the gq -pair rescatters with the target and exchanges many
“ladder” diagrams, each of which can be represented by the gluon structure function.
This sum has been performed by Mueller [9], and we shall perform the calculation for the
case of the diffractive production.

3.3 Damping factor for diffractive production of small masses
for longitudinal polarised photon.

Substituting o° of eq. (50) in eq. (12) and using o in the form of eq. (19), allows us to
estimate the general term of the expansion with respect to power of o. It has the form:

n k_ZL d2 L (—1)"_1 as 4CF71'2 "
11'[ / dw; e2owiln(1/zp) (@) L(1 4+ y(wi)) T(1 — y(w;))
L e, 2 il (T(2 — y(w:))?
P2 \" " 20 VW)
. (Zl) Jo(ks 71) / d2b, S™(b?)
We replaced all numerical coefficients by the factor C.
Carrying out the integrals over 7, and b, we obtain the expression:
1 (—1)"_1 as4 Crm "
n o O . . 52
f 2Q n n! (B’(Nf - 1) (52)

n d w; e2wiln(1/=p) (1 + v(w)) T(1 — y(w;))
11 /c 2ms 9:{w:) - (D2 — v(w))?

5 7(wi) r"’(1+n—iv(wi)) (%) Bl =3 y(w), —n+ 3 y(w), 1,1 - B)

Gl

e

Neglecting v and taking 1 — 8 < 1 we derive a very simple formula in the double log
approximation of pQCD 7(w;) <« 1. Taking the integral over w; yields

g (c1ya
2Q n

ff=CBH (53)
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Crm 4 a? "
. (B’(N+_1) a—f Qs :l)pG(ﬁ,:DP))

Finally for f we have

00 2
= CPHB — (n—1)! 4
f=CB Y {51 (54)
Crm 408 a® "
(e 3 orG(ig.er)
The above series can be summed ito give the analytic function E, ,namely
_ 1} /82 1 1
f—CB mEl(;)'eﬂ (55)
where (for N.= 3)
2 ogmfB a’ 2 agm(1-p) k3
Kg = 3 B :BPG(B,‘”P) = 3 _—W g mPG((l_ﬁ),‘EP) (56)

Using the above equation we obtain the following expression for the damping factor

M2

fof kLA EXL).e%

Kq

D} — (57)

M2

I K AR K2

The behaviour of the damping factor for small and large k, can be found by using the
well known property of E;. Namely, for kg < 1, D — 1, while at k; > 1 the damping

factor vanishes as ,
M
L2 12 1.2
ng kidEk} In® &,
M2 .

I3 KidRK?

D}

The behaviour of the damping factor as function of 8 and @? is given in Fig.3. One can
see that the value of the damping factor reaches 0.5 in the region of small 5 and Q2. It
means that the SC should be included even for the longitudinally polarised photon, where
the smallest distances of the order of % contributes.

3.4 The damping factor for DD for transverse polarized pho-
ton.

Repeating all steps of section 3.3, we derive the formula for the damping factor for trans-
verse polarized photon. Substituting 0°¢ of eq. (50) in eq. (12) we obtain for the general
term of the expansion :

n dr 1)1 as4Cpm?\"
rece [Tre)S (H9T) e
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n dw; €3 @i in(1/zp) L(1 4+ y(wi)) T(1 = y(wi))
II fc omi g (T(2 = y(wi))?

P2\ " 2 Vi)
. (—:—) Jl(k_]_ TJ_) ) /d2bJ_ Sn(bi)

C stands for all numerical coefficients.

? i

After integration over r, and b, we have:

n k, (—1)"_1 as4Crr "
fr=08a '(B'(N3—1)) (59)

182
D@+ n—Y 1) T +n =3 7(w) 1F@2+n— Y v -n+ Y y(@)2 1 - 8)

o dw;editnll/er) T(1 +5(w)) T —7(@i) (@ 5 (B2
[, = st e e (7))

Again we derive a very simple formula in the double log approximation of pQCD y(w;) <«
1, neglecting v as well as considering 1 — 8 < 1. Taking the integral over w; we have

Bky (1) 'al(n +1)

n __ !
ff=CBHB > - (60)
Crm 473 a? "
\B@e-1) @ @)
Finally for f we have to answer
. Bk
f= CB'Zﬂa—;[(n—l)!—l—n!] (61)
n=1
Crm 4% a’ "
(B’(N2 1) a? ag EPG(B;#CP)
The above series can written in terms of the analytic function E;,namely
Bky 1 1 1
J— l — —_— —_— —_— - ®
f—CB2a2 {1+ (1 . El(n) e~ } (62)

where &, is given by eq. (56).
Using the above equation we have for the damping factor
M? 1
I dk {1 + (1- L) By(L) . ex}

D2 = - . (63)
4 fQ;* dk? K2
0

Fig. 4 shows the dependence of D} on 8 and Q2. It is interesting to notice that the value
of D7 is small at small B which reflects the well known fact that the SC are big for the
diffractive dissociation in the system with large mass [18].



-17 - CBPF-NF-021/96

3.5 The relationship between the SC, Fy(zp,Q?) and the DD
processes.

The simplest relation between the corrections to F, and cross section of the diffractive
dissociation can be derived directly from AGK cutting rules [23] ( see ref. [7] ) and it
reads:

AFy)(zp,Q?%) _ aPP

-7 64
FZ(“’B) Q2 Tiot ( )

where

F, = Ff"P _ AF,. (65)

However, eq. (64) is only valid when the diffractive dissociation cross section is small. The
notion of what is meant by “small” in diffractive production is not unique, since DD is
small in two cases: i) when the kinematic region between partons is very small, this can
be dealt with in a perturbative way, or ii) in the case when the interaction is so strong
that we have scattering off a black disc. As we have shown the damping factors for the

DD turns out to be rather large. It is therefore necessary to reconsider the simple relation
in eq. (64).

We generalise eq. (64) by calculating the SC for F, due to penetration of the qq pair
through the nucleon. As we have mentioned above, we adopt the approach throughout the
paper, that the SC in gluon sector have been taken into account in the phenomenological
set of structure functions, that we use. The expression for the F, including SC for gq pair
has been derived by Mueller [9] and in our notation has the following form

Fy(z,Q%) = %:Z; /01 dz/

As was shown in ref.[9], whithin the LLA of pQCD which we use throughout this paper,
we can safely replace 7 ¥ by r%— after integration over z in eq. (66). Mueller’s formula
1

finally reads ( for N. = Ny = 3)

2
Ulzjrl V7 (Q%r1,2) ¢°O(ry) [¥F (Q%r1,2)]" . (66)

6 d?b o d2p, 1 1
Fg(il),Q2) = Zf:Z?F,/ 1 / = —4{ 1 - exp(—ia(rl,qE_ZO)S(bi))},

s é T T
(67)

Adopting the same procedure of integration as for eq. (57) and eq. (63) we derive the
formula for elastic damping factor which we define by:

|AF|
gl = IFZNBZAI, (68)

where FZN BA denotes the correction to F; due to two Pomeron exchange or in other words
F}'B4 is the next order to the Born approximation of eq. (67). The formula for D? is:

1 E 1 C 1 — e — 2
Dgl = [( +K"1)( 1(’{'9) + nn‘]:li_% ) + € K’ql , (69)
4
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where &, is defined by eq. (56) at “7;- = @*. In Fig.5 D2 is plotted for different values of

Q*. It is interesting to note that D? turns out to be very close to 1 in a wide range of zp
because D2 = 1— %2 at small value of x,.

Using D2 and D}(D}) we can rewrite eq. (64) in more general form, namely

AFz(QZ,iB) -
F@he) (70
_ 1 . dofP(Q* x ﬁ) D dop (sza’vﬂ) . _D_zl
oot(Q?, ) /o dzp D% atot(Q , ) / P dep D? -

The ratio %;L can be rather large, and reaches a value of about 2 at low z in the HERA
T
kinematic region.

4 Numerics and results.

4.1 What distances are essential in the DD processes?

The first question that we wish to address, is what are the distances which are important
in the DD processes?

1. In the case of the longitudinal polarised photon, the answer is obvious, just from
eq. (23). Indeed, 1n all calculations that lead to eq. (22) and eq. (23) the typical distances

are r; o i = Qk . Since the integral over k, in eq. (23) is logarithmic, we conclude

a

that k, ~ M/2, from which we estimate that the dominant distances are r, =~ %
Hence, for inclusive production initiated by a longitudinal polarised photon we can safely
utilize the pQCD approach. In Fig.6 we plot our prediction for # = 0.8. In spite of
the 1/Q” suppression we obtain a large value for the cross section. This suggests an
alternate way to extract the value of the gluon structure function, which is similar to
vector meson production [6] [4], but has several advantages: (i) The cross section is larger
than that for vector meson production; (ii) The prediction is independent of the form of
the nonperturbative wavefunction of the produced vector mesons, which is an inherent
difficultly in making a definite prediction for the cross section of DD for vector meson
production [41] [42]. (iii) The seperation of the longitudinal polarised photon from the
transverse polarised one, is not difficult, as we have not found any contamination fron
transverse polarised photon induced reaction, for the events with large values of j (
practically for 8 > 0.7).

2. In the case of the transverse polarised photon, the value of the distances for which
the pQCD calculation of the DD cross section is valid, depends crucially on the behaviour
of the gluon structure fiunction at relatively small values of the photon virtuality. Indeed,
the cross section of eq. (28) has an extra k? in the dominator, and the integral on first
sight appears to be infrared divergent. This is not so, as the gluon structure function
should be proportional to k?/u? at small values of k2. This fact is a direct consequence
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of the gauge invariance of QCD. However, there is a danger that at very small values of
k* (p* is about the size of the confiniment radius) in the nonperturbative QCD region
we still could have divergencies. We know that p depends on z, and tends to be large at
very small  [18][9]. The question arises what is the situation in the kinematic region at
HERA ? In an attempt to answer this question we adopt the following strategy. We believe
that available parametrizations of the deep inelastic structure functions ( GRV|[13] , MRS
[26], CTEQ [27] ) describe the behaviour of the gluon structure function in the region of
relatively small virtualities. The common features of all these parametrization is the fact
that the behaviour 2G(z,k?) o k? starts at virtualities which are sufficiently large in the
small ¢ region. For larger = and at larger values of k%, zG(z, k?) starts to be proportional
to k ( zG(z,k?) o« k/p). For example, at Q% = 2.5GeV? in the GRV parametrization
zG(z,k*) < k/p at ¢ < 3.1073, while in the MRS(A) this happens at @ < 10~2. Relying
on the available sets of deep inelastic structure function (which contain all accumulated
experimental information on the subject), then even for the transverse polarized photon,
the typical distances in the DD processes are not larger than »;, ~ 1GeV~!. Hence, we
can apply the pQCD approach in this case as well.

In Fig.7 we plot the integrand of eq. (28)

K2 )2
(:BPG(:BP,I—_'"E)) k2 1
I(IB7Q21:CP) = {1*2 L :
k2 M? k2
. 1 — 3%

as a function of zp and Q? at fixed B, which illustrates this claim. We wish to emphasise

that the integrand can be viewed as the product of two factors: (zpG(zp, l—liib—)))Z/ki and

the kinematic factor [1—2 1’:4—2*2 ] - —=L—. The first factor has a maximum at k? ~ 1GeV?

for all available parametrization of the gluon structure functions. The origin of this max-
imum is very simple and can easily be seen if one uses the semiclassical parametrisation
of the solution to the evolution equations in the form:

1
(BPG(:BP,kZ) N (;;)w(xp,lﬁ) (kZ)‘Y(IP,kZ) at zp — 0,

where both w and v are smooth functions of In(1/zp) and In k?. The common feature of the
all parametrisatios for the gluon structure function is the fact that v > % atzp < 1073,
Such a behaviour manifest itself in a maximum of the first factor at k2 ~ 1GeV2. It should
be stressed that the argument of the gluon structure function in eq. (28), namely k3 /(1—3)
leads to substantial increase of the typical transverse momentum in the integral, or in other
words in a decrease of the typical value of the distances essential for the diffractive ggq
production. The kinematic factor also tends to increase at large value of k2.

Finally, we would like to repeat our statement that the DD cross section for both
longitudinal and transverse polarised photon occur at small distances. This fact is crucial
for justifing the use of perturbative QCD for the calculation of the DD processes.
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4.2 The zp dependence, factorization and “Pomeron structure
function”.

In Fig.8 we plot the zp dependance of calculated

2 do 2 d*o
TP FZDD(S)(QZ’ﬂ’mP) - 47r2Qaem /dt P dzpdt - 437?2 Qern TP d.'z:pdtlt:0 » (1)
where B is the slope of the DD cross section. We take B = 4.5GeV 2 in accord with
the the prelimenary experimental data from HERA ( see ref. [28]). The value of B has
not yet been measured with good accuracy. The above value of B coincide with the slope
that has been extracted from the high energy phenomenology of “soft” processes (see, for
example, ref. [31] ).

We wish to stress that in all our comparisons with the experimental data, including
Fig.8, we include the SC, which have been calculated in the previous section. This means
that the formulae for the cross sections, obtained in section 2, are multiplied by the
damping factor D? or D3, calculated in section 3.

We now concentrate on zp dependence of F2D DB). Based on the Ingelman-Schlein

hypothesis of the Pomeron structure function, FZD P®) can be written in the factorised
form, namely

FPP® = f(zp) FF(Q%,8), (72)

where F; is the Pomeron structure function and f(zp) is the Pomeron flux factor which
is proportional to f(zp) (;1;)" if the Pomeron is a simple Regge pole. n is intimately
related to the intercept of the Pomeron trajectory (ap = 0,(0) + aplt|,ap(0) = 1 +¢)
ynamely n = 2ap(0) — 1 = 1 + 2e.

Our approach is orthogonal to the IS one. We do not expect eq. (72) to scale, and if
we use the parametrisation suggested in eq. (72), and fit the zp dependence in the form

PP = () F(@0) (13)

we expect n to depend on both @ and Q2.

We also show in Fig.9 n(Q?B) which we get from our calculation. We would like
to point out that the value of n is much bigger ( » &~ 0.55) than that was observed
experimentally ( n ~ 0.2) (see ref. [29]), this arises from the steep behaviour of the gluon
structure function in the GRV parametrisation. Notice, however, that the new ZEUS data
[12] gives the value of n &~ 0.4, which is much closer to our result.

Direct comparison with the experimental data given in Fig.8 shows that our calculation
is able to describe the experimental data at zp &~ 1073, but it substancially overshoots
the experimental data for smaller values of zp. We think this behaviour is an artifact of
the GRV parametrisation, in the leading order of perturbative QCD.

One can see from Fig.9 where the ratio of the leading order GRV gluon structure to
the next to leading order one ( zpG(zp, Q*)2°/zpG(zp, Q*)NLC) is plotted that the use
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of zpG(zp, @?)VLO instead of zpG(zp, Q?)C suppresses the value of the diffractive cross
section at small zp. It is interesting to note that the effective power n reduces to the
value n ~ 0.3 which is much closer to the experimental one, especially to the new ZEUS

data [12].

The second source of suppression at low zp comes from the energy behaviour of the
slope B, where B = By, + 2a)% In(1/zp) in the case of the Reggeon approach to the
structure of the Pomeron, where the Pomeron trajectory is ap(t) = 1 + € + aj t.

Nevertheless, the fact that the perturbative QCD calculation predicts a larger cross
section than experimental one, lends support to our statement in the previous subsection,
namely, that at small distances, where we can trust the perturbative QCD approach, the
calculation of the diffractive production of small mass, appears to work.

How the zp dependence is affected by the different parametrization of the structure
function is still an open question, we plan on clarifying this in our further publications.

4.3 FPP@,

In Fig.10 we display the calculated values for F2D D) defined as

FPP® / T dep FPPO (74)

pmazr

where the values of zp,;, and p ., are taken to have the same values as in the relevant
experiment. We also indicate the contribition of different subprocesses in the diffractive
production.

In Fig.11 we compare the calculated values with the relevant experimental data.
From these figures we are able to conclude:

1.The pQCD calculation provides a fair description of the experimental data;

2. The contribution of the longitudinal polarised photon is important at large 8 > 0.7;

3. The process with an emission of the extra gluon gives rise to a sizeble contribution
for B < 0.4 amd should be taken into account in more consistent manner by solving the
evolution equation for DD processes ( see the next section);

4. For B > 0.4 the emission of an extra gluon provides only a small contribution, so
one can attempt to extract the gluon structure function by measuring F2D D@ a4 large 8.
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4.4 The transverse momentum spectra.

Our formulae ( see Eqs.(23),(28),(36),(37) and (41)) can be used for more detailed analysis
of DD events. In particular, we can describe the transverse momentum spectra of produced
parton jets in DD. Basically these spectra are given by the integrand of our formulae, as
the k; which appears is just the transverse momentum of the produced jet.

In Fig.12 the ratio
G )

R =
FZDD(Z)

(75)

is presented with different values of k2. The physical meaning of this ratio is that it
indicates the fraction of the all DD events possessing transverse momenta larger than
ko. One can see from Fig.13 that we expect a fairly large fraction of the events with big
transverse momenta, this is in agreeement with the new H1 data ( see ref.[30]).

In Fig.13 we plot the calculated value

2 FPP@ _ Q? cpddo |
pre " 472 Bag, dzpdtdk? 70

where k, denotes the transverse momentum of the jet. The comparison with the ex-
perimental data is also quite qood, at least, the k, distribution reproduces the main
qualitative feature of the experimental data [30], namely, smoother behaviour than kﬁ at
small values of k2 , and —4— behaviour for larger k, . On the other hand, we predict a sharp
drop at large k,, which “has not seen in the data. Perhaps, the emission of two gluons

starts to be important at such large values of transverse momenta.

4.5 Matching with the vector meson diffraction.

The vector meson production corresponds to the kinematic region of 3 — 1, namely

Q" LM

Prem T g

(76)

where M}, is the mass of produced vector meson. In this kinematic region we can rewrite

eq. (23) and eq. (28) in the form:

dol
2— f—
aMd = (T7)
4% o, S M2 gr k2Q? \?
Ty g [ (eeen )
Q anin kJ_ 1 —_ ﬁ.L. MV
M
doT
2
ML =0 (78)
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A% Gom o, o, ME [ 421 k2 K Q2 \’
— X% % o8 /Q2 B e {1 - 2M_3,} ‘l’PG("’P,—M‘z/ )

min 1 —_ _TMV

These formulae give the cross sections for production of all hadrons with mass My and
they reproduce the main features of the exclusive vector meson production ( see refs. [3]
[4]). It is interesting to calculate the cross sections in the region of M{ = m?2 where we
do not expect any other mesons, besides the p-meson to be produced. In the double log
approximation of the perturbative QCD, we can put the argument of the gluon structure
function equal to @*. Evaluating the remaining integrals we obtain:

M
O'L Q2 mm 4—Q?1}:':

The value we choose for Q2 ; , depends on how strong our belief in hadron - parton duality
is. If we believe that the hadron - parton duality can be used at large distances, we can
choose the low limit of integration from the condition that the argument of the gluon
structure function in eq. (77) and in eq. (78) is bigger than the intitial vituality in the
GRYV parametrization, namely QL. Q*/ME = Q%or Q% = Q> MZ/Q?. For such a value

of Q% we have o'/oT = ﬁ%— In 452 .

The experience from e*e— annihilation teaches us that Q2% could be very small,

about m?2 [35]. In this case, we still have the Q? rise of the ratio, but the coefficient is
very small, namely o”/a7 = 0.125Q2.

In Fig.14 we plot 0¥ and o7, using eq. (77) and eq. (78) with cutoff Q2,;, = m2.

min

Concluding this section, we would like to reiterate our claim that the simple pQCD
calculation provides a reliable basis for the discussion of the origin of the DD in DIS.
It also suggests a the new way to determine the gluon structure function. This new
measurement can be done in two unambigous way:

1. the measurement of FDD(Z) at 8 > 0.7, allows us to extract the longitudinal

polarised photon structure function which is only sensitive to small distances of the order
T, =X ]./Q.

2. the measurement of FQDD@) for k; > ky > 1GeV?2. In this case only distances
r1 < 1/ko contribute to our formulae, and we have reliable pQCD predictions for the
fraction of DD events.

5 Evolution equations for the DD.

In this section we discuss the evolution equations for the DD structure functions that
have been introduced in the previous section. The evolution equations for the transverse
polarised photon have been proposed and derived in pQCD in ref.[7], and we will comment
on them later. We first discuss the evolution equations for the longitudinal polarised pho-
ton, which have not been formulated previously, these provide an interesting theoretical
insight into the structure of the evolution of exclusive processes in QCD.
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5.2 Evolution of the DD structure function ( greneral consid-
eration).

In the general case we can rewrite eq. (24) in the form

Q?*(1-8) dk2 ﬂ Q2 k2
FPD Nc / 2t (zs ) 5, (ep G zp, Tl_—l—ﬂ)
where ¥ denotes the singlet quark and antiquark structure function (¢(z, @?) + q(z, @?))
and the Pomeron splitting function ® has been defined above ( see eq. (40) ). It should
be stressed that only X¢ enters the evolution equation in the leading order of pQCD.

)" (85)

Differentiating the above equation we obtain the evolution equations for the monents
in the form: 4FoPs
th ((.U Q )

dln Q2

2
Pg(w) : fiﬁg[is(w’Qz) + Pg(w) ' fzgt?ia(wan) + %’S—fG2(waQ2) ’

where P are the kernels of the GLAP evolution equations. We obtain the ordinary GLAP
evolution equations with an inhomogenious term. This equation has the solution:

(86)

mt (w Q ) (87)
ﬁ & (0. O 1 1 . e“/z(w) lng%
N, T @ T T ae) = @)
. — ) lng% ~t @ lngg
@) - Ay o) t @ 7@ }

where the functions f2P(w,Q?) and F¢ (w, Q?) denote the intial conditions for the evo-
lution equation, and describes large distance physics. It is obvious that the second term
of eq. (87) is the solution of the GLAP equation for fixed ag, which we have assumed in
order to simplify the solution. One can find this form of the solution in refs. [33] [34] and
in references contained therein. 7™~ denotes the eigenvalues of the matrix of anomalous
dimensions and in the leading order of pQCD they are equal to:

1
7t = SUPE + P§ = J(PE — PE) + 4PEFE) (88)
where o ) .
F FaS 9 _ _ _ .
PP =T 2w+ 1) - B(1)]}
11 1 2 1 1 2Tr N
G:—— —_— _ = — —_ 1 _ RIVS .
PE = {0415 + = — oo b s = — =Wt 1)+ 9() s
Cpas 2 1

Pp = {— - } (89)

w+1 +w+2
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2TRNfas 2 2 1
= { — + }.
27 w+3 w+2 w+l1
It should be stressed that in pQCD only 4% has a singularity in the second term at small
w, and 7y* < go(w) at w — 0. This means that only the first term survives at small z.

P

We do not claim that this result is valid at small virtualities, where pQCD arguments
are not applicable. The value of the diffractive dissociation at small vituality of the
photon (Q* = Q2) which can be measured experimentally, defines only the specific sum
of singularities, namely:

foiik (25,Q3) = (90)

1 1 DD;S 9
Yo(w) — v+ (w) - ’72(w)—7“(w)] + fi 7 (w, Qo) }

The fact that these two terms have different anomalous dimensions, suggests that one
might be able to distinguish between them using their zp dependance. The second term
is proportional to (zpG(zp,Q3))? for the unintegrated FPP, but there is no theoretical
argument why such a behaviour should be valid for a small value of @)y. Phenomenologi-
cally, we associate these two contributions with so called “soft” and “hard” Pomeron. This
terminology just reflects our hope that they would have different zp behaviour, namely,
assuming that their behaviour can be approximately parameterized as z%°, we expect for
the “soft” (second ) term €,05; ~ 0.08 - 0.1 while for the “hard” one (first term in eq. (87))
€hara ~ 0.2-0.5. It should be stressed that the problem of the separation of these two
contributions is beyond the scope of pQCD, and has to be tackled using a nonperturbative
approach. As a guide to phenomenological applications we would like to mention that
the Ingelman and Schlein approach based on the so called Pomeron structure function,
means that only the “soft” contribution survives, while the “hard” Pomeron approach
deals only with the first tem in eq. (87). Returning to FPP ( see eq. (85)) we can write
the evolution equation at fixed zp:

8 FPS(B,0r,Q%) _
8 In Q?

= [ w5 @

2T

(91)

2

PE(@) FEPS(6,20,@") + FE() FP(8,00,@) 2 6°(1 267 (2 Glar, o

In moment space with respect to In(1/83), the equation reduces to the form:

d 07 (w,zp, Q%)
dln Q2 B

)’

(92)
PS(w) [P 5 (w,2p, Q%) + P§(w) PP (w,2p, Q%) + () (zp Clzp, Q%)) ,

where
1 4 4 1

TE. = — w0 =+
G’L(w) w+2 w+3+w+4—)| °6

The general solution of the above equation is

(93)

1nt (w )



- 27 - CBPF-NF-021/96

a_% DD(, 02?) . — 77 (w) e‘f*(w)lng% ¥ (w) e'y_(w)lng%
A e R R }
1 1 Q* 4@ L2
o 7@ T 2o =7 @ S o7 7@ (20 66.@0)'}

_ fDD + DD
— JSOFT HARD -

The first term F£1).; is associated with soft diffraction, and it requires the phenomeno-
logical input fPP(w,zp,Q?%). We choose for this input :

fPP(w,2p, Q) = T(w)(2r G(zp, Q7)) . (94)

We still need to fix the value of @, we should take for our initial condition. There is
no reason to assume the same value of Qg in the DD and DIS. We choose the value of
Q2 for the DD case to be 1 — 2GeV?2. In doing so we can use pQCD to evaluate the two
terms appearing in eq. (93), this leads to eq. (94) for the first term.

In (3 - representation the intial condition looks simple, namely

o 2 2
FP2(8,20,0%) = 2% (1 - 2y (zpaup,f—g ) . (95)

This is plotted in Fig.15 for different values of zp.

5.3 Evolution equation for transverse polarized photon initi-
ated DD.

The evolution equations for the transverse polarised photon has been given in ref. [7].
Introducing the structure functions gp(z, @?) and Gp(z, @?) which denote the quark and
gluon density in the Pomeron, we can rewrite the evolution equations in the form (see

ref.[7] for details): 0%p(z,Q%)
P\Z, —
8@z *

/ﬂl %{Pg(z)ﬁp(ngZ) + Pé(Z)GP(g,Q2)} + é@%ﬁ(ﬁ) (‘”P G(mP’Q‘z’)y ;
0Gp(z,Q%) _ [ dz
- dmQ@r /ﬁ z

¥4

(PE) 202, (1- )@Y + PS(2)Gn(
n é 254(8) (2r G(ar, Q2)
where ¥ = q(z’ Qz) + Q(m7Q2)

,(1-8)Q%)}

2
3

8
)
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On inspection we note that the structure of the equations is the same as for the
longitudinal polarised photon, namely, eq. (96), and is a normal GLAP evolution equation
with a inhomogenious term. P are the kernels of the GLAP equation while & denote the
Pomeron splitting functions:

as
o = ]—V—Z2(1—z)2; (97)
N? 1
80, = e (1 5)2(1422)2.
P;T 2(NCZ—1)Z( Z)( + 2)

The set of eq. (96) can be solved in the moment representation using the standard tech-
nique ( see refs. [33] [34] and references therein). The main difference in comparison with
the lomgitudinal polarised photon, is the fact that the inhomogenious term has extra
1/Q? suppression, provided that we choose the appropriate initial condition for eq. (96).
The contribution of this term in the evolution equation is consequently small. we have a
sufficiently small contribution of this term in the evolution. To understand the structure
of the result we write the solution of eq. (96) in the region of small 8 (w — 0 ), where
the emission of extra gluons and quarks could be important (as have been seen in section
3). In the region of small w we can neglect v~ (see for example ref. [34] ) and the solution
has a simple form:

Yp(w,Q?) = (98)
“(w 2N;P5(w 2
208D s+ Grln @) Ty e e
@ Q" 85,(w) + B5()
’ /Qg Q" Yo(w) — y*+(w)
where gy(w) — 2225 _ 1 at w — 0 and ®p(w) is the w image of the Pomeron splitting
functions of eq. (97). They are of the form:

(zp G(zp, Q7)) ,

as{ 1 2 + 1
N, " w+2 w+3 w+4

asN2 1 2 3 3 4 4
LR LI S S S
2(N?-1)'w  w+l w+2 w+3 w+4 w45
To fix the two initial moments Tp(w,Q2) and Gp(w,Q?) which enter the solution

of one phenomenological term fLY.. at low B, we need to choose a phenomenological
input. We use Reggeon phenomenology to fix this term, [36] rewriting it in the form:

1

foorr(w,zp, Q2) = (;c_,;)kwﬂ sorT(w,QY) (100)

S —
QP;T -

| ¥ (99)

G _
QP;T -

where FPP(w, Q2) is the w -image of Gprp ﬂAR(O)(l - B8)". Ar(0) = agr(0) — 1 where
ag(0) is the intercept of the secondary Reggeon trajectory ( ar(0) ~ 0.5). The power n
is not defined in Reggeon phenomenology and we only know that n > 1. Gpgp denotes
the Pomeron - Reggeon vertex ( see for example ref. [36]).

The second term is the hard diffractive contribution, which is calculated theoretically.
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There is an alternate way to implement the initial condition, i.e. using the result of
our calculation in low mass region. Namely, we showed in our calculation for small mass
production, that the typical virtuality is sufficiently large . Therefore, we can choose the
value of the initial virtuality @2 for the DD process to be about 1 — 2GeV? and calculate
PP in pQCD. In this case

Sp(w, Q) = = ®pr(w) (2p G(zp, Q7))

1
Q3
and

Gp(w,Q2) = ®F(w)(zp G(zp, Q7))

This input corresponds the initial distributions in the 3 - representation:

Zp(B,2p, Qo) = (101)

1 2 1

gz &rr(8) (ar Clar, Q) 5 Gr(BorQY) = 7 ¥(B) (or Cler, Q%)
In Fig.16 we plot this distributions at different values of zp at two values of Q% (Q: =
1Gev? and Q% = 2GeV?).

2

We wish to emphasis two points. One, we propose to separate the soft and hard
diffraction processes in a way which conforms with the factorization theorem ( see ref.
[37] ) for the integrated diffractive structure function. Although, there is no proof that
the factorization theorem holds for the case of diffractive contribution, in deep inelastic
scattering ( see ref. [38]), all known contributions which violate the factorization theorem
turn out to be small ( see discussion above and ref. [39] [32] [40]).

The second point is the value of the scale Qo. There is no reason to assume the same
value of Qo, taken in the evolution equation for the deep inelastic structure function.
Depending on the choice of the scale Q2, we can start the evolution with very small
values of Qo and use Reggeon phenomenology as an initial condition for the DD structure
function. Or, we can start with sufficently large value of Qo in the DD processes, and
reconstruct the initial distributions using pQCD calculations. We followed the second
alternative, and our calculations for small masses supports this strategy.

6 Conclusions.

The diffraction dissociation processes in DIS provide a new window to collective phenom-
ena in the parton cascades since they originate from parton - parton interactions, and
vanish if there is no interaction between partons. However, the DD processes possess an
inherent awkwardness in that it is difficult to predict what is small or large in DD. Indeed,
in two extreme limits for small and for large ( “black disc” ) parton - parton interactions
the cross section of the DD turns out to be small. In this paper an attempt is made to
discuss the DD process within a pQCD framework.
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Our main results look are:

1. The DD cross section originates at small distances (r, <0.2 fm) even for the
transverse polarised photon. This fact justifies our use of pQCD for DD processes.

2. For B > 0.4 only production of gg pairs contribute to the cross section of DD.
This suggests a method to extract the value of the gluon structure function from the DD
measurements in this kinematic region.

3. For 8 >0.7 the longitudinal polarised photon provides the dominant contibution
to DD processes. The DD of longitudinal photon is one of the most promising processes
for pQCD calculations, since only small distances (r; o 1/Q ) contibute to this process.
Therefore, the measurement of DD at such big values of 3 allows one to extract the value
of the gluon structure function which has all advantages of the vector meson production
in DD ( see, for example, ref. [4] ) but without any of the uncertainties present due to
our poor knowledge of the hadronic wave function ( see refs. [42] [43]).

4. The general approach to the evolution equation for DD has been formulated and
solutions to the evolution equations have been found. The main difference between the
evolution equations for the DD and the GLAP evolution equations for the deep inelastic
structure functions, is the appearance of the inhomogenious term in the DD equations.
The form of this term and its influence on the solution has been discussed.

5. The formulae for the SC has been obtained, and the damping factors have been
calculated. The main result here is, that SC are important in the case of DD, and the
value of the cross section for the DD processes allows us to estimate the corrections to
the deep inelastic structure function (F,) which turns out to be sufficiently large, namely,

AR . o oPD
~ T .
Fy Tiot

We consider our paper as a first step in the understanding of the DD as a new source
of information about collective phenomena in deep inelastic scattering in the region of

small z. We hope this paper will give some impetus to treat DD as a “hard”” process,
within the solid theoretical framework of pQCD.
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Figure Captions.

Fig.1 : The diffractive production of quark-antiquark pair.
Fig.2:  The extra gluon emission in the diffractive production.
Fig.3: The damping factor for longitudinally polarised photon.
Fig.4:  The damping factor for transverselly polarised photon.
Fig.5: The damping factor for Fy(z,Q?).

Fig.6:  The DD by longitudinally and transversely polarised photon
at 8 = 0.8.

Fig.7:  The integrand of Eq.(28).
Fig.8: zp FzDD(S) versus T p.

Fig.9:  Effective power n(8,Q?) and ratio 2pGzp.Q°)°0

zpGzp,Q?)NLO
in the GRV paramerization.

Fig.10: Different contributions to FZD b,

D(2

Fig.11: Comparison of FzD ) with the HERA experimental data.

Fig.12: Ratio R (Eq.(75) for different values of cutoff k.
Fig.13: The cross section for p production ( in arbitrary units ) for Egs.(77) and (78).
Fig.14: The transverse momentum distribution for the jet in the DD.

Fig.15: The initial parton distribution ( Eq.(91) ) for the DD evolution
equation (longitudinally polarised photon).

Fig.16: The initial parton distributions ( Eq.(97) ) for the DD evolution
equations ( transversally polarised photon).



-35 - CBPF-NF-021/96
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Figure 1: The diffractive production of quark - antiquark pair.

Fig. 2a

>
Fig. 2b

Figure 2: The extra gluon emission in the diffractive production.
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Figure 3: The damping factor for longitudinally polarised photon.
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Figure 4: The damping factor for the transversely polarised photon.
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Figure 5: The damping factor (D?) for Fy(z,Q?).
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Figure 6: The DD by longitudinally and transversely polarised photon at 8 = 0.8.
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Figure 7: The integrand of Eq.(28).




CBPF-NF-021/96

0.1

. DD(3
Figure 8: zp F, ®) versus zp.



— 42 - CBPF-NF-021/96

o6 | 1o Ratio of GRV Gluon Distribution
/ (LO) to (NLO)

oEffective Power (n)s
| o4 @
S 3

4

0.56

1 i L
0.z 0.25 a3 0.35 04 Q.45 0.5 0.55 0.6 4 3 -2

Figure 9: Effective power n(83, Q?) and ratio % in the GRV parametrization.
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Figure 12: Ratio R (Eq.(75)) for different values of k.
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Figure 13: The transverse momentum distribution for the jet in the DD.
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Figure 14: The cross section for p production (in arbitrary units) for Eqs.(77) and (78).
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Figure 15: The initial quark distribution for the evolution equation for longitudinally

polarised photon.
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Figure 16: The initial quark distribution for the evolution equation for transverselly
polarised photon.



