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Abstract

The optimization of the recently generalized entropy Sq � f1 � R
dx[p(x)]qg=(q � 1)

with the constraints
R
dxp(x) = 1 and < x2 >q� R

dxx2[p(x)]q = 1 yields the Student's

t-distribution for q > 1, and the r-distribution for q < 1.
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The normal (Gaussian) distribution can be derived through a great variety of manners.

One of the most elegant no doubt is through the optimization of the Boltzmann-Gibbs-

Shannon entropy

S1[p] � �
Z
dxp(x)lnp(x) (1)

with the constraints Z
dxp(x) = 1 (2)

and

< x2 >1�
Z
dxx2p(x) = 1 (3)

(the subindex 1 will become clear later on). Indeed, if we impose �S1[p] = 0 and introduce

the Lagrange parameters � and � (to take account of constraints (2) and (3) respectively)

we obtain straightforwardly

p(x) =

s
�

�
e��x

2

(4)

where we have already used Eq. (2) to eliminate �. If we introduce now the new variable

y �
q
2�x (5)

we obtain

�(G)(y) =
1p
2�

p(y=
q
2�) =

1p
2�

e�y
2=2 (6)

as desired. The optimization of S1[p] is equivalent of course to the optimization of the

likelihood function

L1[p] = eS1[p]: (7)

The question we focus in the present paper is how could we obtain the well known Stu-

dent's t- and r-distributions from a similar variational principle. For physical purposes

(related to multifractals and long-range interactions), one of us introduced [1] the follow-

ing generalized entropy

Sq[p] =
1� R

dx[p(x)]q

q � 1
(q � <) (8)

which, in the q ! 1 limit, recovers Eq. (1) (by using [p(x)]q�1 = e(q�1)lnp(x) � 1 + (q �
1)lnp(x) ). This entropy satis�es a great variety of interesting mathematical and physical
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properties[2-15]. Let us just recall here that it is nonnegative (8q), concave (convex) if

q > 0 (q < 0), and also that

Sq[p1p2] = Sq[p1] + Sq[p2] + (1 � q)Sq[p1]Sq[p2]: (9)

where p1 and p2 refer to independent systems. In other words, in contrast with S1[p] (and

with the so-called Renyi entropy), Sq[p] is generically nonextensive (nonadditive).

In what concerns physical applications, it has been successfully used in astrophysical

systems[16,17], in L�evy-
ight-like anomalous di�usion[18], in learning tasks accomplished

by perceptrons[19], in statistical inference[20], possibly in biological systems[21], eco-

nomical ones, among others. More speci�cally, this generalized entropy has enabled a

consistent generalization of Statistical Mechanics and of Thermodynamics[2] (while pre-

serving the standard Legendre-transform framework). It comes out that the standard

average < O >1� R
dxO(x)p(x) of an arbitrary observable O must be generalized into

the q-expectation value < O >q�
R
dxO(x)[p(x)]q.

We are now prepared to come back to our initial aim related to Student's t- and r-

distributions. If we optimize Sq[p] with the constraints given by Eq. (2) and, following

[18], by

< x2 >q�
Z
dxx2[p(x)]q = 1 (10)

(instead of Eq. (3)), we straightforwardly obtain

p(x) =
[1� �(1� q)x2]1=(1�q)R
dx[1� �(1� q)x2]1=(1�q)

: (11)

Let us discuss now separately the q > 1 and q < 1 cases.

q > 1:

Eq. (11) becomes

p(x) =
[1 + �(q � 1)x2]1=(1�q)R

1

�1
dx[1 + �(q � 1)x2]1=(1�q)

=

s
�(q � 1)

�

�( 1
q�1

)

�( 1
q�1 � 1

2)

1

[1 + �(q� 1)x2]1=(q�1)
(1 < q < 3): (12)

(p(x) is not normalizable if q � 3).
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If we introduce now (see also Eq. (14) of Ref. [18])

q � 3 +m

1 +m
(0 < m <1) (13)

we obtain

p(x) =

s
2�

�(1 +m)

�(1+m2 )

�(m
2
)

1

(1 + 2�
1+m

x2)
1+m

2

: (14)

Introducing now

y �
s

2�m

1 +m
x ; (15)

we obtain

�(t)
m (y) =

s
1 +m

2�m
p(y

q
1+m
2�m

)

=
1p
�m

�(1+m2 )

�(m
2
)

1

(1 + y2

m
)
1+m

2

; (16)

which precisely is (see [22]) the Student's t-distribution with m degrees of

freedom! In the limit q! 1 (i.e., m!1), we recover the Gaussian distribution given by

Eq. (6). In the limit q ! 3 (i.e., m! +0), we obtain a completely 
at nonnormalizable

distribution.

q < 1:

Eq. (11) becomes

p(x) =
[1� �(1� q)x2]1=(1�q)R 1=p�(1�q)

�1=
p

�(1�q)
dx[1� �(1� q)x2]1=(1�q)

=

s
�(1� q)

�

�( 1
1�q

+ 3
2
)

�( 1
1�q + 1)

[1� �(1� q)x2]1=(1�q) (�1 < q < 1): (17)

This distribution vanishes for jxj � [�(1� q)]�1=2.

If we introduce now

q � n� 6

n� 4
(4 < n <1) (18)

we obtain

p(x) =

s
2�

�(n� 4)

�(n�12 )

�(n�22 )
[1� 2�

n� 4
x2]

n�4

2 : (19)
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Introducing now

r �
s

2�

n� 4
x ; (20)

we obtain

�(r)
n (r) =

s
n� 4

2�
p(
q

n�4
2�

r)

=
1p
�

�(n�1
2
)

�(n�22 )
(1 � r2)

n�4

2 (jrj � 1); (21)

which precisely is (see [22]) the r-distribution with n-2 degrees of freedom! In the limit

q ! 1 (i.e., n!1), we recover the Gaussian distribution given by Eq. (6). In the limit

q !�1 (i.e., n! 4), we obtain a Dirac-delta distribution.

The distributions p(x) are represented in the Figure for typical values of q�[�1; 3].

The optimization of Sq is equivalent to the optimization of the generalized likelihood

function Lq given by [10,14]

Lq[p] = f1 + (1� q)Sq[p]g
1

1�q : (22)

Indeed, Lq is a monotonically increasing function of Sq for all values of q. So, for q > 0 (q <

0), we must maximize (minimize) the entropy Sq, hence we must maximize (minimize)

the likelihood function Lq.

Summarizing, we have shown that the standard variational principle applied to the

generalized entropy Sq with simple auxiliary constraints, straightforwardly yields the well

known Students's t- and r-distributions.

We acknowledge useful remarks from M. E. Vares, A. Ara�ujo and R. R. da Silva.



{ 5 { CBPF-NF-021/94

Figure Caption

(a) Distributions p(x)=
p
� vs.

p
�x for typical values of q; (b) Values of p(0)=

p
� as a

function of q.
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