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Casimir Energy of Massless Fermions in the Slab-bag
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Abstract

The zero-point energy of a massless fermion �eld in the interior of two parallel plates

in a D-dimensional space-time at zero temperature is calculated. In order to regularize

the model, a mix between dimensional and zeta-function regularization procedure is used

and it is found that the regularized zero-point energy density is �nite for any number of

space-time dimensions. We present a general expression for the Casimir energy for the

fermionic �eld in such a situation.
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Quantum Chromodynamics (QCD) is a non-abelian gauge �eld theory that describes

the quark dynamics. The non-observation of isolated quarks, i.e., the fact that only color-

less states are physically realized, introduced the concept of con�nement. The mechanism

by which this occurs is still unknown. The bag model is an attempt to conciliate the suc-

cess of the quark model with con�nement and its key point is the approximation that the

bag is a classical spherical cavity with quarks and gluons con�ned. In a �rst approxima-

tion, the quarks and gluons move freely inside the bag, but are absolutely con�ned to its

interior. Since any quantum �eld submitted to classical boundary conditions gives rise to

the Casimir e�ect [1] , we expect that con�nement will give rise to the Casimir energy of

the gluon and quark �elds [2]. Over the past twenty �ve years many authors calculated

the renormalized zero-point energy of di�erent quantum �elds in the bag model. The

renormalized vacuum energy due to the scalar �eld in the bag model was presented by

Bender and Hays [3] and more recently by Romeo [4] and also Bordag et al. [5]. The

calculation for the case of the gluon �eld was presented by Milton [2] and also Romeo [6]

and for the fermion �eld Milton [2] and also Bender and Hays [3] obtained the Casimir

energy in the bag model.

In the renormalization problem, where we have to extract physically �nite answers,

two di�erent physical situations must be studied. The �rst one is the case where the

surface whereon the �elds satisfy some boundary conditions divides the manifold into two

parts, and the �elds are present in both regions. The second one - the bag model case

- is the case where the �elds are con�ned to the interior of some region, i.e., there is no

�eld outside [7]. In this second case, since there are no exterior modes, if we use a cut-o�

or the Green's function method to regularize the zero-point energy, divergencies appear

and we will be able to absorb them by means of a renormalization procedure only if we

introduce ad hoc contact terms. There are many attempts to solve this problem, but to
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our knowledge, this question is still open in the literature. Using the Weyl theorem [8] it

it not di�cult to show that the asymptotic eigenfrequency distribution of any quantum

�eld con�ned in a �nite volume will present divergent terms proportional to geometric

parameters of the region to which the �eld is con�ned. To keep in mind the problem, let

us consider it for the case of the a scalar �eld. (Units in which �h = c = 1 will be used

throughout this letter. The metric tensor is taken to be ��� = diag(1;�1; :::;�1):)

Let us use the mode sum energy hEimode
ren as the total renormalized energy de�ned by:

hEimode
ren =

Z
1

0

d!
1

2
! [N(!) �N0(!)] ; (1)

where 1
2! is the zero-point energy of each mode, N(!)d! is the number of modes with

frequencies between ! and ! + d! in the presence of boundaries and N0(!)d! is the

corresponding quantity evaluated in empty space. If u!(~x) are the eigenfunctions of r2

with eigenvalues �!2, it is well known that the asymptotic distribution of eigenfunctions

for large ! is given by

N(!) =
V !2

2�
� S!

8�
+

1

2�2

Z
@M

�dS + 0(!�2) (2)

for Neumann and Dirichlet boundary conditions if the sign is positive or negative, re-

spectively. V is the three-volume of M , S is the surface area of @M and � is the trace

of the extrinsic curvature. Since N0(!) = V !2

2� , for scalar �elds hEimode
ren diverges like

�S
16�

R
1

0 !2d!. For electromagnetic and spinor �elds a similar conclusion can be obtained.

Baacke and Igarashi [9] investigate the structure of the divergencies of the regular-

ized zero-point energy of massive fermions con�ned in a spherical cavity, assuming the

condition of zero current across the surface. Considering a massless fermionic �eld inside

and outside a spherical shell, Milton [2] showed that there was a cancellation of these

divergencies. It is clear that if we consider fermions only in the interior of the shell, it



{ 3 { CBPF-NF-020/99

is necessary to introduce contact terms to deal with the divergencies of the regularized

zero-point energy. Thus a question arises: using an analytical regularization procedure,

is it possible to present a geometric con�guration with con�ned �elds where the contact

terms are not necessary?

Our purpose is to compute the zero-point energy due to a free massless fermionic �eld

con�ned in the interior of two parallel plates in any number of space-time dimensions. The

same idea was used by Chodos and Thorn [7], where the Dirac �eld is con�ned between two

parallel plates separated by a distance L in the z direction - a slab. We treat the number

of dimensions as a continuous parameter and to regularize the zero-point energy we will

make use of dimensional regularization in the continuous variables (related to the sides of

the box with in�nite length) and then we analytically extend the Hurwitz zeta-function

that appears after dimensional regularization. As a consequence, we have been able to

prove that the regularized zero-point energy density is �nite in any number of space-time

dimensions. In other words, it is not necessary to introduce counterterms in the bare

lagrangian, i.e., we have a situation with regularization without renormalization. Some

comments are in order. The bag boundary conditions for spin-half �elds in rectangular

cavities, that is, the assumption that the �eld exists only inside some region, can be

implemented only if there is solely one direction of �nite extension, because the presence

of the corners prevents solutions to the massless Dirac equation for higher-dimensional

hypercubes [10]. The situation for massive spinor �elds is even worse, in that there is not

a solution even in the presence of only one direction of �nite size [11].

Consider an ultrastatic D-dimensional 
at manifold. The zero-point energy of the

Dirac �eld is: D
0jĤ j0

E
= �c(D)

Z
ddp

(2�)d
!p; (3)
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where c(D) is the number of di�erent spin states in a D-dimensional space-time. c(D) =

2
D�2
2 , for D even, and c(D) = 2

D�3
2 for odd D. In the above,

!2
p = p21 + p22 + :::+ p2d�1 + p2d; (4)

are the eigenfrequencies of the orthonormal modes, basis in the space of solutions of the

free Dirac equation, i.e., these modes are positive frequency with respect to a timelike

Killing vector @t.

We now turn to the calculation of the zero-point energy of the Dirac �eld in the D-

dimensional slab con�guration, that is, in the presence of two parallel plates placed in the

d-direction, at positions xd = 0 and xd = L. The boundary condition that we will impose

is that there is no particle current through the walls, and consequently we will call this

con�guration the slab-bag. In Lorentz covariant form we have:

��	
�	 = 0; (5)

where �� = (0; ~�), ~� being the unit spatial vector normal to the surface and directed to

the interior of the slab. The boundary conditions are satis�ed only if the allowed values

for the momentum in the d-direction are given by [12]

pd = pd(n;L) = (n+
1

2
)
�

L
; n = 0; 1; 2; 3; ::: (6)

The zero-point energy of the Dirac �eld in the slab-bag con�guration, taking into

account Eqs. (4) and (6), and also noting that the integrations over the momenta in Eq.

(3) for the present con�guration correspond to d� 1 integrations and one summation, is

given by:

D
0jĤj0

E
= �c(D)

d�1Y
i=1

�
Li

2�

� 1Z
0

dp1

1Z
0

dp2 :::

1Z
0

dpd�1

1X
n=0

�
p21 + :::+ p2d(n;L)

� 1
2 : (7)



{ 5 { CBPF-NF-020/99

De�ning the total zero-point energy per unit area of the plates, that is, the vacuum energy

density:

"D =

D
0jĤj0

E
Q
Li

= "d+1(L); (8)

we arrive at:

"D(L) = � c(D)

(2�)D�2

1X
n=0

Z
1

0

dD�2p
�
p21 + :::+ p2d(n;L)

�1=2
: (9)

The expression above is clearly divergent, both in the integration and in the summa-

tion variables. To regularize it we will use dimensional regularization in the continuous

variables and then analytically extend the Hurwitz zeta-function that will appear after

dimensional regularization. Using the well-known result of dimensional regularization,

i.e.: Z
ddu

(u2 + a2)s
=

�
d
2

�(s)
�

�
s� d

2

�
1

(a2)s�
d
2

; (10)

it is easy to show that the vacuum energy per unit area is given by:

"D (L) =
c(D)�(D�1)=2

2D�1LD�1
�

�
1 �D

2

� 1X
n=0

(n+
1

2
)D�1: (11)

Next we can de�ne f(D) = c(D)�(D�1)=2

2D�1 , and note that:

�(z; q) =
1X
n=0

1

(n + q)z
; q 6= 0;�1;�2;�3; ::: (12)

is the Hurwitz zeta-function, which is analytic for Re(z) > 1, in terms of which we can

write the vacuum energy density of the massless Dirac �eld in the slab-bag con�guration

as:

"D(L) =
f(D)

LD�1
�

�
1�D

2

�
�

�
1 �D;

1

2

�
: (13)

The two cases, i.e., D even and D odd, are treated separately. We �rst examine the case

of even-D. For even-D, the gamma-function presents no poles, and using the principle of
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analytic continuation one can write that:

�(�m; v) =
�Bm+1(v)

m+ 1
; m = 1; 2; 3; ::: (14)

and also the relation between the Bernoulli polynomials and Bernoulli numbers: BD(
1
2
) =

�(1 � 21�D)BD, to obtain the vacuum energy density:

"D(L) = �f(D)

LD�1
�

�
1�D

2

�
(21�D � 1)

BD

D
for D even: (15)

As a conclusion, Eq. (15) shows us that the regularized zero-point energy per unit area

of massless fermions in an even-dimensional slab-bag is free of divergencies. In particular,

calculating the above expression for D = 4, one �nds the value:

"4(L) = � 7�2

2880L3
; (16)

in accordance with [13].

In the case where D is odd, one begins with the duplication formula for the gamma

functions:

�
�
�s

2

�
=

p
� 2s+1

�
�
1�s
2

� �(�s); (17)

then de�nes

g(D) =
f(D)

p
� 2D

�
�
2�D
2

� ; (18)

in terms of which the vacuum energy density now reads:

"D(L) =
g(D)

LD�1
�(1�D) �

�
1 �D;

1

2

�
: (19)

Let us now show that the zeta-function times the gamma-function in the equation above

is a meromorphic function in the whole complex plane. First we write the integral repre-

sentation of the Hurwitz zeta-function:

�(z; q) =
1

�(z)

Z
1

0

dt tz�1
et(1�q)

et � 1
; (20)
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and we separate the range of integration as: [0; 1) + [1;1), in order to take advantage of

the expansion:

text

et � 1
=

1X
n=0

Bn(x)

n!
tn; 0 < jtj < 2�: (21)

The integral in the second range, i.e., [1;1), is a regular function of z, because the

integrand diverges for small t only, and it will be denoted by

h1(z; q) =

Z
1

1

dt tz�1
et(1�q)

et � 1
: (22)

Integrating term by term in the �rst range, and using Eq. (22), we have that:

�(z; q) =
1

�(z)

"
h1(z; q) +

1X
n=0

(�1)nBn(q)

n!

1

z + n� 1

#
; (23)

where we have used that Bn(1� q) = (�1)nBn(q). Gathering everything, we rewrite Eq.

(19) as:

"D(L) =
g(D)

LD�1

"
h1

�
1�D;

1

2

�
+

1X
n=0

(�1)n (21�n � 1)Bn

n!

1

n�D

#
; (24)

where we used again that Bn(
1
2) = �(1 � 21�n)Bn. We see from Eq. (24) that there is a

pole in the summation for n = D, with residue:

Res ["D(L)] =
g(D)

LD�1

(�1)D(21�D � 1)BD

D!
: (25)

But note that for odd-D, D 6= 1, BD = 0, and the residue of the vacuum energy density

in the odd-dimensional case vanishes. Although B1 = �1
2, Eq. (25) also states that the

residue vanishes for D = 1. Eq. (24) is general, and it is valid for the even-dimensional

case as well. Although there also appears a pole for even-D, it is cancelled by the gamma

function in the denominator of Eq. (18), and Eq. (15) is the result, as can easily be

checked. In this way we have proven our assertion that the regularized zero-point energy

of massless fermions in the slab-bag is free of divergencies.
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From Eq. (13) one could have taken another route and use that �(s; 12) = (2s� 1)�(s)

and the re
ection formula:

�
�s
2

�
�(s) = �s�1=2 �

�
1 � s

2

�
�(1� s); (26)

valid for all s, to �nd that:

"D(L) = �c(D) (1 � 21�D)

2D�1�D=2LD�1
�

�
D

2

�
�(D): (27)

The appearance of possible divergent terms becomes hidden automatically when one uses

the re
ection formula for zeta functions. The result above is �nite for all positive D,

and is always negative, as shown in Fig. 1. (In the plot of the energy we left aside

the spin degeneracy factor c(D)). It tends to �1 either for D ! 0 and for D ! 1,

taking on the maximum value of �4:9�10�6 at D � 26:1. For D = 4 result Eq. (16) is of

course obtained, and this value is 7=2 times the Casimir energy for a scalar �eld satisfying

Dirichlet boundary conditions on two parallel plates. The Casimir energy for the scalar

�eld with Dirichlet boundary conditions as a function of the number of dimensions was

calculated in Ref. [10]; it is also always negative and the maximum occurs exactly at the

same value of D.

The pressure that the vacuum exerts on the plates is also negative, which means that

it acts tending to approximate them, and it is given by:

� @

@L
"D(L) = �c(D) (D � 1)(1� 21�D)

2D�1�D=2LD
�

�
D

2

�
�(D): (28)

In conclusion, in this letter we discuss open questions concerning the divergent pieces

of the regularized zero-point energy of a fermionic �eld con�ned in a �nite volume. We

show that the regularized zero-point energy of massless fermions in the interior of two

parallel plates, the slab-bag, is �nite for any number of space-time dimensions. For such,

we made use of dimensional regularization in the continuous momenta, related with the
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d�1 transversal directions of in�nite length of the bag, and then we analytically extended

the Hurwitz zeta-function thereby obtained. For even-dimensional space-times the zero-

point energy is �nite, without need of renormalization; in the odd-D case it is shown that

the residue of the polar part vanishes identically and, therefore, the usual subtraction

of the polar part of a divergent quantity is also not necessary. Also using an analytic

continuation procedure, Dolan and Nash [14] compute the Casimir energy of massless

spin zero �elds on spheres SN and �nd that, for the case of conformal coupling, the

Casimir energy vanishes for even-dimensional spheres, presenting no divergencies, and for

odd-dimensional spheres the residue of the pole which appears is shown to vanish giving

a �nite value for the Casimir energy. Self-interacting fermions at �nite temperature and

density was studied by A~na~nos et al. in [15]. These authors investigate, at the 1
N
(large

N) approximation, the behavior of the e�ective potential of the Gross-Neveu model. Still

using a mix between zeta and dimensional regularization procedures, they found that the

regularized e�ective potential is �nite for odd-dimensional space-times. In the case of the

Yukawa model, the same kind of behavior of the regularized e�ective potential was found

[16].

One might be tempted to suppose that these results are related with the work of Svaiter

and Svaiter [17]. These authors proved that the zeta function method is equivalent to

the cut-o� method with the subtraction of the polar terms for a neutral massless scalar

�eld. The basic idea employed by Casimir [1], who introduced the cut-o� method, is that

although the zero-point energy is divergent, changes in the con�guration lead to a �nite

shift in the total energy. In the exponential cut-o� method, in order to evaluate this

shift, the total energy is regularized before the subtraction from the energy of a reference

con�guration. This total energy is obtained by adding the regularized zero-point energy

of the �eld inside and outside the cavity. This approach seems very natural if we are
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dealing with a system in which there is �eld inside and outside the cavity. However, in

the bag con�guration, where the �eld is supposed to exist only inside some region, this is

not a natural approach and we follow the conclusion of the authors of Ref. [17] that the

Casimir energy evaluated using the analytic extension of the zeta function throws away

these divergent terms. A natural extension of this work is to calculate the regularized zero-

point energy for the fermion �eld for di�erent con�ning geometries, such as the cylinder

and the sphere, still using an analytical regularization procedure. Now, whether or not the

analytical regularization procedure throws away the polar part of the regularized vacuum

energy deserves further investigation.
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Figure 1: The Casimir energy of the spinor �eld, Eq. (27), for low D, aside the spin multiplicity

factor c(D): e(D) = �D(L)L
D�1

c(D) .


