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Abstract

Periodic orbits that participate in a bifurcation contribute collectively to the periodic orbit

sum for the quantum density of states. The contributions of multiple windings of isolated

orbits are easily obtained from powers of the stability matrix, but it is generally hard to

compose the actions that determine the contributions of higher windings of a bifurcation.

We here derive an approximate relation between the amplitude of the contributions of

di�erent windings for the saddle-centre bifurcation and the period doubling bifurcation.
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The periodic orbit sum is one of the main tools for the study of spectral 
uctuations

in quantum systems. Semiclassical periodic orbit approximations have been derived for

the limitting cases of chaotic or integrable systems where the orbits are either isolated or

they appear in continuous families [1,2]. Generic systems are harder to treat because of

bifurcations in which periodic orbits coalesce as a parameter is varied. In the case of a

single quantum map, one may hope to avoid bifurcations of short-period orbits, but for

Hamiltonian systems the energy itself is such a parameter, leading to complex sequences of

bifurcations. The joint contribution to the periodic orbit sum of orbits which participate

in a bifurcation was �rst derived by Ozorio de Almeida and Hannay [3], and subsequently

re�ned by Schomerus and Sieber [4].

In spite of these advances, there is no doubt that the collective contribution of bi-

furcating orbits is much harder to evaluate than those of orbits whose actions di�er by

considerably more than �h and can thus be considered to be isolated. This is specially

true in the case of higher windings, i.e. multiple iterations of the Poincar�e map transverse

to the periodic orbits: given the linearization of the map around its isolated �xed point

(where the periodic orbit intersects the Poincar�e section),
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the amplitude Am of the contribution of the m'th winding of the periodic orbit is easily

determined since
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Thus, there is no further e�ort of retrieving classical information, once the �rst iteration

is dealt with. As the phase of the contribution is merely multiplied by m, it also becomes

possible to sum over a sequence of windings of a single orbit.

In contrast, the contribution of orbits undergoing a bifurcation has amplitude
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where Sm(P;Q0; �) is the normal form for the particular bifurcation in the classi�cation

of Meyer [5] and Bruno [6] and the Poincar�e map is implicitly de�ned by

Q0 =
@Sm

@P 0
; P =

@Sm

@Q
: (4)

Beyond the unavoidable di�culty that the map cannot be reduced to its linear approxi-

mation, we need to work out the relation of Sm to S1 for each winding. It is important

to note that here `1' refers to the �rst winding of the Poincar�e map at which the bi-

furcation manifests itself, which may occur after several windings of the central periodic

orbit. Because all windings have a Poincar�e map with the same �xed points (for a �xed

parameter �), they will be described by the same form of catastrophe integral (3), though

with di�erent amplitudes and control variables.

The purpose of this letter is to relate the contributions of the various windings for

two fundamental bifurcations. Whereas isolated orbits can be described by quadratic

generating functions,

S(P;Q0) = PQ0 � �Q0 +Q03 + P 2; (5)

is the normal form for the saddle-centre bifurcation and

S(P;Q0) = PQ0 + �Q02 +Q04 + P 2; (6)

for the period-doubling bifurcation. In the �rst case, a stable and an unstable orbit coalesce

and disappear as � ! 0; in the second, a stable orbit of twice the period arises as the

central orbit looses its stability.

To evaluate further iterations, we derive the explicit maps corresponding to (5) and

(6). In the case of the saddle-centre bifurcation,

Q0 = Q� 2p; P 0 = P � �+ 3Q02: (7)

For a small bifurcation parameter �, the �xed points lie close to the origin. Thus, expand-

ing to the lowest order in Q, P and �, we obtain the m'th iteration as
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Q(m) � Q� 2mP; and P (m) � P �m�+ 3m(Q(m))2: (8)

The corresponding generating function is hence

S
�
P;Q(m)

�
� PQ(m) �m�Q(m) +m(Q(m))3 +mP 2: (9)

The corresponding deduction for the period-doubling bifurcation leads to the map

Q(m) � Q� 2mP; P (m) � P + 2m�Q(m) + 4m(Q(m))3; (10)

generated by

S
�
P;Q(m)

�
� PQ(m) +m�(Q(m))2 +m(Q(m))4 +mP 2: (11)

We can now obtain the approximate amplitude for each winding by inserting (9) or (11)

into (3). However, the picture becomes clearer if instead we use the position generating

functions
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(for the period-doubling bifurcation) in the single integral
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Though this form fails for the identity transformation, it need not have been discarded in

Ref. [3]. Instead, it results from the evaluation of the Gaussian integral in P in (3), since

Sm(Q;Q) is just the Legendre transform of Sm(P;Q). The result is that the amplitudes

now depend on single Airy [7] and Pearcey integrals [8,9] where the phase is merely

multiplied by the winding number m. Note, however, that the amplitude is divided by

m
1

2 , indeed
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Equation (15) is the main result of this letter. The contributions to the periodic orbit

sum will not be as accurate as the full uniform approximation of Ref. [4], but we can now

understand the relative contributions of the successive windings. Indeed, we obtain,

Am(�; �h) � �h1=3m�5=6A1

�
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for the saddle-centre bifurcation and

Am(�; �h) � �h1=4m�3=4A1
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for the period-doubling bifurcation. In both cases, the higher windings behave e�ectively

as a reduction of Planck's constant. The result is an apparent increase of the bifurcation

parameter. For su�ciently large windings, the periodic orbits can be treated as indepen-

dent even when the lower windings must be considered collectively. This agrees with the

general criterion that it is the action di�erence between the periodic orbits (multiplied by

their winding number) that distinguishes between the two regimes. Now we �nd a simple

rule for evaluating the contributions of many windings from the normal form of the �rst

winding even in the nonlinear regime.
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