Student's t- and r-Distributions: Unified Derivation From an Entropic Variational Principle

André M. C. de SOUZA ${ }^{1}$ and Constantino TSALLIS
Centro Brasileiro de Pesquisas Físicas/CNPq
Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil

Abstract

The optimization of the recently generalized entropy $S_{q} \equiv\left\{1-\int d x[p(x)]^{q}\right\} /(q-1)$ with the constraints $\int d x p(x)=1$ and $<x^{2}>_{q} \equiv \int d x x^{2}[p(x)]^{q}=1$ yields the Student's t -distribution for $q>1$, and the r -distribution for $q<1$.

Keywords: Generalized entropy; Variational principle, Student's t-distribution; r-distribution.

[^0]The normal (Gaussian) distribution can be derived through a great variety of manners. One of the most elegant no doubt is through the optimization of the Boltzmann-GibbsShannon entropy

$$
\begin{equation*}
S_{1}[p] \equiv-\int d x p(x) \ln p(x) \tag{1}
\end{equation*}
$$

with the constraints

$$
\begin{equation*}
\int d x p(x)=1 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
<x^{2}>_{1} \equiv \int d x x^{2} p(x)=1 \tag{3}
\end{equation*}
$$

(the subindex 1 will become clear later on). Indeed, if we impose $\delta S_{1}[p]=0$ and introduce the Lagrange parameters α and β (to take account of constraints (2) and (3) respectively) we obtain straightforwardly

$$
\begin{equation*}
p(x)=\sqrt{\frac{\beta}{\pi}} e^{-\beta x^{2}} \tag{4}
\end{equation*}
$$

where we have already used Eq. (2) to eliminate α. If we introduce now the new variable

$$
\begin{equation*}
y \equiv \sqrt{2 \beta} x \tag{5}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\phi^{(G)}(y)=\frac{1}{\sqrt{2 \beta}} p(y / \sqrt{2 \beta})=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} \tag{6}
\end{equation*}
$$

as desired. The optimization of $S_{1}[p]$ is equivalent of course to the optimization of the likelihood function

$$
\begin{equation*}
L_{1}[p]=e^{S_{1}[p]} . \tag{7}
\end{equation*}
$$

The question we focus in the present paper is how could we obtain the well known Student's t- and r-distributions from a similar variational principle. For physical purposes (related to multifractals and long-range interactions), one of us introduced [1] the following generalized entropy

$$
\begin{equation*}
S_{q}[p]=\frac{1-\int d x[p(x)]^{q}}{q-1} \quad(q \in \Re) \tag{8}
\end{equation*}
$$

which, in the $q \rightarrow 1$ limit, recovers Eq. (1) (by using $[p(x)]^{q-1}=e^{(q-1) \ln p(x)} \approx 1+(q-$ 1) $\ln p(x))$. This entropy satisfies a great variety of interesting mathematical and physical
properties[2-15]. Let us just recall here that it is nonnegative ($\forall q$), concave (convex) if $q>0(q<0)$, and also that

$$
\begin{equation*}
S_{q}\left[p_{1} p_{2}\right]=S_{q}\left[p_{1}\right]+S_{q}\left[p_{2}\right]+(1-q) S_{q}\left[p_{1}\right] S_{q}\left[p_{2}\right] . \tag{9}
\end{equation*}
$$

where p_{1} and p_{2} refer to independent systems. In other words, in contrast with $S_{1}[p]$ (and with the so-called Renyi entropy), $S_{q}[p]$ is generically nonextensive (nonadditive).

In what concerns physical applications, it has been successfully used in astrophysical systems[16,17], in Lévy-flight-like anomalous diffusion[18], in learning tasks accomplished by perceptrons[19], in statistical inference[20], possibly in biological systems[21], economical ones, among others. More specifically, this generalized entropy has enabled a consistent generalization of Statistical Mechanics and of Thermodynamics[2] (while preserving the standard Legendre-transform framework). It comes out that the standard average $<O>_{1} \equiv \int d x O(x) p(x)$ of an arbitrary observable O must be generalized into the q-expectation value $<O>_{q} \equiv \int d x O(x)[p(x)]^{q}$.

We are now prepared to come back to our initial aim related to Student's t- and rdistributions. If we optimize $S_{q}[p]$ with the constraints given by Eq. (2) and, following [18], by

$$
\begin{equation*}
<x^{2}>_{q} \equiv \int d x x^{2}[p(x)]^{q}=1 \tag{10}
\end{equation*}
$$

(instead of Eq. (3)), we straightforwardly obtain

$$
\begin{equation*}
p(x)=\frac{\left[1-\beta(1-q) x^{2}\right]^{1 /(1-q)}}{\int d x\left[1-\beta(1-q) x^{2}\right]^{1 /(1-q)}} . \tag{11}
\end{equation*}
$$

Let us discuss now separately the $q>1$ and $q<1$ cases.
$\underline{q>1}:$
Eq. (11) becomes

$$
\begin{gather*}
p(x)=\frac{\left[1+\beta(q-1) x^{2}\right]^{1 /(1-q)}}{\int_{-\infty}^{\infty} d x\left[1+\beta(q-1) x^{2}\right]^{1 /(1-q)}} \\
=\sqrt{\frac{\beta(q-1)}{\pi}} \frac{\Gamma\left(\frac{1}{q-1}\right)}{\Gamma\left(\frac{1}{q-1}-\frac{1}{2}\right)} \frac{1}{\left[1+\beta(q-1) x^{2}\right]^{1 /(q-1)}} \quad(1<q<3) . \tag{12}
\end{gather*}
$$

($p(x)$ is not normalizable if $q \geq 3$).

If we introduce now (see also Eq. (14) of Ref. [18])

$$
\begin{equation*}
q \equiv \frac{3+m}{1+m} \quad(0<m<\infty) \tag{13}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
p(x)=\sqrt{\frac{2 \beta}{\pi(1+m)}} \frac{\Gamma\left(\frac{1+m}{2}\right)}{\Gamma\left(\frac{m}{2}\right)} \frac{1}{\left(1+\frac{2 \beta}{1+m} x^{2}\right)^{\frac{1+m}{2}}} . \tag{14}
\end{equation*}
$$

Introducing now

$$
\begin{equation*}
y \equiv \sqrt{\frac{2 \beta m}{1+m}} x \tag{15}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& \phi_{m}^{(t)}(y)=\sqrt{\frac{1+m}{2 \beta m}} p\left(y \sqrt{\frac{1+m}{2 \beta m}}\right) \\
& \quad=\frac{1}{\sqrt{\pi m}} \frac{\Gamma\left(\frac{1+m}{2}\right)}{\Gamma\left(\frac{m}{2}\right)} \frac{1}{\left(1+\frac{y^{2}}{m}\right)^{\frac{1+m}{2}}}, \tag{16}
\end{align*}
$$

which precisely is (see [22]) the Student's t-distribution with m degrees of freedom! In the limit $q \rightarrow 1$ (i.e., $m \rightarrow \infty$), we recover the Gaussian distribution given by Eq. (6). In the limit $q \rightarrow 3$ (i.e., $m \rightarrow+0$), we obtain a completely flat nonnormalizable distribution.
$\underline{q<1}$:
Eq. (11) becomes

$$
\begin{gather*}
p(x)=\frac{\left[1-\beta(1-q) x^{2}\right]^{1 /(1-q)}}{\int_{-1 / \sqrt{\beta(1-q)}}^{1 / \sqrt{\beta(1-q)}} d x\left[1-\beta(1-q) x^{2}\right]^{1 /(1-q)}} \\
=\sqrt{\frac{\beta(1-q)}{\pi}} \frac{\Gamma\left(\frac{1}{1-q}+\frac{3}{2}\right)}{\Gamma\left(\frac{1}{1-q}+1\right)}\left[1-\beta(1-q) x^{2}\right]^{1 /(1-q)} \quad(-\infty<q<1) . \tag{17}
\end{gather*}
$$

This distribution vanishes for $|x| \geq[\beta(1-q)]^{-1 / 2}$.
If we introduce now

$$
\begin{equation*}
q \equiv \frac{n-6}{n-4} \quad(4<n<\infty) \tag{18}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
p(x)=\sqrt{\frac{2 \beta}{\pi(n-4)}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n-2}{2}\right)}\left[1-\frac{2 \beta}{n-4} x^{2}\right]^{\frac{n-4}{2}} . \tag{19}
\end{equation*}
$$

Introducing now

$$
\begin{equation*}
r \equiv \sqrt{\frac{2 \beta}{n-4}} x \tag{20}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& \phi_{n}^{(r)}(r)=\sqrt{\frac{n-4}{2 \beta}} p\left(\sqrt{\frac{n-4}{2 \beta}} r\right) \\
= & \frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n-2}{2}\right)}\left(1-r^{2}\right)^{\frac{n-4}{2}} \quad(|r| \leq 1), \tag{21}
\end{align*}
$$

which precisely is (see [22]) the r-distribution with n-2 degrees of freedom! In the limit $q \rightarrow 1$ (i.e., $n \rightarrow \infty$), we recover the Gaussian distribution given by Eq. (6). In the limit $q \rightarrow-\infty$ (i.e., $n \rightarrow 4$), we obtain a Dirac-delta distribution.

The distributions $p(x)$ are represented in the Figure for typical values of $q \epsilon[-\infty, 3]$. The optimization of S_{q} is equivalent to the optimization of the generalized likelihood function L_{q} given by $[10,14]$

$$
\begin{equation*}
L_{q}[p]=\left\{1+(1-q) S_{q}[p]\right\}^{\frac{1}{1-q}} . \tag{22}
\end{equation*}
$$

Indeed, L_{q} is a monotonically increasing function of S_{q} for all values of q. So, for $q>0(q<$ 0), we must maximize (minimize) the entropy S_{q}, hence we must maximize (minimize) the likelihood function L_{q}.

Summarizing, we have shown that the standard variational principle applied to the generalized entropy S_{q} with simple auxiliary constraints, straightforwardly yields the well known Students's t- and r-distributions.

We acknowledge useful remarks from M. E. Vares, A. Araújo and R. R. da Silva.

Figure Caption

(a) Distributions $p(x) / \sqrt{\beta}$ vs. $\sqrt{\beta} x$ for typical values of q; (b) Values of $p(0) / \sqrt{\beta}$ as a function of q.

References

[1] C. Tsallis, J. Stat. Phys. 52, 479(1988).
[2] E. M. F. Curado and C. Tsallis, J. Phys. A: Math. Gen 24, L69(1991); Corrigenda: J. Phys. A 24, 3187(1991) and 25, 1019(1992).
[3] A. M. Mariz, Phys. Lett. A 165, 409(1992); J. D. Ramshaw, Phys. Lett. A 175, 169 and 171(1993).
[4] A. R. Plastino and A. Plastino, Phys. Lett. A 177, 177(1993) and Physica A 202, 438(1994).
[5] F. Buyukkiliç and D. Demirhan, Phys. Lett. A 181, 24(1993).
[6] E. P. da Silva, C. Tsallis and E. M. F. Curado, Physica A 199, 137(1993); Erratum: Physica A 203, 160(1994).
[7] R. F. S. Andrade, Physica A 175, 185(1991) and 203, 486(1994).
[8] A. Plastino and C. Tsallis, J. Phys. A 26, L893(1993).
[9] D. A. Stariolo, Phys. Lett. A 185, 262(1994).
[10] A. Chame and E. V. L. de Mello, The Fluctuation-Dissipation Theorem in the Framework of the Tsallis Statistics, J. Phys. A 27 (1994), in press.
[11] E. F. Sarmento, Generalization of Single-Site Callen's Identity Within Tsallis Statistics, preprint (1993)
[12] L. R. da Silva, Duality-Based Approximations for the Critical Point of the SquareLattice Ising Ferromagnet within Tsallis Statistics, preprint (1994).
[13] C. Tsallis, Generalized Entropy-Based Criterion for Consistent Nonparametric Testing, preprint (1993).
[14] C. Tsallis, Extensive versus Nonextensive Physics, in "New Trends in Magnetic Materials and their Applications", ed. J. L. Morán-López and J. M. Sánchez (Plenum

Press, New York, 1994), in press; and Some Comments on Boltzmann-Gibbs Statistical Mechanics, in "Chaos, Solitons and Fractals", ed. G. Marshall (Pergamon Press, Oxford, 1994), in press.
[15] C. Tsallis, Non Extensive Physics: A Connection between Generalized Statistical Mechanics and Quantum Groups, preprint (1994).
[16] A. R. Plastino and A. Plastino, Phys. Lett. A 174, 384(1993).
[17] A. R. Plastino and A. Plastino, Information Theory, Approximate Time Dependent Solutions of Boltzmann's Equation and Tsallis' Entropy, preprint (1994).
[18] P. A. Alemany and D. H. Zanette, Phys. Rev. E 49, 956(1994).
[19] S. A. Cannas, D. A. Stariolo and F. A. Tamarit, private communication (1994).
[20] C. Tsallis, G. Deutscher and R. Maynard, On Probabilities and Information - The Envelope Game, preprint (1994).
[21] P. T. Landsberg, in "On Self-Organization", Synergetics 61, 157 (Springer, Berlin, 1994).
[22] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, $2^{\text {nd }}$ edition (Mc Graw-Hill, New York, 1968), pages 683 and 700.

[^0]: ${ }^{1}$ On leave of absence from Departamento de Física, Universidade Federal de Sergipe, 49000-000, Aracaju-SE,Brazil.

