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ABSTRACT

Within a framework which combines the Reynolds-Klein-Stanley
real space Renormalization Group ideas (for bond percolation) with those
contained in a recent Generalized Percolation foxmaliSm, we calculate the
transition line in the T-p space for the random —;— spin first-neighbour
ferromagnetic Ising model in a sqlfare lattice. We obtain, within the smallest-
order approximation, the exact limit and assymptotic behaviour for T—0
(bond percolation limit) and very satisfactory results in the limit p —1

(pure case limit).

RESUME

Dans un cadre cambinant les idées introduites par Reynolds,

Klein et Stanley pour un Groupe de Rénormalisation dams 1'espace réel pour la
percolation de liaisons, avec celles contemues dans un récent formalisme de
Percolation Geénéralisée, nous calculons la ligne de transition dans 1'espace
T-p d'un modéle d'Ising aléatoire avec des interactions ferromagnétiques

entre spins —;— premiers voisins dans un réseau carre. Nous obtenous, dans
1'approximation de plus bas ordre, la limite et le comportement assymptotique
exacts pour T-»0 (limite de percolation de liaisons), ainsi que des résultats

trés satisfaisants pour p-+1 (limite du cas pur).



I - INTRODUCTION

In last years the site and bond percolation problems (for a
review see Shante and Kirkpatrick (1971) and Essam (1972)) as well as the
thermal random models (Syozi and Miyazima (1966), Mc Coy and Wu (1971), Harris
and Lubensky (1974), Stinchcombe and Watson (1976), Toulouse (1977),

Vannimenus and Toulouse (1977), Bergstresser (1977), Plischke and Zobin (1977),
Fisch (1978) and Villain (1978)) have received great attention because of their
wide application in a great variety of physical situations (dilute magnetism,
spin glass, isolator-conductor transitiOn, macromolecules, etc). Different
theoretical approaches have been attempted, the most frequent‘being the Renorma
lization Group (RG) treatments (for a review see Wilson and Kogut (1974),
Niemejer and Van Leeuwen (1974) and Wallace and Zia (1978)). Reynolds, Klein
and Stanley (1977, RKS) have introduced a simple and performing real space RG
treatment of the occupancy probability in the site and bond percolation problems.
We have recently analyzed some aspects of this treatment in the square lattice
(Tsallis and Schwachheim (1978) for site,and Magalhaes, Schwachheim and
Tsallis (1978, MST) for bond percolation). Plischke and Zobin (1978) dis-

cussed the behaviour of an Ising spin glass and a dilute Ising thermal models.

Very recently we have introduced (Tsallis (1978)) a formalism
that generalizes the concept of bond percolation and contains the body of
Statistical Mechanics as a particular case (we shall from now on refer to it
as Generalized Percolation (GP)). Within this framework appears the central

concept of fidelity a of a bond (0 £ a £ 1), which basically measures how

well the bond transmits information. The present paper contains the first
non trivial physical application of the GP formalism: the calculation of
the transition line in the temperature T-bond concentration p space for a
Trandom 1 spin first-neighbour ferromagnetic Ising model in a square

2
lattice.



In Section II we obtain the fidelity of a H-shaped cluster
or graph which plays a central role for bond percolation in square lattice
(see RKS and MST); in Section III we establish a RG which leads (within this
H-graph approximation) to the analytical relation between the probability
or bond concentration p and the critical fidelity a c | (above which ferro-
magnetism appears); in Section IV we take advantage from the knowledge of
the temperature dependence of the fidelity a (GP formalism) and present the

transition line in the T-p space.

II - THE H-FIDELITY

II.1 - Generalities

The central purpose of this Section is to find the fidelity a,
of the H-graph (see Fig. 1), which will correspond (see RKS and MST),
within the RG framework we shall introduce later, to '‘vertical' first-neighbour
bond percolation in the square lattice (the difficulty arrives from the fact
that the H-graph is not reducible in series-parallel terms).. Let us one and
for all point out that for vertical percolation (let us say through the H-
graph in the sense down-up), where we admit entry (exit) of the information
through any of the bottom (top) bonds, we can join (see Tsallis (1978)) all
the bottom (top) bonds into a terminal node which we shall call the 'input
(output) node' (hence graphs (a) and (b) of Fig. 1 are equivalent for our
purposes). Unfortunately we have not succeeded in elaborating a rigorous
reasoning to obtain the functional dependence of ay on its five single
fidelities. However we present next three heuristic arguments (namely the
dual graph, the bounds and the probabilities arguments) which will finally
lead to an analytic expression for ay which leaves no doubt about its

correctness.



I11.2 - The dual graph argument

In analogy with the concepts introduced in Linear Circuits
Theory (as well as in the review by Syozi (1971)) we shall define the
duality between two planar graphs G and G* by saying that they are superim
posable in such a way that each bond of a graph crosses one and only one
bond of the other and also that each internal (non terminal) node of one
graph is sorrounded by an elementary mesh of the other (several examples
are given in Fig. 2). Whenever a graph equals its dual (G = G*) we shall
call it "self-dual" (examples (a) and (e) of Fig. 2). If a graph is reduci-
ble in series - parallel terms (examples (b), (c) and (d) of Fig. 2), then
and only then the same happens with its dual. We may ''decorate’ a graph G
with a set of fidelities {ai} (like in Fig. 1 or Fig. 2 (c)), and for this
eventuality we shall use the notation G{ai}. Furthermore, we introduce the
notation G*{l-ajl to mean that we have decorated the dual graph G* by atri
buting the "dual" fidelity (1-a;) to the bond which crosses the one whose
fidelity is a; in the original graph G (see the example (c) of Fig. 2).

We shall now state (without proof) the following property for
the fidelity a(Gfa;|) of any decorated graph:

a(G {ai}) + a(G* {1 - ai}) =1 €))
or, in compact words,''the fidelity of the dual equals the dual of the.
fidelity'". This property is straightforwardly verifiable for any graph

which may be reduced in series - parallel combinations of single bonds. As

a corollary of (1) we obtain, for self-dual graphs, that

a(G {a}) + a(G{l -a;)) =1 1
This expression leads, for the H-graph we are interested in (see Fig. 1), to
ai(a;, a,, as, a,, ag) + aH(l-a‘, 1-a), 1-3,, 1-a,, 1-a;) = 1 a"

In the particular case a; = a v i we obtain, by introducing the compact

notation aH(a),

ag(a) + ey - a) = 1 @



in others words, the graphical representation ay Vs a is centrosymmetric

with respect to the point '(—%’ ——%——) , and in particular aH(l/ 2) =1/2.
This is a good opportunity for writing down other two expected
(symmetry) properties:
aH(a 9 aZ’ 3—3 ,34, as) = aH(aS’ 34, al’ az, as) (3.3.)

=AaH(a2’ a]_, a4s 339 3—5) (Z.b)

The fidelity of any graph is a monotonically increasing function
with respect to each one of its single fidelities. This fact allows us
to tighten ay between an upper bound (noted ay and obtained by decorating
the central bond 6f the H-graph with an unitary fidelity instead of as, an
operation which leads to the right graph of Fig. 2 (d)) and a lower bound
(noted a, and obtained by decorating the central bond with a vanishing
fidelity, an operation which leads to the left graph of Fig. 2 (d)) whose

fidelities are respectively given by (see Tsallis (1978)):

M

T8z 8y "8 838, -3 & a*a adz (3 g

ap = @, 8, *a;a -2a; a az a, (3.b)
and the inequality states
a € a; & Ay (4)

We may verify that expressions (3.a) and (3.b) verify the property (1),

which, in the particular case where a; =a v i, becomes

aM(a) + am(l -a)=1 (see Fig. 3)



.with
ay = 4a2 - 4a3 + a4
a, = Za2 - a4

Furthermore, if we take into account the fact that the two percolation paths
which include the central bond of the H-graph, give minor contributions into

the percolation process, we have that

a (@) ~ ay(a) ~ 1 -2 (1-a)° ifa-1l (5.2)

%@Lv%@%vhz if a0 (5.b)

I1.4 - The probabilities argument

In many aspects we do not intend to analyze here, the fidelities
present a probabilistic mathematical structure. Let us exhibit this fact
with the left graph of Fig . 2(c): its total fidelity ag is given by (see
Tsallis (1978))

8T 81 83 * 3 837 31 8 ag
on the other hand, if we make a standard reasoning (see RKS and MST) to calcula
te the probability g for this graph to percolate, we obtain
Pg =Pz Py & -py) +pz;p, 1 -Dpy)) *+Dp; D, P
=Py P3Py P3 =P Py P3
Therefore we see that aG(al, ay a3) and pG(pl, Py p3) have the same functional
form. It is straightforward to verify this property for any graph reducible in

series-parallel temms, and we shall assume that this is true for any graph.

This leads to the end of our research, namely



ay = a1 az(l-as) (1—a4) (1—a5) + az a4(1—a1) (l-az) (1-ag)

+a) a, a5(1—a3) (1—a4) +a; a a4(1—a5) (1—a3)

*a a, as(l-as) (1—a4) +aga, as(l—al) (1-a2)
+az a, az(l-a,s) (1-a1) +aga, al(l-as) (l-az)
+ 8y ag a4(1-a2) (l-as) +agag az(l-al) (1-a,)
*a; a, ag a4(1—a5) +a; a, a; as(l—a4) +a; a; a as(l-as)

+a, az 3 as(l-az) +a,aza, as(l-al) * a8, a; 3, 3

1

(l-as) a, + ag ay (6)

- This expression satisfies properties (1''), (2.a), (2.b) and becomes, in the
- particular case where a; =av i,

5. 5a4 + 22° (6")

aH(a) = 2:;12 + 2Za
Naturally this expression satisfies (1''') and its assymptotic behaviours

(for a-» 1 and a-»0) are indeed those indicated in (5.a) and (5.b).

IIT - RENORMALIZATION GROUP

In this Section we shall atribute, to each single bond of a

square lattice, a probability distribution (see Tsallis (1978))
P(a) = (1-p) O (a) + p O (a-a,) (7

for the aleatory fidelity a, with 0 £ ag £ 1. The particular case ag =1

corresponds to the traditional bond percolation problem. The distribution

immediately leads to

<a>P = Jcla P(a) = pa, (7")

(o]



The probability distribution PH of the H-graph will then be

given (see Table 1) by

Py(a) = C1-2p2-2p3+5p4-2p5) o (a)

+2p2 (1-p) 2 (1+2p) § (a-a,2)

+2p°(1-p)? Q (a-ay>)

wptap) O (a-2ag+agh)

wptap) S (a-ad-agragh)

hence
2 2 3 '
'4 a)PH =p aoz (2+2pao-5p2ao +2p3a° ) (8")

Now, within the RG framework, we shall consider the H-graph
as a renormalized "vertical' bond whose probability distribution P'(a) is

given by
P'(a) = (1-p") & (a) + p' S (a-ap) ©
hence
{adp =p'ag ©"
The group transformation is given by

alpr = <a>PH (10)

a relation which reproduces the RKS result in the particular case ag = ag=l.
The fixed point of transformation (10) satisfies, by using (8') and (9') and
after elimination of the trivial solution pa_ = 0,

pac(2+29ac-5p2ai +2p3az) =1

hence (by eliminating the other trivial solution: pa_ = 1)

pac =1/2 (11)



IV - THE RANDOM ISING MODEL

Though we have not said it explicitely, we have been working
all the time under the assumption that the input (therefore the output) to
each bond is a binary aleatory variable (see Tsallis (1978)). This is exactly
the case of the —%—- spin Ising model, whose Hamiltonian may be written as

follows
2 .2 R Y v,‘\,)
dH=-T= 95 (S>»0; Sy ==
Ly

where (ij) are first neighbours in a square lattice. If we assume this
system to be in thermodynamical equilibrium at temperature T, the fidelity of
each bond is given by (Tsallis (1978))
ap= th i:% (12)
\ B :
The random model consists in that only a concentration p of
bonds are (partially) activated, the rest being completely blocked (in other

words, absent). The use of relations (11) and (12) leads to the transition

line in the T-p space:

kBTc b (see Fig. 4)

J ai"gth_ _1_
2p

In the limit T -» 0 we have

BT o,
J 1n (p- =)
| 2

which leads not only to the exact value P. = ~%—- (see RKS and Shante and

Kirkpatrick (1971)) for the critical probability for bond percolation, but

also to the exact assymptotic behaviour (see Bergstresser (1977), Essam (1972),
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Plischke and Zobin (1977) and Fisch (1978)).

On the other hand, in the pure case limit p -»1, we obtain

Blc ~ 1 L2 a- o
T ! N
J argth — 3argth —
2 2

which leads to a Curie temperature

K
e _ 1 T X 1.82

J argth ———
2

to be compared with Onsager's exact solution (see for example Huang (1963)):

k
BTc(l) - 2

J argsh 1

& 2.27. This error may be considered as very accepta

ble if we remember that the H-cluster is the simplest we could have considered.

Furthermore we have that

T (p) -
d c = 2 ~ 1.2
dp T, (D) p

1 Sargth.—l—

2

to be compared with Plischke and Zobin's result ( = 1.28), and also with the

result obtained for related (but different) syozi model (2(f2 - 1)/argsh 1=0.94;

see for example Essam (1972)).

V - CONCLUSION

Let us conclude by saying that the present work exhibits how
simple and compact can be the treatment of random thermal models within a
framework that combines both the Generalized Percolation and the Renormali-

zation Group ideas. In order to summarize our results, let us say that, in
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spite of the fact that we have used the lowest-erder approximation (the H-
- graph) we have~obtained, for the transition line in the T-p space (which
separates the ferromagnetic from the paramagnetic regions) of the random

1 spin first-neighbour Ising model in a square lattice, the following

satisfactory results:

a) the exact value (PC =:—%f9 for the critical probability in the limit

T —»0;

b) the exact assymptotic behaviour of T. in the limit T-»0, more pre

cisely

-23/k
2J/ BTC
d e

dp 1

p:
: 2
c) a 20% error in the absolute value of the Curie temperature of the

pure case (p = 1) (this error should sensibly decrease if higher-

order graphs were used) ;

d) a 6% difference with Plischke and Zobin's result in what concerns

the slope of Tc(p)/T(l) in the limit p -—»l;

e) a 23% difference if we compare our result for the already mentioned

slope, with the result obtained with the related (but different)

Syozi model.

It is with pleasure that I aknowledge here fruitful discussions

with C.G. Bollini, E.F.M. Curado and G. Schwachheim.
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CAPTION FOR FIGURES AND TABLE

Fig. 1 - The H-graph decorated with.fidelities'{ai} ; graphs (a) and (b)
are equivalent; open (full) dots denote the terminal (internal)

nodes of the graph.

Fig. 2 - Several examples of dual graphs; (a) and (e)-graphs are self-dual;
the two (d)-graphs are limiting cases of the (e)-graph; the (c)-
graphs are decorated ones; the (e) and (f) graphs are in general

not reducible into series-parallel arrangements.

Fig. 3 - Fidelities of the H—graph,aH(a) and of the right-side-(d) graph
(%w (a)) and the left-side-(d) graph (am(a)) of Fig. 2, as
functiens of the elementary bond fidelity a (the same for all
the bonds); a-» o implies ay o~ A v Za2 andAaM‘v 432, and a - 1
implies ay ~ 3y ~1-201 - a)z and a ~ 1- 4(1-a)2.

Fig. 4 - The reduced critical temperature as a function of the bond
concentration (P and F denote the paramagnetic and ferromagnetic

regions respectively).

Table 1- Contributions to PH(a) associated to each occupancy configuration
of the H-graph; only the topologically non equivalent configurations

are indicated; occupied bonds are marked with x.



QM Qk« ON Q&
a, as a; as ‘.,ﬂ
(a) (b)
FIG. |
| I-d
d, ds .
1-Qy
O Qu@ i-a,
‘ (a) (b) (c)
(d) (e) (f)

FIG.2




ey, PR BB WA e S N maE G W SINE  ms D Smm S G Eme W D Gwe  Cme eme Sw

£
a
FiG. 3

KeTc/ J
yKeTe/
m-\R .82

.‘ |

: |

H

i

i

i

1

}

[- (P) “

B

"

I

!

i

|

| .
"
;P

FIG. 4




Table 1

Con;i;g?‘gtion - Contribution
-pf T
| }" 5p(1-p)° §(2)
H l",,‘ H 8 p-(\-p)° S (2)

L SRR S S
T

I MU S

2 ¢(1-py* 8 (3-39)

: 2 p(-p) 5 (2)
6p(1-p) S (a-2)

2 p0-p) §(3-32)

ot (-p) §(a-2224 )

b (1-p) 8 (2-33-a2+27)

¢ 5 (3-2at-2a2 +5a4-22f)




