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Abstract

We show that it is possible to construct a consistent model describing a

current-carrying cosmic string endowed with torsion and curvature in four

dimensions. The string torsion is interpreted in analogy with screw dislo-

cations in a three-dimensional crystalline solid. In the simplest case the

torsion can be written as a real scalar �eld gradient that preserves the

skew-symmetry. We consider a superconducting cosmic string (SCCS) in

Einstein-Cartan theory of gravity. A solution representing a superconduct-

ing cosmic string was found by considering the weak-�eld approximation

while the exterior solution was derived in an exact manner. The torsion

contribution to the gravitational force and geodesics of a test-particle mov-

ing around the SCCS are analyzed. In particular, we point out two in-

teresting astrophysical phenomena in which the higher magnitude force we

derived may play a critical role: the dynamics of compact objects orbiting

the screwed SCCS and accretion of matter onto it. The de�cit angle as-

sociated to the SCCS can be obtained and compared with data from the

Cosmic Background Explorer (COBE) satellite. We also derived a value for

the torsion contribution to matter density 
uctuations in the early Universe.
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1. INTRODUCTION

Cosmic strings have exact solutions [1] which represent topological defects that may

have been formed during phase transitions in the realm of the Early Universe [2,3]. Such

defects arise in some grand Uni�ed gauge theories. The GUT defects carry a large energy

density and hence are of interest in Cosmology as potential sources for primordial density

perturbations. These 
uctuations would leave their imprint in the cosmic microwave

background radiation (CMBR); a prediction not ruled out by COBE satellite observations

yet [4], and hence would act as seeds for structure formation and thus as builders of the

largest-scale structures in the Universe [5,6], such as the very high redshift superclusters

of galaxies as for instance the great wall. They may also help to explain the most energetic

events in the Universe such as the cosmological gamma-ray bursts (GRBs) [7{9], ultra high

energy cosmic rays (UHECRs) and very high energy neutrinos [8] and gravitational-wave

bursts [9] and backgrounds [10]. All these are issues deserving continuous investigation

by many physicists nowadays [11{13].

Witten [14] has shown that the cosmic strings may possess superconducting properties

and may behave like bosonic [15{20] or fermionic strings [21]. In other works it was

supposed that the relevant superconductivity is generated during or very soon after the

primary phase transition in which the string is formed. Physicists know that such strings

may be superconducting defects and may carry substantial currents which have important

astrophysical and cosmological e�ects, as the possibility of generation of a primordial

magnetic �eld by a network of charged-current-carrying cosmic strings [22,23]. Existence

of loops of SCCSs (vortons) were also investigated [21,24]. Torsion gained popularity in

the 1970s when it was used to develope a local Poincar�e gauged theory of gravity [25].

The interest in torsion gained more importance with the advent of string theory [26]

and it appears also in supergravity theories [27]. Theories of gravitation in a space-time

with torsion modify the spacetime geometry through non-symmetric connections [28] if

the matter �elds giving rise to the space-time curvature are endowed with spin. Cartan

torsion has been connected previously with ordinary cosmic strings [29] and also spinning

cosmic strings [30,31] from quite distinct point of views.

In this work we consider the study case of bosonic SCCSs in the minimal extension

to Riemann-Cartan space-time. One should regard such an extension as a �rst step of a

comprehensive study of cosmic string models in the context of theories including torsion.

We aim at dealing with most realistic models which demand supersymmetry (an essential

ingredient of grand-uni�cation theories, string theory, etc), so we ought to combine both
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gravitational and spin degrees of freedom in the same formalism, and thus torsion is

required. Our results concerning proper supersymmetric cosmic string models are the

main subject of forthcoming communications [32,34].

The main-stream of this paper is as follows: we explored the physics of screwed cos-

mic strings in section II. In section III we derive the set of Einstein-Cartan equations

describing the dynamics of the SCCSs pervaded by torsion stresses. An external solution

for the SCCS metric in this scenario in presented in section IV, while in section V we de-

rive the corresponding one for the internal structure of the SCCS by using the weak-�eld

approximation. The junction conditions are obtained in section VI, where we �nd the

speci�c form for the metric components, and discuss brie
y the most immediate implica-

tions of such a solution. Two applications are provided. One focusing on the deviation

of a particle moving near a screwed string. It is shown that such a high intensity of the

gravitational force from the screwed SCCS (when compared with the one generated by a

current-carrying string) may have important e�ects on the dynamics of compact objects

orbiting around it, and also on matter being accreted by the string itself. The second one

exploits the possibility that the temperature 
uctuations in the cosmic microwave back-

ground radiation could have been, at least partially, generated after the SCCSs having

interacted with it. We obtain a neat expression for the de�cit angle in this context and

a comparison is done with data from COBE satellite. We end this paper with a short

summary of the picture here suggested.
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2. SCREW DISLOCATIONS INSIDE COSMIC STRINGS

Next we shall try to understand the torsion e�ects on the space-time metric when

the models under consideration have no fermionic �elds. Here we construct a consistent

framework for the torsion �eld pervading a cosmic string and de�ne the vortex con�gu-

ration for this problem. We choose here to analyse the simplest case where the torsion

appears. In this line of reasoning, it is possible to describe torsion as a gradient-like �eld

[35,36]

S �
�� =

1

2
[���@��� ���@��]; (2.1)

being the � �eld the source of torsion in the string. Thus the SCCS generates a space-

time curvature and torsion. The construction and dependence of the � potential on the

physical variables of our system shall be speci�ed in this work in the case where a screw

dislocation is supposed to appear.

We shall proceed by considering an Abelian Higgs model with U(1)0�U(1) symmetry,

which is the simplest model allowing for symmetry breaking. In this model we have a

scalar �eld '; a gauge �eld C� which gives us the vortex of the string, and a scalar �eld

~� along with a gauge �eld A� which encodes the superconducting properties.

A. Physics of a screwed string

In order to properly characterise the kind of cosmic string we will focus on, i. e.,

a current-carrying one endowed with curvature and torsion, next we shall specify its

overall physical constituents and dynamical evolution from an action principle. The action

representing the SCCS in a space-time with torsion can be written as:

S =
Z
d4x
p
g
�

1

16�G
R(fg) + �1r�S

� + �2S��kS
��k + �3S��kS

�k� + �4S�S
�

�
+ Sm;

(2.2)

where R(fg) is the curvature scalar of the Riemannian theory and Sm is the matter

action that describes the superconducting cosmic string (to be speci�ed below), and the

constant �1 is connected with the torsion gradient term r�S
�. Here r� is a Riemannian

covariant derivative which drops out from the action because it is a term involving a total

derivative. S��k and S� are SO(1; 3) irreducible components of the torsion. In general,

the torsion can be decomposed into three components
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S �
�� = A �

�� + ���S� � ���S� +��
�� ; (2.3)

where �[��
] � 0, ��
�
 � 0, A[��
] � �[��
]. The traceless part of torsion can be

written as C�
�
 � ��

�
 +A�
�
, with ��

�
 being given by

��
�
 =

i

6
" k�
�� ��: (2.4)

Because the minimal extension to Riemann-Cartan space is su�cient for our purpose

we set C�
�
 = 0. The quadratic torsion terms in the action do not give any dynamics to

the torsion and the motivation for introducing them may be found in reference [37].

The most general connection � �
�� written in terms of the contortion tensor K �

�� is

� �
�� = f���g+K �

�� ; (2.5)

where K �
�� can be written in terms of the torsion �eld as:

K �
�� = �1

2
(S �

� � + S �
� � � S �

�� ): (2.6)

For this minimally extended Riemann-Cartan space the a�ne connection can be writ-

ten in terms of g�� and S� = @�� as

� �
�� = f���g+ S�g�� � S��

�
� (2.7)

so that S� is the only piece that contributes to torsion, which here is the escalar

derivative de�ned by (2.1).

Then we may consider a theory of gravitation possessing torsion by writing that part

of the action SG stemming from the curvature scalar R as:

SG =
Z
d4x
p
g
�

1

16�G
R(fg)� �

2
@��@

��
�
; (2.8)

where the coupling constant � will be speci�ed with the help of COBE data.

In this work we use Eq.(2.1) where � generally depends on all coordinates. We post-

pone for a moment to specify the formal dependence of the vortex ansatz upon torsion

(see below). Meanwhile, for the single defect the solutions correspond to 
at space ev-

erywhere, except on the defect itself where there is curvature or torsion or both. Here we

focus on the case of SCCSs having curvature and screw dislocation (a type of torsion),

however, the space outside the defect has propagation of the e�ects of both the current

and torsion. Our anzats for the function � assumes r, � and z dependence of the form:

�(r; �; z) = �(r) +K(�; z); (2.9)
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where

K(�; z) = k1z + k2� (2.10)

represents the screw in the SCCS, with k1 and k2 being scaling constants of the prob-

lem. Function K(�; z) represents the screw disclination-like distorsion of the string, while

the �(r) function de�nes that part of torsion carrying o� the string information about

itself. The asymptotic conditions reads:

�(r) = 0 r = 0

�(r) 6= 0 r!1:
(2.11)

We can study the SCCS considering the Abelian Higgs model with two scalar �elds,

� and ~�. In this case, the action for all matter �elds turns out to be:

Sm =
Z
d4x
p
g[�1

2
D��(D

��)� � 1

2
D�~�(D

�~�)� � 1

4
F��F

�� � 1

4
H��H

�� � V (j'j; ~�)];
(2.12)

where D�~� = (@� + ieA�)~� and D�� = (@� + iqC�)� are the covariant derivatives,

and V (j�j; j~�j)] is the potential for symmetry breaking (to be speci�ed below). The �eld

strenghts are de�ned as

F�� = @�A� � @�A�

H�� = @�C� � @�C�
(2.13)

with A� and C� being the gauge �elds. In fact, the covariant derivative D� possesses

the generalized component of the connection, � �
�� , through the de�nition

D�B� = @�B� � � �
�� B�; (2.14)

which has symmetric and non-symmetric contributions to the connection. We stress

that the non-symmetric components of D� are associated with torsion. However, by

knowing that the coupling of the gauge �eld to torsion breaks the gauge invariance we are

assuming that there are no components of � �
�� that couple with the gauge �elds [38]. This

is justi�ed by virtue of the anti-symmetry of F�� and H�� . The derivatives of the gauge

potential do not need to be covariant: F�� and H�� are genuine tensors under General

Coordinate Transformations even if they are built up with ordinary derivatives. So, no

connection, and consequently, no torsion couples to A� and C� through their associated

�eld strengths.
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This action Eq.(2.1) has a U(1)0 � U(1) symmetry, where the U(1)0 group associated

with the �-�eld, is broken and gives rise to vortices of the Nielsen-Olesen [39]

� = '(r)ei�

C� =
1
q
[P (r)� 1]���

(2.15)

parametrized in cylindrical coordinates (t; r; �; z), where r � 0 and 0 � � < 2�, with

C� the gauge �eld. The boundary conditions for the �elds '(r) and P (r) are the same as

those of ordinary cosmic strings [39]:

'(r) = � r !1
'(r) = 0 r ! 0

P (r) = 0 r!1
P (r) = 1 r! 0:

(2.16)

The other group U(1) entails the ~�-�eld which we identify with Electromagnetism,

which remains unbroken in vacuum, but broken in the string interior. The ~�-�eld in the

string core, where it acquires an expectation value, is responsible for a bosonic current

being carried by the gauge �eldA�. The only non-vanishing components of the gauge �elds

are Az(r) and At(r) and the current-carrier phase may be expressed �(z; t) = !1t� !2z.

Notwithstanding, we focus only on the magnetic case [20]. Their con�gurations are:

~� = �(r)ei�(z;t)

A� =
1
e
[A(r)� @�(z;t)

@z
]�z�:

; (2.17)

because of the rotational symmetry of the string itself. The �elds responsible for the

cosmic string superconductivity have the following boundary conditions:

d
dr
�(r) = 0 r! 0

�(r) = 0 r!1

A(r) 6= 0 r!1
A(r) = 1 r! 0
dA(r)
dr

= 0 r! 0:

(2.18)

On the other hand, the potential V ('; �) triggering the symmetry breaking can be

de�ned by:

V ('; �) =
�'
4
(j'j2 � �2)2 + f j'j2j�j2 + ��

4
j�j4 � m2

�

2
j�j2; (2.19)

where �', �� and f are coupling constants, and the boson mass being de�ned by m�.

The existence of torsion does not alter the vortex con�guration, i. e., torsion is only re-

sponsible for the appearance of further properties in the string but without destroying the

cylindrical nature of the vortex nor the current con�gurations in the string. Thus, in the

limit where the torsion gradient does vanish the string recovers its basic superconducting

character.
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3. EINSTEIN-CARTAN EQUATIONS

Let us consider a SCCS in a cylindrical coordinate system (t; r; �; z), so that r � 0

and 0 � � < 2� with the metric de�ned in these coordinates as:

ds2 = e2(
� )(�dt2 + dr2) + �2e�2 d�2 + e2 dz2 (3.20)

where 
;  and � depend only on r. We can write Einstein-Cartan equations in the

quasi-Einsteinian form:

G�
� (fg) = 8�G(2�g��@��@�� � ���� g��@��@�� + T �� ) (3.21)

where (fg) stands for Riemannian geometric objects, and ��� and T
�
� correspond to the

identity and energy-momentum tensors, respectively. We can �nd the Einstein-Cartan

equations as

Gt
t(fg) = 8�G

�
T tscs t � grr��02

�
= 8�G ~T tt (3.22)

Gr
r(fg) = 8�G

�
T rscs r + grr��02

�
= 8�G ~T rr (3.23)

G�
�(fg) = 8�G

�
T �scs � � grr��02

�
= 8�G ~T �� (3.24)

Gz
z(fg) = 8�G

�
T zscs z � grr��02

�
= 8�G ~T zz : (3.25)

where ~T �� tensor corresponds to an eneregy-momentum tensor contaning the torsion

�eld.

We have seen that the dependence upon torsion is represented, in the quasi-Einstenian

form, by the �-�eld that has an equation of motion given by Eq.(3.35) below, whose

solution shall be addressed subsequently.

The SCCS energy-momentum tensor is de�ned by:

T �(scs)� =
2p
g

�Sm
�g��

; (3.26)

which yields:

T tscs t = �
1

2

(
e2( �
)['02 + �02] +

e2 

�2
'2P 2 + e�2 �2A2+

+
e2(2 �
)

�2
(
P 0

q
)2 + e�2
(

A0

e
)2 + 2V ('; �)

)
(3.27)
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T rscs r =
1

2

(
e2( �
)['02 + �02]� e2 

�2
'2P 2 � e�2 �2A2+

+
e2( �
)

�2
(
P 0

q
)2 + e�2
(

A0

e
)2 � 2V ('; �)g

)
(3.28)

T �scs � = �
1

2

(
e2( �
)['02 + �02]� e2 

�2
'2P 2 + e�2 �2A2+

� e2( �
)

�2
(
P 0

q
)2 + e�2
(

A0

e
)2 + 2V ('; �)

)
(3.29)

T zscs z = �
1

2

(
e2( �
)['02 + �02] +

e2 

�2
'2P 2 � e�2 �2A2+

+
e2( �
)

�2
(
P 0

q
)2 � e�2
(

A0

e
)2 + 2V ('; �)

)
: (3.30)

In these expressions Eqs.(3.26-3.30) only the usual �elds of the string are present.

When addressing the solution of the Einstein-Cartan equations we shall see that the

torsion will naturally appear in the metric components. The Euler-Lagrange equations

result from variation of the Eq.(2.2) together with the conditions for the Nielsen-Olesen

[39] vortex Eqs.(2.15-2.17), and yield:

'00 +
1

r
'0 +

'P 2

r2
� '[�'('

2 � �2) + 2f�2] = 0 (3.31)

P 00 +
1

r
P 0 � q2

'2P

r2
= 0 (3.32)

�00+
1

r
�0 + �[A2 + �'('

2 + ���
2 �m2

�)] = 0 (3.33)

A00 +
1

r
A0 + e2�2A = 0; (3.34)

while the torsion wave equation for these conditions Eq.(2.11) is given by:

2g� = 0: (3.35)

Above a prime denotes di�erentiation with respect to the radial coordinate r. As they

look, these equations cannot be solved exactly for the whole spacetime. However, we can

�nd a solution by splitting space-time into two regions. One corresponding to the internal

r < r0 and another de�ning the external r > r0. The external solution is derived in an

exact treatment of the set of equations. The general solution for the SCCS will be found

in the weak-�eld approximation together with junction conditions for the external metric.
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4. THE EXTERNAL SOLUTION

Now we proceed to solve the previous set of equations for an observer outside the

SCCS stressed by torsion focusing on the external metric which sati�es the constraint

r0 � r � 1. In a torsionless space-time it is possible to �nd an exact external solution.

The external contribution to the energy-momentum of the string reads

T �
� =

1

4
(g��g��F��F��)� ��� g

��g��F��F��: (4.1)

This tensor is the external energy-momentum tensor of a SCCS with no torsion. If we

observe the asymptotic conditions Eq.(2.16) and Eq.(2.18) we see that the only �eld that

does not vanish is the A�-�eld that is responsible for carrying o� the string the e�ects of

the current on it. The torsion contribution to the external energy-momentum tensor is

given by

T �
�tors

= 2�g��@��@��� ���� g
��@��@��: (4.2)

For this con�guration the energy-momentum tensor displays the following symmetry

properties:

T t
t = �T r

r = T �
� = �T z

z : (4.3)

Then, the only one component of � in Eq.(3.35) to be solved is the r�dependent
function �(r). The solution reads:

�(r) = � ln(r=r0): (4.4)

Solution of equations (3.22)-(3.25) are found from the symmetries of the set of equa-

tions

�00 = 8�G�(T t
t + T r

r )e
2(
� ) (4.5)

(�
0)0 = 8�G�(T r
r + T �

� )e
2(
� ) (4.6)

(� 0)0 = 8�G�(T t
t + T r

r + T �
� � T z

z )e
2(
� ): (4.7)

One may check that the torsion contribution to the energy-momentum components in

the RHS of Eqs. (4.5)-(4.7) is vanishing. Hence the solutions of Eq.(4.5) and Eq.(4.6) are

given by
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� = Br (4.8)


 = m2 ln r=r0: (4.9)

To solve Eq.(4.7), and to �nd the  -solution, we can use the condition:

' = 2�02e2( �
): (4.10)

This condition is di�erent from the usual one [20] because the scalar curvature ' does

not vanish, and opposedly it is linked to the torsion-�eld �. Then, this condition has

the same form as the one for a SCCS in a scalar-tensor theory [34]. By making use of

solutions (4.4), (4.8) and (4.9) we �nd:

 = n ln (r=r0)� ln
(r=r0)2n + k

(1 + k)
: (4.11)

Thus we see that from the solutions of the SCCS (4.8-4.11) there exists a relationship

between the parameters n; � and m given by:

n2 = �2 +m2: (4.12)

With the above results, we �nd that the external metric for the SCCS takes the form:

gtt = �(r=r0)�2�2(r=r0)
2(n2�n)W 2(r); (4.13)

grr = (r=r0)
�2�2(r=r0)

2(n2�n)W 2(r); (4.14)

g�� = (B)2(r=r0)
2�2nW 2(r); (4.15)

gzz = (r=r0)
2n=W 2(r); (4.16)

with

W (r) =
[(r=r0)2n + k]

[1 + k]
: (4.17)

The external solution alone does not provide a complete description of the physical

situation. We proceed hereafter to �nd the junction conditions to the internal metric in

order to obtain an appropriate accounting for the nature of the source and its e�ects on

the surrounding space-time.
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5. SCCS SOLUTION: THE WEAK-FIELD APPROXIMATION

We have seen that it is possible to �nd an analytical external solution to Einstein-

Cartan equation but not a general solution. Now let us �nd the Einstein-Cartan solutions

for a SCCS by considering the weak-�eld approximation, where both the exterior and

interior metrics are considered as only weakly perturbed from the 
at space metric. Thus,

the space-time metric may be expanded in terms of a small parameter " about the values

g(0)�� = diag(�1; 1; 1; 1), then:

g�� = g(0)�� + "h�� ; (5.1)

while

~T�� = ~T(0)�� + " ~T(1)��: (5.2)

The ~T
(0)�� tensor corresponds to the energy-momentum tensor in a space-time with

no curvarture. However, torsion is embeeded. ~T
(1)��

represents the part of the energy-

momentum tensor containing curvature and torsion. As we can see both tensors have

dependence upon the torsion. The torsion contribution in this appraoch comes from

the non-Riemannian part of the Einstein-Cartan tensor which can be written in a quasi-

Einstenian form Eq.(3.21) with components given by Eqs.(3.22)-(3.25). Next we proceed

to de�ne some important quantities useful for the analysis to come.

The energy-momentum density of the thin SCCS is given by:

U = �2�
Z r0

0

~T t
(0)t
rdr (5.3)

which corresponds to the energy per unit length. The string tension reads:

T = �2�
Z r0

0

~T z
(0)z
rdr: (5.4)

The remaining components follows as

X = �2�
Z r0

0

~T r
(0)r
rdr (5.5)

and

Y = �2�
Z r0

0

~T �
(0)�
rdr; (5.6)

while the torsion density that satis�es Eq.(4.2) is given by

S2 = 2�r2�
02 (5.7)
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Combining these relations we can show that the energy conservation follows as:

@r ~T
r
r + ( ~T rr � ~T �� )(

@r�

�
� @r ) + @r
( ~T

r
r � ~T tt )� @r ( ~T

z
z � ~T tt ) = 0: (5.8)

In the weak-�eld approximation the expression (5.8) reduces to

r
dT r

(0)r

dr
= (T �

(0)�
� T r

(0)r
); (5.9)

where T
(0)��

represents the tensor with no torsion.

Moreover, in the weak-�eld approximation those terms contributing to torsion drop

out the expression (5.9) and the relation turns to be as usual, that is, it only happens

because the screw con�guration does not propagate due to the choice Eq.(2.1). The only

�eld deriving from torsion is related to �(r). In forthcoming contributions we will address

situations where for instance torsion stems from vector �elds with full dependence upon

the vector components. [32], a study case not occurring in the present work.

For computing the overall metric we use the Einstein-Cartan in the quasi-Einsteinian

Eq.(3.21), where it gets the form G��(fg) = 8�G ~T ��
(0)

in the weak-�eld approximation,

with the tensor ~T
(0)��

(being �rst order one in G) containing torsion. After integration

we have:Z r0

0
rdr( ~T �

(0)�
+ ~T r

(0)r
) =

Z r0

0
rdr(T �

(0)�
+ T r

(0)r
) = r20T

r

(0)r
(r0) = r20

A02(r0)

2e2
: (5.10)

We can see that torsion does not appear in this combination of �elds Eq.(5.10). We

shall clarify the meaning of this issue later on.

To �nd the internal energy-momentum tensor it is more convenient to use Cartesian

coordinates [20]. For this purpose we proceed to calculate the cross-section integrals of

~T x
(0)x

and ~T y
(0)y

so that the non-vanishing components of the energy-momentum tensor can

now be written in cartesian coordinates as

~T t
(0)t

= �1

2

8<
:'02 + �02 +

'2P 2

r2
+ �2A2 +

 
P 0

rq

!2

+

 
A0

e

!2

+ 2V + ��02

9=
; (5.11)

~T x
(0)x

= (cos � � 1

2
)['02 + �02 +

 
A0

e

!2

+ ��02] + (sin � � 1

2
)
'2P 2

r2
+
1

2

 
P 0

q

!2

� 1

2
�2A2 � 2V;

(5.12)

~T y
(0)y

= (sin � � 1

2
)['02 + �02 +

 
A0

e

!2

+ ��02] + (cos � � 1

2
)
'2P 2

r2
+
1

2

 
P 0

qr

!2

� 1

2
�2A2 � 2V

(5.13)



CBPF-NF-021/00 13

~T z
(0)z

= �1

2

8<
:'02 + �02 +

'2P 2

r2
� �2A2 +

 
P 0

rq

!2

�
 
A0

e

!2

+ 2V � ��02

9=
; ; (5.14)

This way we found:

Z
rdrd� ~T x

(0)x
=
Z
rdrd� ~T y

(0)y
= �

Z
rdr[

 
P 0

qr

!2

� �2A2 � V ] = �W: (5.15)

Using the fact that

~T r
(0)r

+ ~T �
(0)�

= ~T x
(0)x

+ ~T y
(0)y
; (5.16)

then we have:

X + Y = 2W = �r20
A02(r0)

e2
; (5.17)

which can be computed by integration of Eq.(3.34)

J =
Z r0

0
rdr�2A; J = 2�J (5.18)

where J is the current density, to obtain

W = �e
2

2
J 2: (5.19)

However, electromagnetic U(1) invariance requires the Noether current to be written

as

J � = �2(r� + eA�); (5.20)

which is conserved in Einstein-Cartan theory. In this form J is the integrated norm of

the conserved current. With these internal considerations we found the string structure.

We can assume that the string is in�nitely thin so that its stress-energy tensor is given

by

~T ��string = diag[U;�W;�W;�T ]�(x)�(y): (5.21)

It worths to note that de�nitions for both string energy U and tension T , as in equa-

tions (5.3)-(5.4), already incorporate information on the torsion. However, in cartesian

coordinates the cross terms only exhibit dependence on the current for the string internal

energy-momentum tensor. Notwithstanding, this tensor by itself is not conserved, we still

need to take into consideration the string external �elds, which will entail contributions

from both current and torsion.
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By virtue of the presence of the external current we use the form Eq.(5.21) for the

string energy-momentum tensor as well as Eq.(4.1) and Eq.(4.2) for the external energy-

momentum tensor in linearized solution to zeroth order in G. Thus the nonvanishing

external components of Maxwell and torsion tensors are

T
(0)tt

=
(J2 + �S2)

2�r2
(5.22)

T
(0)zz

=
(J2 � �S2)

2�r2
(5.23)

T
(0)ij =

J2

2�r4
(2xixj � r2�ij) (5.24)

where "i; j" denotes Cartesian components in the transverse plane (x,y).

As we can check the solution for the �field, in �rst order in G, is the same that

is found in the external case given by Eq.(4.4) and have the same form of the external

solution to F��, i. e., logarithmic divergent in the sense of distributions

r2ln(r=r0) = 2��(x)�(y)

r2(ln(r=r0))2 = 2=r2

r2(r2@i@jln(r=r0)) = 4@i@jln(r=r0):

(5.25)

The energy-momentum tensor of the string source ~T(0)��, in cartesian coordinates,

possesses no curvature, which is the well-known result [20,19,34], but does have torsion

which produces the following energy-momentun tensor

~T(0)tt = U�(x)�(y) +
(J2 + �S2)

4�
r2

�
ln
r

r0

�2

; (5.26)

~T(0)zz = �T�(x)�(y)+ (J2 � �S2)

4�
r2

�
ln
r

r0

�2

; (5.27)

~T(0)ij = J2�ij�(x)�(y)� J2

2�
@i@jln(r=r0); (5.28)

where the trace is given by

~T(0) = �(U + T � J2)�(x)�(y)� �S2

2�
r2

�
ln
r

r0

�2

: (5.29)

Now let us �nd the matching conditions to the external solution. For this purpose we

are using the linearized Einstein-Cartan equation in the form
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r2h�� = �16�G( ~T(0)�� � 1

2
g
(0)��

~T(0)): (5.30)

The internal solution to equation (5.30) with source yields:

htt = �4G[J2(ln(r=r0))
2 + (U � T + J2) ln(r=r0)] (5.31)

hzz = �4G[J2 ln(r=r0))
2 + (U � T � J2) ln(r=r0)] (5.32)

hij = �2GJ2r2@i@j ln(r=r0)� 4G�ij

"�
U + T + J2) ln(r=r0)

�
+ S2

�
ln
r

r0

�2
#
: (5.33)

This corresponds to the solution in cartesian coordinates. We note that torsion S

appears explicitly in the transverse components of the metric. To analyse the solution

for the junction condition to the external metric let us transform it back into cylindrical

coordinates.

6. MATCHING CONDITIONS

It is possible to �nd the matching conditions [41] to the external solution. In the

case of a space-time with torsion we can �nd the junction conditions using the fact that

[f���g](+)
r=r0

= [f���g](�)
r=r0

, and the metricity condition [r�g�� ]+r=r0 = [r�g�� ]�r=r0 = 0, to �nd

the continuity conditions

[g�� ](�)
r=r0

= [g��](+)
r=r0

;

[@g��
@x�

](+)
r=r0

+ 2[g��K
�

(��)]
(+)
r=r0

= [@g��
@x�

](�)
r=r0

+ 2[g��K
�

(��)]
(�)
r=r0

(6.1)

Where (�) represents the internal region and (+) corresponds the external region

around r = r0. In analysing the junction conditions we notice that the contortion contri-

butions do not appear neither in the internal nor in the external regions [41,42].

To match our solution with the external metric we used the metric in cylindrical

coordinates, which is obtained from the coordinate transformations:

r2@i@jln(r=r0)dx
idxj = r2d�2 � dr2; (6.2)

to get

gtt = �f1 + 4G[J2(ln(r=r0))
2 + (U � T + J2) ln(r=r0)]g (6.3)

gzz = f1� 4G[J2(ln(r=r0))
2 + (U � T � J2) ln(r=r0)]g (6.4)
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grr = f1 + 2GJ2 � 4G

"
(U + T + J2) ln(r=r0) + S2

�
ln
r

r0

�2
#
g (6.5)

g�� = r2f1 � 2GJ2 � 4G

"
(U + T + J2) ln(r=r0) + S2

�
ln
r

r0

�2
#
g: (6.6)

Unfortunately, for this goal we cannot use the metric Eqs.(6.3-6.6) as it stands. There-

fore, we have to change the radial coordinate to �, using the constraint (symmetry)

g�� = �gtt, to have, to �rst order in G,

� = r[1 + a1 � a2 ln(r=r0)� a3(ln(r=r0)
2]: (6.7)

In this case we have a1 = G(4(U��S2)+J2), a2 = 4G(U��S2) and a3 = 2G(J2+�S2),

which corresponds to the magnetic con�guration of the string �elds [20]. The transformed

metric yields:

gtt = �f1 + 4G[J2(ln(�=r0))
2 + (U � T + J2) ln(�=r0)]g = �g�� (6.8)

gzz = f1� 4G[(J2 + �S2)(ln(�=r0))
2 + (U � T + J2) ln(�=r0)]g (6.9)

g�� = �2f1 � 8G(U � �S2 +
J2

2
) + 4G(U � T � J2 � �S2) ln(�=r0)] + 4G(J2 + S2)(ln(�=r0))

2g:
(6.10)

Now we can �nd the external parameters B, n and m as functions of the source

structure. If we consider the junction of the equation (6.1), after the linearization, and

using the limit jn ln(�=r0)j << 1, we have:

"
dgzz
d�

#(+)

� 2

"
� 4n2k

�(1 + k)2
ln(�=r0)� n

�

 
1 � k

1 + k

!#(+)

; (6.11)

and the internal solution Eq.(6.9) has the derivative:

"
dgzz
d�

#(�)

�
"
�4G

�
[2J2 ln(�=r0) + (U � T � J2)]

#(�)

: (6.12)

At point � = r0 we �nd the junction condition:

n

 
1 � k
1 + k

!
= 2G

�
U � T � J2

�
: (6.13)

Using now an analogous procedure to g�� considering the external metric Eq.(4.15)

and internal metric Eq.(6.10) we have �2 = (1 � b)�2, with
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b = 8GfU + J2(
1

2
+ ln(�=r0))� �S2(1� ln(�=r0))g: (6.14)

Thus, at � = r0 and �(0) = 1 we �nd that the expression for B as a function of the

source is given by

B2 = 1 � 8G

 
U � �S2 +

J2

2

!
: (6.15)

If we now proceed to make the junction of component gtt, from our previous results,

we �nd the expression for m being given by

m2 = 4GJ2: (6.16)

and by de�nition Eq.(5.7) we have 2��2 = S2. This expression completes the deriva-

tion of the full metric components.

7. BRIEF DISCUSSION

In analysing the metric of the SCCS with torsion we note that the contribution of

torsion appears in the ��-metric component, which is important in astrophysical applica-

tions such as gravitational lensing studies because this component is linked to the de�cit

angle that should be written as a function of the parameter b Eq.(6.14). However, as it

is apparent from Eq.(6.14) that the torsion introduces a reductional factor on the overall

magnitude of the de�cit angle. This would imply that the apparent change in position of

double images from a single lensed source, for instance, or else the CMBR temperature

angular scale of variation, could be reduced in this context when compared to the stan-

dard estimates for ordinary and superconducting string endowing no torsion. This topic

will be discuss better later on where we make some applications to the COBE data.

Next we present two preliminary applications of the formalism here introduced assum-

ing that such a kind of torsioned SCCSs really exist. Firstly, we focus on the issue of the

deviation of a particle moving near the string, and later on we attempt to perform a com-

parative analysis of the e�ects this sort of string may produce on the CMBR, supposed

to interact with it as discussed in this paper, to the observations performed by the COBE

satellite.
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8. PARTICLE DEFLECTION NEAR A SCREWED SCCS

We know that when the string possesses current there appear gravitational forces. We

shall consider the e�ect that torsion plays on the gravitational force generated by SCCS

on a particle moving around the defect, initially with no charge, and endowed with quadri-

velocity u� = dx�

d�
� (1;v). In the weak �eld approach, as we have seen (see Eq.(2.5)),

the connection can be written as:

� �
�� �

1

2
g��
(0)
(@�h�� + @�h�� � @�h��) + g��

(0)
K���: (8.1)

The general expression for the geodesic equation including torsion reads:

du�

d�
+ ��(��)u

�u� = 0; (8.2)

where ��(��) is the �� symmetric part of the connection, which can be written in terms

of the torsion as:

��(��) =
n
�
��

o
+ S�(��): (8.3)

Thus, we consider the particle speed jvj � 1, condition under which the geodesic

equation becomes:

d2xi

d� 2
+ �itt = 0; (8.4)

where i is the spatial coordinate, leading to

d2ur

d� 2
� grr

(0)

1

2
(@rhtt + g

(0)tt

S

�
) = 0: (8.5)

In this manner the gravitational force of the string (per unit length) gets the form

FG =
1

2
(rhtt � S

�
); (8.6)

with gtt = �1� htt in Eq.(6.8). Thus we identify

htt = �4G[J2(ln(�=r0))
2 + (U � T + J2)ln(�=r0)] (8.7)

We also note that the gravitational force is related to the htt component that has no

explicit dependence on torsion. From which the expression for the force can be explicitly

written as

FG = �1

�

"
2GJ2

 
1 +

(U � T )
J2

+ 2 ln(�=r0)

!
+ S

#
: (8.8)
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A swift perusal of the last equation allows us to understand the essential role torsion

plays in the context of the present formalism. As we show below this extra-term encloses

a magni�cation of the total force a particle close to the SCCS will undergo.

In the limit case where J2 = 0 and torsion S2 vanish it is easy to see that the string

turns to be an ordinary cosmic string if we consider (U=T), that is, we work with a string

with no structure no gravitational �eld [22]. In this way, a test particle localized in the

external region undergoes no gravitational force at all. However, if torsion is present, even

in the case the string has no current, an attractive gravitational force appears. In the

context of the SCCS torsion acts as a enhancer of the force a test particle feels outside

the string. In our summary we discuss a bit further potential applications of this new

result to astrophysics and cosmology.

9. ANGULAR DEFICIT AND COBE MAP

Recently Palle [43] and Garcia de Andrade [44] have shown that the COBE data are

compatible with the Einstein-Cartan gravity. In this section, we analyse the e�ects of a

screwed superconducting cosmic string on the primordial microwave background radiation

using the COBE data. To this end, we need to compute the angular de�cit introduced by

torsion. The hidden idea here is that the cosmic large-scale density 
uctuations could have

had origin during the appearance of Cosmic String defects or due to interaction with them

during the late stages of the Universe's evolution. The torsion would modify properties of

light and radiation interacting with a cosmic string pervaded by screw dislocations in such

a way that the density 
uctuations induced might match those ones measured by COBE

[4]. The DMR (Di�erential Microwave Radiometer) instrument of COBE has provided

temperature sky maps leading to the rms sky variation where the beam separation in the

COBE experiment is �1 � �2 = 60o .

Each string that e�ects the photon beam induces a temperature variation [45,46], in

largeness order, as:

�T

T
� � � 10�6(COBE) (9.1)

where � is the angular de�cit. If we consider the metric Eqs.(6.8)-(6.10), projected

into the space-time perpendicular to the string, i. e., dz = 0, then we have:

ds2? = (1 � htt)[�dt2 + dr2 + (1 � b)r2d�2]; (9.2)

with htt given by Eq.(8.7), and b calculated from junction conditions Eq.(6.14). Then,

in �rst order in G, the de�cit angle gets:
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� = b� = 8�GfU + J2(
1

2
+ ln(�=r0))� �S2(1� ln(�=r0))g: (9.3)

We can interpret this angular de�cit � as being due to three di�erent contributions: �s

to an ordinary cosmic string, �J to the current and �
tors

to the torsion �eld, respectively.

In the case of the ordinary cosmic string the angular de�cit is given by �s = 8�GU , which

in this work corresponds to the case where both current J and torsion S vanish. In this

situation [47], it is demonstrated that cosmic string models are more consistent with the

COBE data [48] for a wider range of cosmological parameters than the standard CDM

models, and the numerical simulations have con�rmed these preditions [49].

When the cosmic string carries current, we have used results of Ref. [50] for the current,

that is a con�guration with the maximum current J � �, for � = 1016GeV as well-known

for grand uni�cation theories. In such a case, we found �J = 8�GJ2 � 10�6 or less what

is compatible with COBE date. As it is easy to see we neglected the logarithmic term

because we consider the experiment is being performed close to the string surroundings.

However, in the situation where the cosmic string is stressed by torsion the issue is

more di�cult because we have no idea about the energy density torsion put into the

Universe via cosmic strings. Thereby, if a cosmic string actually formed and it is a good

mechanism to generate density 
uctuations that can be measured by COBE, then we

can estimate the density of torsion the string induces in the cosmic background. To this

purpose we choose the value � � 1038GeV �2 � 1=G [36], in this case we have the torsion

energy density S � 10�3 with �tors = 8�G�S2. As one can check by substituting in the

previous section, the inferred value for S enlarges the intensity of the net force underwent

by a test particle encircling the SCCS.

10. SUMMARY

Here we have examined the issue of a superconducting Abelian gauge cosmic string

produced during these early transitions and endowed with torsion using the Einstein-

Cartan theory. Although the relation of the torsion vector S� with the scalar �elds �

allows one to compare our approach for SCCSs for instance to the one in scalar tensor

theories of gravity [33,34], our result appears to di�er considerably from scalar-tensor

SCCS studies [40,34]. This is so, essentially, because in this approach we are considering

the torsion in analogy with a �eld inside the string, an integral part of the SCCS structure.

It is possible for torsion to have had a physically relevant role during the early stages

of the Universe's evolution. In this lines, torsion �elds may be potential sources of dy-
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namical stresses which, when coupled to other fundamental �elds (i. e., the gravitational

�eld), might have performed an important action during the phase transitions leading

to formation of topological defects, such as the SCCSs here we focused on. It therefore

seems a crucial issue to investigate basic models and scenarios involving cosmic defects

within the torsion context. We showed that in this picture there exists the possibility for

SCCSs to e�ect the spectrum of primordial density perturbations, whose imprints could

be seen in the relic cosmic microwave background radiation as observed by COBE.

We also showed that torsion has a non-negligible contribution to the geodesic equation

obtained from the contortion term. From a physical point of view, this contribution is

responsible for the appearance of a stronger attractive force acting on a test-particle.

Using the COBE data we found that the torsion density contribution S is the order of

10�3. If we compute the force strength, Eq.(8.8), in association with the above estimative

and data coming from COBE observations, we can show that the torsion contribution to

this force is 103 times bigger than the corresponding to a current-carrying string compared

to the one induced by the gravitational interaction itself.

This peculiar fact may have meaningful astrophysical and cosmological e�ects. Let

us imagine for while a compact object (CO): a black hole or an exotic cosmic relic such

as a boson, strange o mirror star, for instance, orbiting around the SCCS. Because the

acceleration induced on the radial component of its orbital motion is about one thou-

sand stronger than in ordinary cases, then we can expect the changes it provokes in the

quadrupole moment of the system (SCCS + CO) to be enhanced by a large factor so that

the gravitational wave (GW) signal expected from the CO inspiraling onto the SCCS could

be above the lower strain sensitivity threshold of planned LIGO, VIRGO, GEO-600, etc.

interferometric GW observatories, for distances even as the Hubble radius. Moreover,

this very strong force may also turn the SCCS a potential source of hard X-ray and 
-ray

transient emissions. These radiations can be emitted by matter (primordial gas and/or

dust clouds, or something else) accreting onto the SCCS as the material gets closer and

becomes heated due to the powerful tidal stripping. All these issues we plan to address

in a forthcoming work [51].

Finally, we advance that other interesting torsion e�ects relevant to cosmological prob-

lems such as the Sachs-Wolfe e�ect in space-time with torsion and production multiple

images by intervening screwed SCCS lying at cosmological distances will be addressed in

a work in preparation [32]. Superconducting cosmic strings with torsion may also serve

to place an upper limit on the space-time torsion itself, that is, on the degree of spin of

our Universe.
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