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A historical overview is given of electronic structure calculations of the
Mgossbauer hyperfine parameters quadrupole splitting, isomer shift and magnetic
hyperfine field in molecules and in solids, the latter represented by embedded
clusters of atoms. Semi-empirical and first-principles methods based in Density
Functional theory were employed. Results are related to characteristics of the
chemical bonds.

* Chapter of the book in tribute of Jacques Danon, edited by R. Scorzelli.
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I. Introduction

Professor Jacques Danon was a pioneer in establishing a link between the hyperfine
parameters measured by Mossbauer spectroscopy and the bonding between the atoms
in a solid or a molecule. Ever since the earlier applications of the Mossbauer effect, it
became clear that a powerful tool had emerged to probe the distribution of electrons in
the systems studied. However, useful information on the chemical bonds could only be
extracted with the understanding of the intricate connection between the measured
values and the electronic properties. Establishing this connection was, and still is, a

very difficult task.

In the early sixties, attempts to interpret the Mossbauer hyperfine parameters had to
make use of mostly qualitative concepts, such as covalency, electronegativities, etc.
However, self-consistent field (SCF) calculations with the Hartree-Fock method were
already available for free atoms and ions, including Fe, the most studied Mossbauer
element " . Results for these calculations were utilized in the interpretation of the
isomer shift & of componds of Fe. The isomer shift is proportional to the electron
density at the nucleus of the probe atom,; in the non-relativistic approximation, only s-
clectrons are found at the nuclear site. By considering the configurations of Fe** and
Fe?* in ionic iron compounds as purely 3d* and 3d°, respectively, Walker, Wertheim
and Jaccarino (WWJ) ? derived a calibration for the isomer shift, relating its values to
the calculated electron densities of the ions. The difference in the values of the electron
density at the nucleus between these two ions is due to differences in shielding of the
3s electrons by the 3d. Danon realized that in a compound the ligand atoms tend to
donate electronic charge to the metal ions, especially for higher oxidation states ». He
therefore modified the WWJ calibration curves by considering for Fe the
configuration 3d*4s°*, derived from an early Molecular Orbital (MO) calculation, in
the complex ion [FeFg}* , where Fe is in the formal oxidation state +3. The isomer
shift of this complex was taken together with that of some ionic compounds of Fe?*,

considered to have the configuration 3d%4s®. This procedure resulted in a significant
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reduction of the magnitude of the WW]J calibration constant; furthermore, the fitting of
other Fe compounds into the calibration curves revealed considerable covalency
effects, such as nonnegligible 4s populations and charge transfer from the ligands into
the 3d orbital.

Another hyperfine property, the quadrupole splitting, is related to the anysotropy of
the charge distribution around the probe atom. Danon realized that important
information could be obtained from this parameter about the bonding of a metal atom
by relating its values to the charge transfer to or from the ligands ). Different ligands
surrounding a metal atom will create a non-spherical electronic charge distribution that

will generate an electric field gradient, and thus a quadrupole splitting.

The magnetic hyperfine field is related to the spin polarization of the s shells. Much
chemical information may be gained by understanding the origins of the field,
especially the contribution of the valence (n+1)s shell (4s in Fe), which is strongly
delocalized .

The development of Quantum Chemical methods that followed made it possible to
quantify many of these ideas . Semi-empirical MO methods applied to transition metal
complexes, and later more precise methods based on the local density approximation
(LDA) of Density Functional (DF) theory, allowed to calculate with increasingly

better precision the hyperfine parameters.

In what follows, a brief description will be given of a few calculations , in some of
which Danon participated, of hyperfine parameters for systems ranging from transition
metal complexes to metallic systems, obtained with electronic structure methods. In all
cases , an important outcome of the calculations is the relation between the values

obtained and the characteristics of the chemical bond established by the probe atom.

2. Quadrupole Splittings of Ruthenium Complexes
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The isotope *Ru is useful for Mdssbauer spectroscopy with the 90 keV transition.
A large number of Ru complexes were synthetized and investigated , many of which
containing ligands that form strongly covalent bonds with the transition element *.
Usually this covalency translates into a charge transfer from the ligands to the metal,
through the o bonds. However, some ligands also accept electrons; this occurs when
an empty low-energy = orbital is available. This type of charge transfer (metal—ligand
n* ) is known as back donation. One of the ligands presenting back donation is nitrosyl

(NO), and it is known to form many complexes with Ru.

Quadrupole splittings obtained in Mossbauer spectroscopy are the consequence of
the interaction of non-cubic extranuclear electric fields (electric field gradients) with
the nuclear charge density, for nucleus with spin I > 1/2, in which case the nucleus has
a quadrupole moment Q#0. In *Ru, the splitting observed reflects the energy
difference between the sublevels M=+3/2, +1/2 of the I=3/2 excited state of the
90keV transition. In the complex ions investigated ® [RuCLNOJ* , [Ru(NH;)sNOP*
and [Ru(CN)sNOJ* ( the latter depicted in Fig.1), the presence of the ligand NO
lowers the symmetry to C,y, thus generating an electric field gradient at the Ru site.

The quadrupole splitting of *’Ru in this symmetry may be expressed as:
AEQ=1/2 eVQin 1

where V, is the electric field gradient.
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Figure 1.  Representation of [Ru(CN)sNOJ*
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In covalent complexes such as those studied here, the electric field gradient is
dominated by the contribution from the asymmetric electronic charge distribution
around the Méssbauer nucleus. Therefore, for complexes with Cqy symmetry, within a

good approximation V may be expressed as:

V= 4/7 e<r?>q [(nd2,* —nd,’) + (ndgy—ndyy7)) ()
if one considers only the 4d orbitals of Ru. In Eq. (2), the terms in parenthesis are the
populations (electronic occupations) in the complex of the different d orbitals of Ru,
and <r’>y is the mean value of r** calculated with the 4d radial function, obtained with

atomic Hartree-Fock calculations.

This is actually a simple model for the electric field gradient, in which only the
orbitals of the metal atom are considered, but it was used with success in the early
calculations of field gradients (seventies) for covalent transition complexes such as the

present ones.

But how to obtain the populations of the 4d orbitals, necessary for Eq.(2)? For
these, electronic structure calculations for the entire complex were needed. The semi-
empirical method denominated SCCC D (Self-Consistent Charge and Configuration)
made possible MO calculations for transition metal complexes in the computers then
available. The SCCC method has the same structure of the self-consistent Hartree-
Fock method, but the integrals are all approximated by empirical parameters taken

from optical spectra, thus resulting in great simplification.

In Table I are given the calculated populations ®  theoretical and experimental
quadrupole splittings of Ru complexes containing NO. It is seen from this table that the
calculated AEQ is positive in all cases and increases along the series. Analysing the
populations, we observe that the most significant change along the series is the
decrease in the populations of the d, orbitals. Since these orbitals are involved in =
bonding with the NO ligand, a decrease in their population is due to greater back-

donation of electrons into the n* orbital of NO. Thus we conclude that differences in
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the quadrupole splittings in these complexes is mainly a consequence of differences in

back-donation to the ligand NO.

Table I
Quadrupole Splittings of Ru Complexes

Complex Populations AEQ (mm/s)*

4 di} dy day Calculated® Experiment’
K2[RuClsNO] 0.820 0.791 2.000 1.873 0.12 0.1840.02

[Ru(NH;)sNO]Br;.H,O 0.904 0.870 2.000 1.627 0.35 0.37+0.02

K2[Ru(CN)sNO].2H,0  0.989 1.059 1.934 1497 0.41 0.391+0.01

a) Q("Ru)=0 29b
b) From Ref. (6)
¢) From Ref. (5)

3. Isomer Shifts of Iron and Tin Compounds

The isomer shift & measured in Mssbauer spectroscopy is defined as ).
§=2/3 e2nZS’(Z)A<*> [pa(0) —ps(0)] = aAp(0) (3)

where A<P®> is the variation of the mean square radius of the nucleus between the
excited and ground states in the Mossbauer transition, S’(Z) is a correction for
relativistic effects, and the term in brackets is the difference between the electron

density at the nucleus in the absorber A and source S (in other words, between a given
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compound and a standard system). As defined, & is linear against p(0) for a series of

compounds of the same isotope.

The constant o in Eq. (3) is called the calibration constant. To determine @, a joint
effort must be made to associate the electronic term in brackets with experimental
values of 8. However, this effort is quite worthwhile since, once o is known, the
measurement of the isomer shift of a new compound of the same element will allow to
place it in the calibration curve, and thus gain information on the ionic state,

covalency, etc . Furthermore, the nuclear constant <r*> is determined.

A lot of work has been dedicated to determine o for the most common Mdssbauer
isotopes. After the semi-qualitative calibration curves of WWJ for 57Fe cited in the
Introduction, theoretical efforts have been put forth to determine the electron densities
in Eq. (3) by electronic structure calculations. This task was challenging due to the
presence of heavy atoms; however, in the early seventies new methods based on the
Local Density approximation (LDA) were devised which permitted to calculate
electron densities from first principles, i.e., without any empirical approximations. One
of these methods was the self-consistent Multiple Scattering (known as MS-Xa) " in
which the Kohn-Sham equations '@ are solved for a molecule or a cluster of atoms
representing a solid, within the muffin-tin approximation for the potential. In the latter,
the potential is spherically averaged inside spheres centered at the atomic nuclei and is
constant elsewhere in the molecular or cluster region. The Xa local exchange potential
1 was employed.

MS-Xa calculations were performed for the Fe complex ions [Fe(CN)s]* 2,

[Fe(CN)s]* ', FeO ', FeFs” , FeFs" and FeFs~ ' and the value of p(0)
determined. The plot of & against p(0)=|w(0) is shown in Fig. (2); from the line
drawn, the value of o of *'Fe is —0.29 mm/s.ag>. The two different values for FeF¢"
and FeF¢* are due to different choices of the muffin-tin radii; in the case of the CN

complexes, the choices are much more limited due to the small C-N distance.
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Figure 2

Values of [y(0)} (Is and 2s orbitals excluded) against isomer shifts of *'Fe.

From ref (14). See refs. (12)-(15) for references to experimentel values.

In Table II are given the 3s and valence contributions to p(0) for all Fe compunds in
Fig.(1). It can be seen that the largest differences in p(0) among the compounds come
from the valence (4s) contributions. In other words, compounds have lower values of

& mainly if the ligands have a stronger capacity to donate electrons into the Fe 4s

orbital via ¢ bonds.
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Table 11

Electron densities at the nucleus for Fe componds (in ao‘s) "

FeF”  FeFs"  FeFs® [Fe(CN)e]* [Fe(CN)s]* FeOs”

3s 13873 139.63 14060  140.45 140.51  141.17
valence (4s) 1.30 1.93 3.17 6.40 6.94 7.49
Total 14003 14156 14377 146.85 147.45  148.66

a) From refs. (12)-(15) .

The isotope °Sn is also largely used in Mossbauer spectroscopy, and, more
recently, an investigation was carried out with self-consistent first-principles electronic
structure calculations for many Sn compunds '® , represented by clusters with as many
as 27 atoms. The method employed was the first principles Discrete Variational
(DVM) ' , also in the framework of the LDA approximation to Density Functional
theory. In the DV method the cluster or molecular orbitals are expanded as a linear
combination of numerical atomic orbitals, and the Kohn-Sham equations are solved
numerically in a three-dimensional point gnd. No muffin-tin approximation to the
potential is used; an embedding scheme is employed to account for the external
potential of the clusters in the solid. The exchange-correlation potential of von Barth-

Hedin ' was utilized.

In Fig (3) are plotted the values of & against p(0) for the calculated compounds, in
which Sn is in the formal oxidation states +2 and +4. Contrary to 57Fe , the calibration
constant of '1%Sn is positive: the value of <r*> derived is (6.61+0.58)x10” fm?.
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Figure 3

Correlation between & and p(0) (Is, 2s and 3s orbitals excluded) for Sn

compounds. From ref.(16).

Lower values of p(0) (and thus 8) correspond to compounds of Sn**, higher values
to Sn**; this is due to the presence in the latter of a lone pair of electrons that
contribute strongly to the valence electron density at the nucleus of the metal. Among
the compounds in each of the two groups, values of p(0) correlate strongly with the
electronegativity of the ligands (except SnF3) . In fact, ligands with large values of the
electronegativity attract electrons more efficiently, and thus deplete the 5s orbital of Sn
decreasing p(0).

4, Magnetism and Field Gradient in Ordered FeNi
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One of the many interests of Danon was in meteorites. These fascinating objects
that arrive from the cosmos may contain in their body materials not found on earth.
This is the case of the ordered compound FeNi known as tetrataenite'®, which
crystallizes in the CuAu structure, consisting of alternating layers of Ni and Fe on an
fcc lattice. Since this intermetallic compund is magnetic, the existence of an internal
magnetic field results in a dependence of the *’Fe quadrupole splitting on the angle 8
between the direction of the internal magnetic field and the principal axis of the field

gradient ®:
AEQ=1/2 eV Qs (3cos?0-1)/2 4)

8 cannot be determined from a single Mossbauer experiment; however , one may

calculate V, at an Fe nucleus from a first-principles calculation using the expression:
Vo =-e[p(r) BZ2-P)r du + Tee Z°, (3Z-1)/r, )

where the first term is the electronic contribution obtained with the cluster p, and the
second term the point-charge contribution of the surrounding nuclei q shielded by the
core electrons, with effective charge Z°; .Combining the calculated V,, with the

measured AEQ), the angle 6 may be determined.

Spin-polarized DVM calculations were performed ' for a 19-atom embedded
cluster centered on Fe (see Fig.(4)), and the field gradient at this atom obtained
according to Eq. (5). The value found for V,, is +0.652 a.u. This result indicates that
6=0 (and not 8=90°) , that is, the axis of V,, is parallel to the axis of the internal
magnetic field, since the measured AEQ is also positive. This also implies that the
internal magnetic field is oriented perpendicular to the Fe and Ni layers, i.e., along the
~ z awas of Fig. (4). This is an example of a fruitful collaboration between theory and
experiment, in which a first-principles calculation provided a result which is very

difficult or impossible to obtain in the laboratory.
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Cluster representing FeNi

Analysing the different contributions to V., it was verified that by far the largest
came from the spin-down orbitals. This is not surprising since these orbitals are more
diffuse than their spin-up counterparts, and thus participate more in bonding. Upon
decomposition of the spin-down orbitals V,, into the contributions due to the different
symmetries of the Dy, point group (see Table III) , we can see that by far the largest
contribution comes from the smaller value of the e, symmetry, contaning the orbitals

of Fe 3dy,, , with respect to its partner b, , containing 3d,, . This result may again be
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explained in terms of bonding. In fact, the e, orbitals of Fe point towards the Ni atoms
in the planes above and below (see Fig (4)), whereas the b, point towards Fe atoms
on the same plane. Since the electronegativity of Ni in a metallic bond is slightly
higher than Fe *, the Ni atoms withdraw some charge from the Fe dy,, orbitals (as
may be seen from the net Ni charge —0.12 obtained in the population analysis), thus

decreasing its contibution to V.

Table III

Spin-down Contributions to V, for FeNi (in a. u.)

3d
aig (3d;%) -0.680
big (3di22 +0.681
bag (3dxy) +1.005
eg (3dy, + 3d,,) -0.646

4p
a (4p.) -0.120
eu (4px + 4py) +0.171

5. Magnetic Hyperfine Fields of y-Fe

Pure bulk iron in the fcc crystal structure (y-Fe) only exists at very high
temperatures (between 1183 and 1667K). However, y-Fe may be stabilized at low
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temperatures as small coherent precipitates in copper or copper-alloy matrices or as
thin epitaxial films on a Cu or Cu-based alloy substrate ' *¥ . Recently the interest in
y-Fe has been revived due to the existence of multiple magnetic states revealed by

band-structure calculations 2¥ , which is believed to be related to INVAR phenomena
in y-Fe-based alloys.

Recently, spin-polarized DVM calculations were performed for a 62-atom

24)

embedded cluster of cubic geometry representing fcc Fe * | for both ferromagnetic

(FM) and antiferromagnetic (AFM) spin states, at several lattice constants. For the
AFM configuration, a layered arrangements of up and down spins (illustrated in Fig.

(5)) was considered.
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Figure §
62-atom representation of y-Fe. Lighter and darker shades stand for spin up
and spin down in AFM state.

Measurements of the magnitude of the magnetic hyperfine fields by Mossbauer

spectroscopy revealed small values at small interatomic distances and much larger
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values at larger distances (see Fig. (6)) % .This was ascribed to a large difference in

the magnetic moment between AFM y-Fe, more stable at small lattice constants, and

FM y-Fe, more stable at large lattice constants 2% .
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Figure 6

Experimental values of the magnitude of the hyperfine field of fcc Fe at several

lattice constants. From ref. (22).

The hyperfine field in metals is constituted mainly of the Fermi or contact field
given by:
H = 8n/3 ug [p1(0)-pu(0)] (6)
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where pg is the Bohr magneton and the term in parenthesis is the spin density at the
nucleus. It is the spin-polarization induced by the Fe spin magnetic moment (mainly
3d) in the s shells that originates the hyperfine field. However, the calculations of the
magnetic moments for the two states AFM and FM (Fig. (7)) did not show such a large
difference that would justify the large experimental gap in Fig (6).
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Figure 7

Magnetic moments p against Wigner-Seitz radius r, for y-Fe. From ref (24).
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The results of calculations of the hyperfine field according to Eq. (6), displayed in
Fig. (8), reveal that the large difference observed experimentally in the magnitude of
the hyperfine fields of AFM and FM y-Fe originates mainly from different signs of the
valence electron contribution (4s), which is positive for AFM and negative for FM,
and not from large differences in the Fe magnetic moment in the two states. This result
shows clearly that the common practice of considering the hyperfine field as

proportional to the magnetic moment may be very misleading.
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Hyperfine fields Hr against Wigner-Seitz radius r, for y-Fe. Core:— - — — - H

valence: ......ccoe. ; total: ——————, From ref. (24).
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