

CBPF - CENTRO BRASILEIRO DE PESQUISAS FÍSICAS Rio de Janeiro

Notas de Física

CBPF-NF-021/09 October 2009

Search for Spontaneous Magnetic Order in \mathbf{ZrNi}_5 and \mathbf{HfNi}_5

P.R.J. Silva, J.T.P.D. Cavalcante, H. Saitovitch and M. Forker

Ministério da Ciência e Tecnologia

Search for Spontaneous Magnetic Order in ZrNi₅ and HfNi₅

P.R.J. Silva, J.T.P.D. Cavalcante, H. Saitovitch and M. Forker

Centro Bras. de Pesq. Físicas - Rua Dr. Xavier Sigaud, 150 ; 22290-180 Rio de Janeiro, RJ; BRASIL

Abstract: The hyperfine interaction experienced by ¹⁸¹Ta nuclei in the intermetallic compounds $ZrNi_5$, $HfNi_5$ and Hf_2Ni_7 has been investigated by perturbed angular correlation (PAC) measurements, in a temperature range 15 K \ge T \le 1,200K. The temperature dependence of the electric quadrupole interaction of ¹⁸¹Ta in Hf_2Ni_7 suggests the existence of a reversible phase transformation at T \ge 500 K.

Key Words: hyperfine interaction, magnetism, angular correlation

Introduction: Previous studies of the intermetallic compound ZrNi₅ have lead to diverging conclusions concerning their magnetic properties^(1,2,3,4). Nuclei in ferromagnetic solids experience a magnetic hyperfine field (MHF) $B_{\rm hf}^{(1)}$. Ferromagnetic order can therefore be detected by observing the resulting Larmor precession of nuclear magnetic moments with frequency $\omega_{\rm m} = 2\pi v_{\rm m} = g\mu_N B_{\rm hf} / \hbar$, (g denotes the nuclear g factor). In this NF we report a search for spontaneous magnetic order of ZrNi₅ and HfNi₅ by looking for the existence of a (MHF) at the Zr(Hf) site.

The search was carried out with the perturbed angular correlation (PAC) technique⁽⁵⁾. The angular correlation (AC) of two successive γ -rays of a $\gamma\gamma$ -cascade in nuclear decay may be modulated in time by hyperfine interactions (HI) in the intermediate state of the cascade. The observation of the time-dependence of an AC therefore provides information on magnetic and electric HI in condensed matter. In the present study, the isotope ¹⁸¹Ta [Hf¹⁸⁰(n, γ)Hf¹⁸¹ \rightarrow Ta¹⁸¹] was used as nuclear probe, a very convenient one for measuring HI in (Hf,Zr)-compounds which also stimulated, beside the innerent problems related to these compounds, several previous contributions in this research area, part of it here refered^(6,7,8). As far as the Zr(Hf) site has cubic symmetry, a nuclear quadrupole interaction for ¹⁸¹Ta on these sites can thus be excluded. In case the host compound Zr(Hf)Ni₅ presents spontaneous magnetic order, one therefore expects a perturbation by a pure magnetic HI; in the absence of magnetic order the AC will be unperturbed, i.e. constant in time.

At the Ni-rich end the phase diagrams of the binary Zr-Ni and Hf-Ni systems⁽⁹⁾ are rather similar with both showing the phases $Zr(Hf)Ni_5$ and $Zr(Hf)_2Ni_7$, eventually difficult to separate with strong dependence on cooling speed from the melt. For the identification of eventual $Zr(Hf)_2Ni_7$ contributions to the PAC spectra of ¹⁸¹Ta:Zr(Hf)Ni₅, we have also studied the HI of ¹⁸¹Ta in the isotypic compound of $Zr_2Ni_7^{(10)}$, Hf_2Ni_7 , as a function of temperature.

1) Experimental -

1.1 - Sample Preparation: PAC samples of $ZrNi_5$, $HfNi_5$ and Hf_2Ni_7 were produced by melting stoichiometric amounts of the metallic components -together with about 0.1 at. % of radioactive ¹⁸¹Hf metalin an arc furnace under argon atmosphere. Inactive samples for XRD studies were prepared in the same way. In the as-prepared state, at RT, the samples of $ZrNi_5$ and $HfNi_5$ were found to be ferromagnetic. The spontaneous magnetization, an observations already reported⁽¹¹⁾, disappeared after annealing for 100 *h* at 1,500 K. No spontaneous magnetization was found for Hf_2Ni_7 .

1.2 - Characterization by XRD: because its formation through a peritectic reaction, homogenisation of a sample of $Zr(Hf)Ni_5$ rapidly cooled from the melt requires annealing at high temperatures. We have studied the effect of a high-temperature treatment of rapidly cooled $Zr(Hf)Ni_5$ both with XRD and PAC: Fig. 1 shows the XRD pattern of HfNi₅ in the as-prepared state and after annealing at 1500 K for 100 *h*. The pattern of annealed ZrNi₅ was identical to that of HfNi₅. The spectra – taken at RT with K_a radiation – mainly consist of the pattern of a AuBe₅-type compound and agree in the main features with the ZrNi₅ spectra already reported^(4,12,13). The lattice parameter derived from the spectra in Fig. 1 [(a = 0.6686(10) nm and 0.6706(10) nm, for HfNi₅ and ZrNi₅, respectively] also agree with the values previously reported^(4,12,13) for ZrNi₅.

Fig. 1: XRD of HfNi5 in the as-prepared state and after annealing for 100 h at 1,500 K, taken at RT with Cu-Kα radiation

In addition to the peaks of a AuBe₅-type compound, the spectrum of as-prepared HfNi₅ shows the main reflections of elemental fcc Ni (marked by the full stars in lower section of Fig. 1) and lines characteristic for Hf₂Ni₇ [see the peak at $2\theta \sim 30$ deg both in the bottom (HfNi₅) and top-most (Hf₂Ni₇) section of Fig.1]. After annealing at 1500 K, the peaks of Hf₂Ni₇ and those of fcc Ni have disappeared from the spectrum of HfNi₅. The presence of Nireflections and their disappearance upon annealing indicate that the magnetization observed for as-prepared Hf(Zr)Ni₅ can be attributed to Ni precipitates.

1.3) ¹⁸¹Ta PAC Measurements -

1.3.1) Equipment and data analysis: the PAC spectra were recorded with a standard 4-detector set-up equipped with fast BaF₂ scintillators. Temperatures were varied between 290 K and 1400 K with a PAC furnace⁽¹⁴⁾; for temperatures 290 K > $T \ge 15$ K it was used a closed-cycle He refrigerator: Fig. 2 shows the RT PAC spectra of HfNi₅ and ZrNi₅ in the as-prepared state and of ZrNi₅ after annealing for 10 *d* at 900 K (conditions used by Drulis et al.⁽⁴⁾. Spectra of HfNi₅ recorded in the temperature range 15 K $\le T \le 1200$ K are collected in Fig. 3.

For polycrystalline samples the modulation of an AC by HI can be described by a perturbation factor $G_{kk}(t)$ which depends on the multipole order, the symmetry and time dependence of the interaction, and on the spin of the intermediate state (for details

see, e.g., Frauenfelder and Steffen⁽⁵⁾). For a

pure static magnetic interaction, the perturbation factor is a function of only the Larmor frequency $\omega_m = 2\pi v_m = g\mu_N B_{hf}/\hbar$, in case of a static electric quadrupole interaction between the nuclear quadrupole moment Q and an electric field gradient (EFG) at the nuclear site, $G_{kk}(t)$ depends – apart from the nuclear spin I – on two parameters: the quadrupole frequency $\mathbf{v}_q = eQV_{zz}/\hbar$ and the asymmetry parameter $\eta = (V_{xx}-V_{yy})/V_{zz}$ where $V_{ii} = d^2V/di^2$ (i = x, y, z) are the principal-axes components of the EFG tensor. When several fractions of nuclei subject to different HI are found in the same sample, the effective perturbation factor is given by:

 $G_{kk}(t) = f_i \sum_{i} G_{kk}^i(t)$ with $\sum f_i = 1$ and f_i is the relative

intensity of the *i*-th fraction. The absence of a perturbing HI is evidenced by $G_{kk}(t) = 1$.

1.3.2) Results - The PAC results include: RT spectra of HfNi₅ and ZrNi₅ in the as-prepared state and of ZrNi₅ after annealing for 10 *d* at 900 K (Fig. 2/Table I) are characterized by a non-periodic oscillatory modulation of the anisotropy with time: the spectra consist of a superposition of three components -I (red lines) showing a slowly decaying anisotropy which can in principle be reproduced by both a $Fig.2: PAC spectra of ^{181}Ta in HfNi_5 (RT)$

Fig.2: PAC spectra of ¹⁸¹Ta in HfNi₅ (RT) and ZrNi₅ (RT, 600 0 C).

very weak magnetic dipole or electric quadrupole interaction; II, III (blue and magenta lines) presenting an oscillatory behaviour, due to perturbations by axially asymmetric quadrupole interactions-. All the three components safely exclude the possibility of a magnetic perturbation. Also, according these PAC spectra, if existing, as-prepared Hf(Zr)Ni₅ remains below the limit of detection ($\leq 5\%$). Furthermore (see Table I) there is little –if any– difference in the parameters v_q and η of ZrNi₅ and HfNi₅.

Fig. 3: Thermal evolution of PAC spectra of ¹⁸¹Ta in a non-equilibrium sample of HfNi₅. The assembly of the spectra from left-hand top to right-hand bottom corresponds to the sequence of measurements.

fractions (see Fig. 5) therefore clearly identifies component-I as $Hf(Zr)Ni_5$ and relates components II, III to Hf_2Ni_7 . The observation that the AC of properly annealed $Hf(Zr)Ni_5$ is unperturbed constitutes unambiguous evidence for the absence of spontaneous magnetic order in $Hf(Zr)Ni_5$ at $T \ge 15$ K.

1.3.2.3 – In order to better characterize the eventual presence of Hf₂Ni₇, identified by components-II,III (bottom line in Table I) and which differ substantially from those announced for the same compound⁽¹³⁾, we have taken PAC spectra ¹⁸¹Ta/Hf₂Ni₇ in the temperature range 15 K $\leq T \leq$ 1200 K (Fig. 4): from the two adjusted components the dominant one (rel. intensity \geq 0.9) with a well defined oscillatory structure is superimposed on a slowly decreasing baseline, whose decay can be reproduced by a broad QI distribution centred at $v_q \sim 25$ MHz. The similarity of this value with that of the component-I in Hf(Zr)Ni₅ (Table I) suggests that our sample of Hf₂Ni₇ contains a slight HfNi₅ contamination. The perturbation factor of the majority component of the Hf₂Ni₇

Also, annealing up to 900 K leaves the relative intensities unchanged; the frequency of component-III, however, undergoes a drastic change from $v_q \sim 280$ MHz to $v_q \sim 500$ MHz. **1.3.2.2** - 15 K \leq *T* \leq 1200 K spectra of HfNi₅ and ZrNi₅ (Fig. 3), show for the first compound two interesting aspects: frequency (i) the of component-III, when cooled from 780 Κ. increases drastically by almost a factor of 2; this change which can also be seen in Fig.2 for ZrNi₅ is fully reversible by heating to T > 350 K. (ii) At $T \sim 1000$ K the relative intensity of the component-I starts to increase at the expense of the oscillatory components and at T = 1200 K the oscillations have irreversibly disappeared, and with it's anisotropy practically constant in time, *i.e.* unperturbed and this behaviour persists when the sample is cooled to 15 K, a behaviour also found for ZrNi5. From the XRD pattern of Hf(Zr)Ni₅ we know that high temperature annealing eliminates Hf₂Ni₇ and Ni precipitates single-phase and produces a Hf(Zr)Ni₅ compound. The temperature dependence of the

RT one observes an almost periodic, practically non-damped oscillation pattern which reflects⁽⁵⁾ a perturbation by a unique, almost axially symmetric EFG. At $T \sim 1050$ K, however, the asymmetry parameter increases abruptly from $\eta =$ 0.23 to $\eta = 0.53$, producing a non-periodic pattern. This increase is reversible with a hysteresis of about 550 K: at $T \sim 470$ K, the pattern returns to near-periodicity.

The main results of the least-squares fit analysis of the HfNi₅ and Hf₂Ni₇ spectra are collected in Fig. 5 which shows fractions and QI parameters v_q and η as a function of temperature.

2) Discussion - As the main result of the present investigation, spontaneous magnetic order of $Hf(Zr)Ni_5$ can be definitely ruled out for temperatures $T \ge 15$ K. After appropriate annealing, all oscillatory components in the PAC spectra have disappeared and the angular correlation is unperturbed at $T \ge 15$ K which is unambiguous evidence for the absence of a magnetic hyperfine field.

As a by-product, the study established some new features of the $^{181}\mathrm{Ta}$ QI and the structure of

Fig. 5: HI parameters of 181 Ta/HfNi₅ and 181 Ta/Hf₂Ni₇ PAC spectra

 Hf_2Ni_7 . First, there is the observation that - in contrast to the previous PAC study⁽¹³⁾ of Hf_2Ni_7 - the PAC spectra in Fig. 4 are well described by a single, rather sharp QI (apart from the minority component attributed to $HfNi_5$). Since the *C2/m* structure of $Hf(Zr)_2Ni_7$ contains two non-equivalent Zr(Hf) sites with fourteen Ni and two Hf(Zr) nearest neighbours each, a single QI implies that the EFG's at the two Hf(Zr) sites must be quite similar. Inspection of the structure shows that the differences of the nearest-neighbour Ni and Hf(Zr) environments of the Hf(Zr) sites are in fact only very slight and in a point-charge estimate the EFG's at the two Hf(Zr) sites the Ni- and the Zr-sublattice, respectively, differ by less than 10 percent. A confirmation by an ab-initio calculation of the EFG would be valuable.

Second, the abrupt increase of the asymmetry parameter at $T \sim 1050$ K and its decrease at $T \sim 470$ K (Fig. 5) suggest a reversible phase transformation in Hf₂Ni₇. Indications for the existence of two different structures of Hf₂Ni₇ have also been found⁽¹⁰⁾, with reporting that mechanical deformation possibly transforms the *C2/m* RT structure Hf₂Ni₇.r into a hexagonal high-temperature phase Hf₂Ni₇.h.

The chief objective of the auxiliary PAC study of Hf_2Ni_7 (Fig. 4) was the identification of the oscillatory components found in the PAC spectra of "as-prepared" $Hf(Zr)Ni_5$. This goal was only partly attained. Because of the similarity in the temperature dependence of the quadrupole frequency v_q (see Fig. 5) there can be little doubt that component-II of these spectra (Figs. 2,3,5) represents precipitates of Hf_2Ni_7 . Interestingly, the asymmetry parameter η of component-II follows the trend observed in Hf_2Ni_7 when cooling from 1200 K which suggests that Hf_2Ni_7 precipitates in the high temperature phase when $HfNi_5$ is quenched from the melt. The interpretation of component-III is at present not clear. The observation that with increasing temperature component-III transforms into component-II (Fig. 5) suggests a relation to Hf_2Ni_7 . An understanding of the sharp transition of the quadrupole frequency at 285 K, however, requires further studies by other techniques: XRD at different temperatures might be helpful.

Acknowledgements -

One of the authors (M.F.) gratefully acknowledges the kind hospitality extended to him at CBPF and the financial support by CNPq.

Activation of Hf samples at the IPEN/CNEN Reactor is gratefully acknowledged.

For transportation of the activated material from IPEN to CBPF, our best thanks to "BND Transportes".

References -

1) A. Amamou, R Kuentzler, Dossmann P Forey, J. L. Glimois, J. L. Feron; Phys. F: Met. Phys. 12 (1982) 2509

- 2) I. Turek, Ch. Becker, J. Hafner; J. Phys.: Condens. Matter 4(1992)7257
- 3) I. Bakonyi, L.F. Kiss, E. Varga, L.K. Varga; Phys. Rev. <u>B71</u>(2005)014402
- 4) H. Drulis, W. Iwasieczko, V. Zaremba; J. Mag. Mag. Mat. 256(2003)139
- 5) H. Frauenfelder and R. M. Steffen, in "Perturbed Angular Correlations"; ed. K Karlsson, E. Matthias, K. Siegbahn North Holland, Amsterdam, 1963.
- 6) E. Gerdau, H. Winkler, W. Gebert, B. Giese, J. Braunsfurth; Hyperfine Interactions <u>1</u>(1976)459.
- 7) M. Marszalek, H. Saitovitch, P.R.J. Silva: Z. Naturforshung 55a(2000)49.
- 8) B. Cekić, A. Umićević, J. Belosêvić-Ĉavour, V. Koteski, V. Ivanovski, M.N. Stojkovic; S.S. Communications <u>145</u>(2008)465.
- 9) K.P. Gupta; Journal of Phase Equilibria 22(2001)73
- 10) J.P. Dattagtupta, K. Schubert; Z. Metallk. 64(1973)789
- 11) F. Kissell, T. Tsuschida , W.E. Wallace; J. Chem. Phys. 44(1966)4651
- 12) E. Smith, R.W. Guard; J. Met. 9(1957)1189
- 13) J.C. Gachon, M. Dirand, J. Hertz; J. Less-Comm. Met. 92(1983)307

14) M. Forker, W. Herz, U. Hütten, M. Müller, R. Müsseler, J. Schmidberger, D. Simon, A. Weingarten, S.C. Bedi; Nuclear Instruments Methods <u>209/210</u>(1983)427