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Abstract

We consider an ideal quantum q-gas in � spatial dimensions and energy spectrum
!i � p�. Departing from the Hamiltonian H = ![N ], we study the e�ect of the
deformation on thermodynamic functions and equation of state of that system. The
virial expansion is obtained for the high temperature (or low density) regime. The
critical temperature is higher than in non-deformed ideal gases. We show that
Bose-Einstein condensation always exists (unless when �=� = 1) for �nite q but
not for q = 1. Employing numerical calculations and selecting for �=� the values
3=2, 2 and 3, we show the critical temperature as a function of q, the speci�c heat
CV and the chemical potential � as functions of T=T q

c for q = 1:05 and q = 4:5.
CV exhibits a �-point discontinuity in all cases, instead of the cusp singularity
found in the usual ideal gas. Our results indicate that physical systems which
have quantum symmetries can exhibit Bose-Einstein condensation phenomenon,
the critical temperature being favoured by the deformation parameter.

Key-words: Quantum groups; q-Oscillators; Bose-Einstein condensation; Critical
phenomena.
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1 Introduction

The purpose of this paper is to analyse some thermodynamic properties of a quantum
ideal q-gas [1{5]. This system generalizes the ideal boson gas using a set of independent
q-oscillators (objects that satisfy deformed Heisenberg algebra) [6, 7], instead of the stan-
dard bosonic oscillator. Our main motivation to discuss deformed ideal quantum gases
comes from the role played by the theory of ideal gases in many di�erent physical phenom-
ena as super
uidity, superconductivity, blackbody radiation, phonons in a cristal lattice,
etc. [8].

Because of the relevance of the Heisenberg algebra in physics, its deformed versions
[6, 7] have attracted attention in the last few years; they are non-trivial generalizations of
the Heisenberg algebra through the introduction of one (or more [9]) parameter(s) such
that the non-deformed case is recovered for a special limit of the parameter(s). Only
recently has their interesting connection with quantum algebras and superalgebras been
established [6, 7], as well as their derivation from the contraction of quantum algebras [7].

On the other hand there has been a great interest in quantum algebras and quantum
groups [10{13] in the last years. This mathematical structure, also called Quasitriangular
Hopf algebras, has emerged as an appealing non-trivial generalization of Lie algebras and
groups which are recovered when the deformation parameter (or a set of parameters)
goes to one. Quantum groups have left their trace in several areas of physics [14] and,
interesting simple physical systems, those made with physical particles, have quantum
group symmetry [15, 16].

In section 2 we summarize the basic formalism of q-oscillators and discuss some of
their properties in the large q limit. Section 3 is devoted to the �-dimensional ideal
quantum q-gas: we �nd the virial expansion for its equation of state for large q and show
the existence of Bose-Einstein condensation. In section 4 we show that the speci�c heat
exhibits a �-point transition, analyse our results and present our conclusions.

2 q-Oscillators

One calls bosonic q-oscillators (or deformed Heisenberg algebra) [6, 17] the associative
algebra generated by the elements �;�+ and N satisfying the relations

[N;�+] = �+ ; [N;�] = �� (2.1)

[�;�+]� = f�(N) :

We are going to consider here the following forms of the above algebra (2.1):

[a; a+]a � aa+ � qa+a = q�N (2.2a)

[A;A+]A � AA+ � q2A+A = 1 ; (2.2b)

which are related to each other via

A = qN=2a ; A+ = a+qN=2 ; (2.3)

in the case of real q.
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It is possible to construct the representation of relation (2.2) in the Fock space F
generated by the normalized eigenstates jni of the number operator N as

�j0i = 0; ; N jni = njni ; ; n = 0; 1; 2 � � � (2.4)

jni =
1q
[n]�!

(�+)nj0i ;

where [n]�! � [n]� � � � [1]�; [n]a = (qn � q�n)=(q � q�1); [n]A = (q2n � 1)=(q2 � 1) and
[n]� ! n as q ! 1.

In F it is possible to express the deformed oscillators in terms of the standard bosonic
ones b; b+, which obey the usual Heisenberg algebra, as [17]

� =

 
[N + 1]�
N + 1

!1=2

b ; �+ = b+
 
[N + 1]�
N + 1

!1=2

; (2.5)

and it can easily be shown in F that

��+ = [N + 1]� ; �+� = [N ]� : (2.6)

If we now consider two independent q-oscillators, for instance a1; a2, one can realize
the SUq(2) algebra [10{12]

[J0; J�] = �J� ; [J+; J�] = [2J0]a ; (2.7)

�a la Schwinger as [6]

J+ = a+1 a2 ; J� = a+2 a1 (2.8)

J0 =
1

2
(N1 �N2) 6=

1

2
(a+1 a1 � a+2 a2) :

Further with
n1 = j +m ; n2 = j �m ; (2.9)

one can realize the jj;mi basis of SUq(2) by means of the above q-oscillators as:

jj;mi = jn1ijn2i =
(a+1 )

j+mq
[j +m]a!

(a+2 )
j�mq

[j �m]a!
j0i : (2.10)

As expected, in the q! 1 limit the non-deformed algebras are recovered.
Analogously to the above construction for SUq(2), all the deformed algebras of type

A;B;C and D [18], the quantum superalgebras [7] and the deformed exceptional algebras
[19] can be realized �a la Schwinger. q-Oscillators can be obtained from the deformed
algebras [7], similarly to what happens in the non-deformed case, by the Schwinger con-
traction method. Due to these procedures, it is expected that q-oscillators have the same
status with respect to quantum algebras as classical oscillators with respect to classical
Lie algebras.
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We are now going to discuss real q > 1 deformed q-oscillators. In the q!1 limit for
n � 2; [n]� !1 and as a result when q =1 Fock space

jni =
1q
[n]�!

(�+)nj0i ;

is reduced to a fermionic one since jni vanishes for n � 2. Consequently, the statistical
properties of q-oscillators (2.2) become those of fermions. This can be clearly seen by
writing the canonical partition function

Z =
1X
n=0

e��![n]A = 1 + e��! + e��!(1+q
2) + � � �+ e��![1+q

2+���+q2(n�1)] + � � � ; (2.11)

for the Hamiltonian
H = !A+A = ![N ]A ; (2.12)

with � = (kT )�1, where k is the Boltzmann constant. Indeed, inspection of (2.11) reveals
that as q grows the higher states are drastically less occupated. In the limit q =1

Z = 1 + e��! ; (2.13)

which is the fermionic canonical partition function. Notice that a similar process but in
the opposite sense happens in the case of parastatistics [20, 21]: as the maximal number
of particle per state, p, increases, higher energy states are occupied and in the limit p =1
the bosonic regime is reproduced. Thus for q-oscillators we have a bosonic regime for all
q � 1 unless when q = 1 where the regime is fermionic whereas for parastatistics we
have a fermionic-like regime for all p, unless when p =1 where the system is bosonic.

The Hamiltonian (2.12) is the simplest non-trivial deformation of the harmonic oscil-
lator leading to thermodynamic functions that depend on the deformation [2, 3, 22] and,
it recovers the usual bosonic behaviour for q = 1. In this sense, it is not a unique choice.
In particular, for

H = !N ; (2.14)

the energy spectrum is not changed - the partition function being the bosonic one - and
the e�ect of the deformation only appears in correlation functions.

3 �-Dimensional Ideal Quantum q-Gas

In this section we are going to analyse ideal quantum q-gas in � spatial dimensions. We
�nd the virial expansion for its equation of state for large q and investigate the Bose-
Einstein condensation phenomenon [23, 5].

Let us consider an ideal deformed system described by the Hamiltonian:

H =
X
i

!iA
+
i Ai =

X
i

!i[Ni]A ; (3.1)

where Ai; A
+
i and Ni are interpreted respectively as annihilation, creation and occupation

number operators of particles in level i, with energy !i, which satisfy the algebra (2.2b)
and commute for di�erent levels.
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The grand canonical partition function is:

Z = Tr exp[��(H � �N)] = exp(��
) ; (3.2)

where N;N =
X
i

Ni, is the total number operator; � is the chemical potential and 
 is

the grand canonical potential. For the above system Z factorizes and the grand canonical
potential is given by a sum over single level partition functions [2]


 = �
1

�

X
i

lnZ0
i (!i; �; �) ; (3.3)

where

Z0
i (!i; �; �) =

1X
n=0

e��(!i[n]A��n) : (3.4)

We enclose the system in a large �-dimensional volume V and replace, as in the usual
procedure, the sum over levels by an integral over a ~p-space:

X
i

!
V

h�

Z
d�p : (3.5)

The energy spectrum of each q-particle obeys the dispersion law

!i ! 
p� ; (3.6)

for � = 1(2) one recovers the ultrarelativistic (non-relativistic) case, with 
 = 1(1=2m).
The general expansion for the grand canonical potential (3.3) is then


 =
�V

h��

Z
d�p ln

1X
n=0

e��(
p
�[n]A��n) : (3.7)

Integrating over the angular variables and de�ning the new variable � = �
p�; 
 can be
rewritten as


 = �
�2��=2V

�(�2)h
���(�
)�=�

Z
1

0
d� �

�
�
�1 ln

(
1X
n=0

zne�[n]A�
)
; (3.8)

where z = e�� is the fugacity. Integrating (3.8) by parts, we �nally have


 = �
����

�( �
�
+ 1)�

Z
1

0
d� ��=�

1X
n=0

[n]Az
ne�[n]A�

1X
n=0

zne�[n]A�
; (3.9)

where the thermal wavelength �; ��� =
��=2�( �

�
+1)

�( �
2
+1)h�(�
)�=�

, is the relevant expansion param-

eter in the thermodynamic functions.
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The pressure P = �

V

and the density n = @P
@�
jT;V for the q-oscillator in �-spatial

dimensions and energy spectrum given by (3.6) are then:

P (T; z) = kT���Yq(z) (3.10a)

n(T; z) = ���yq(z) : (3.10b)

where

Yq(z) =
1

�( �
�
+ 1)

Z
1

0
d� ��=�

1X
n=0

[n]Az
ne�[n]A�

1X
n=0

zne�[n]A�
(3.11a)

yq(z) = z@zYq(z)

=
1

�( �
�
+ 1)

Z
1

0
d� ��=�

2
66664

1X
n=0

[n]Anz
ne�[n]A�

1X
n=0

zne�[n]A�

�

 
1X
n=0

[n]Az
ne�[n]A�

! 
1X
n=0

nzne�[n]A�
!

 
1X
n=0

zne�[n]A�
!2

3
777775 : (3.11b)

3.1 High temperature (low density) approximation

In this subsection, we investigate the system in the high-temperature limit for high q,
which, as we shall show in the next section, means q > 3. In that limit, the series in
functions Yq(z) and yq(z) can be approximated by their �rst three terms (n = 0; 1; 2):

Yq(z) �=
1

�( �
�
+ 1)

Z
1

0
d� ��=�

"
ze�� + (1 + q2)z2e�(1+q

2)� + � � �

1 + ze�� + z2e�(1+q2)� + � � �

#
; (3.12a)

yq(z) �=
1

�( �
�
+ 1)

Z
1

0
d� ��=�

"
ze�� + 2(1 + q2)e�(1+q

2)� + � � �

1 + ze�� + z2e�(1+q2)� + � � �
(3.12b)

�
(ze�� + (1 + q2)z2e�(1+q

2)� + � � �)(ze�� + 2z2e�(1+q
2)� + � � �)

(1 + ze�� + z2e�(1+q2)� + � � �)2

#
:

Analogously to the case of one degree of freedom analysed in the previous section,
when q = 1 only the terms n = 0; 1 in the series survive and we have a fermionic ideal
quantum gas.

If the fugacity z is assumed small compared to one, the denominators in Yq(z) and
yq(z) above can be approximated according to:

�
1 + ze�� + z2e�(1+q

2�)
��m �= (1 + ze��)�m �me�(1+q

2)�(1 + ze��)�m�1 + � � � ; (3.13)
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where m = 1(m = 2) in expression (3.12.a) ((3.12.b)). Performing the integrations and
keeping terms up to the third order in z, we obtain

P =
���

�
z[1 + F1z + F2z

2 +O(z3)] ; (3.14)

and
n = ���z[1 + 2zF1 + 3z2F2 +O(z3)] ; (3.15)

where the coe�cients F are given by:

F1 =
�1

2
�
�
+1

+
1

(1 + q2)�=�
;

F2 =
1

3
�
�
+1
�

1

(2 + q2)�=�
;

Inverting (3.15) we can write z as a power series in (n��):

z = n�� � 2F1(n�
�)2 + (8F 2

1 � 3F2)(n�
�)3 + � � � : (3.16)

Substituting (3.16) in expression (3.14) for the pressure, we �nally obtain the virial ex-
pansion for the equation of state of our quantum q-gas in the large q and small fugacity
limits:

P =
n

�

"
1�

 
�1

2
�
�
+1

+
1

(1 + q2)�=�

!
(n��) + 2

�
1

2
2�
�
+1
+ (3.17)

�
1

3
�
�
+1
�

2

(2 + 2q2)�=�
+

1

(2 + q2)�=�

!
(n��)2 + � � �

#
:

The virial expansion (3.17) deserves some comments. It clearly shows that for in�nite
deformation our q-gas behaves, as expected, exactly like an ideal Fermi-gas. Also, it
can be seen that for �nite values of q, the pressure is reduced with respect to the ideal
Fermi-gas and that this di�erence is inversely proportional to the deformation. Finally,
as is corroborated by (3.16), these results are valid for n�� << 1, which means high-
temperature (or low density) approximation.

3.2 Bose-Einstein condensation

The study of Bose-Einstein condensation phenomenon requires some precaution. As usual,
when z! 1 we have to take into account the zero-point energy and single out its contri-
bution in expressions (3.11). In addition, the partition function (3.4) clearly shows that
when !i = 0 the e�ect of the deformation is cancelled. Therefore, the series in (3.11)
cannot be approximated by a polynominal for the zero energy level and the series will
only converge if z < 1. Thus, the chemical potential has to be non-negative, as it is the
case for the usual non-deformed ideal gas.

Let us now consider lower temperatures. Keeping n constant, n�� increases and from
(3.16) so does z. When z reaches 1, the temperature T attains its critical value T q

c , de�ned
by

n��
c = yq(1) ; (3.18)
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which can be expressed as:

T q
c =


��=�(�
2
+ 1)h�n�=�

k��=2��=�( �
�
+ 1)y

�=�
q (1)

: (3.19)

When T ! 0, as the ground state is not a�ected by deformation, there will be an accu-
mulation of particles in this state: Bose-Einstein condensation is present in our deformed
system. Comparing Tc to the critical temperature for non-deformed gases of the same
density n, we �nd

T q
c

Tc
=

 
2:61

yq(1)

!�=�

: (3.20)

Figure 1 shows T q
c =Tc as a function of the deformation parameter q for �=� = 3=2; 2 and

3, and we can see that as �=� decreases the deformed critical temperature T q
c increases

with respect to the non-deformed case.
As we have already mentioned, in the vicinity of T q

c we have to take into account the
zero-point energy and single out its contribution in (3.11). Therefore the expressions for
P and n become:

P (T; z) = ��1[�V �1 ln(1� z) + ���Yq(z)] ; (3.21a)

n(T; z) =
1

V

z

1 � z
+ ���yq(z) ; (3.21b)

where as usual the extra terms only contribute when z ' 1. Similarly to the non-deformed
case the �rst term in the right-hand side of (3.21.a) can always be neglected and the basic
equations are:

P (T; z) = ��1���Yq(z) ; (3.22a)

n(T; z) =
1

V

z

1 � z
+ ���yq(z); (3.22b)

where the �rst term on the right-hand side of (3.22.b), which is due to the contribution
of the zero energy, is relevant only for T � T q

c . In this region z remains equal to one, as
in the usual case.

The speci�c heat per particle CV is de�ned as

CV

k
=

1

kn

@~e

@T

�����
n

; (3.23)

where ~e is the energy density (internal energy per volume). From the thermodynamic
de�nitions of ~e and of the entropy density one has

~e = n� � �
@P

@�

�����
�

� P ; (3.24)

with P given by (3.22.a). We can easily �nd that

~e =
�

�
P ; (3.25)
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thus generalizing the standard result for q = 1.
To obtain CV we have to compute @T ~ejn � (@~e=@T )jn which from (3.25) can be

obtained in the two regimes from

P (T ) = ��1���Yq[z(T )] T > Tc (3.26)

P (T ) = ��1���Yq(1) T � Tc :

Now, for T > T q
c

@T ~ejn =
�

�

�
�

�
+ 1

�
k���Yq(z) +

�

�
kT��Y 0

q (z)@Tzjn ; (3.27)

where Y 0

q (z) = @zYq(z). From yq(z) = ��n, we have:

@T zjn = �
�

�

��T�1n

y0q(z)
: (3.28)

Finally substituting (3.28) in (3.27) we get

CV

k
=

�

�

�
�

�
+ 1

�
(��n)�1Yq(z)�

�
�

�

�2 yq(z)

zy0q(z)
: (3.29)

For T < T q
c it is trivial to �nd

CV

k
=

�

�

�
�

�
+ 1

�
(��n)�1Yq(1) : (3.30)

Clearly equations (3.29) and (3.30) also generalize the usual q = 1 ideal bosonic gas
speci�c heat.

4 Analysis of the Results and Concluding Remarks

We are now going to analyse our numerical results. Tables I to VI show values of
Yq(1); yq(1) and y0q(1) for q = 1:5; 4:5, when �=� = 3=2; 2; 3 considering distinct
values of the upper limit of the sums in (3.11). The integrals always converge in the cases
we have studied and as q grows, less terms are necessary in the sums in order to reach a
given accuracy.

The integral yq(z) can be rewritten as

yq(z) =
�

�

1

�( �
�
+ 1)

Z
1

0
dx x

�
�
�1

1X
n=0

nzne�[n]Ax

X
n�0

zne�[n]Ax
; (4.1)

and for �=� = 1 the integral diverges for z = 1. Thus, similarly to the non-deformed case
we do not have Bose-Einstein condensation for �=� = 1.

In Figures 2 and 3 we present the chemical potential and the speci�c heat as functions
of the temperature for �

�
= 3

2; 2; 3 and for two values of q, q = 1:05 and 4:5. Figures 2
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show that as �=� increases, the e�ect of the deformation is less relevant. The speci�c heat
for our deformed q-gas has a very interesting feature, exhibiting a discontinuity known
as �-point transition in all cases. This behaviour is di�erent from the usual bosonic ideal
gas which has a cusp singularity at T = Tc. The comparison of curves for a very small
(q = 1:05) and a very large (q = 4:5) values of q shows that as q decreases the discontinuity
diminishes and disappears at q = 1, becoming then a cusp singularity.

We have shown that for �
�
> 1 a deformed q-gas has the Bose-Einstein condensation

phenomenon with the speci�c heat exhibiting a �-point discontinuity. The critical temper-
ature being higher than for the bosonic ideal gas, we see that the presence of deformation
favours the Bose-Einstein condensation phenomenon.

Based on the relation between q-oscillators and quantum algebras (see section 2), we
expect that physical systems with quantum group symmetry can exhibit the Bose-Einstein
condensation phenomenon and also that, as in the case of the ideal quantum q-gas, the
deformation parameter favours and controls this phenomenon. As the Bose-Einstein con-
densation phenomenon is relevant in superconductivity and quantum symmetries increase
the critical temperature through the deformation parameter, we further expect that quan-
tum symmetries can be important in understanding high-Tc superconductivity.

We also believe that the role played by the deformation parameter in favouring the
Bose-Einstein condensation phenomenon is a general feature of deformed systems, i.e.
quantum symmetries favour criticality.

It is also interesting to point out the similarity between the Generalized Statistical
Mechanics [24] and the results we have found concerning the critical behaviour of the sys-
tem [25]. In particular in ref. [25], Tc increases as qs (the statistical parameter introduced
to generalize the statistical mechanics) increases.
Acknowledgements: The authors thank C. Tsallis and M.R-Monteiro acknowledges S.
Alves Dias, F. Gliozzi and S. Sciuto for discussions. M.R-Monteiro also thanks A. Lerda
for drawing his attention to ref. [23].
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Table Captions

Table 1 For q = 1:5 and �
�
= 3

2
, in order to have three signi�cant �gures in Yq(1); yq(1)

and y0q(1) we must keep respectively 6, 7 and 9 terms in the sums. The accuracy of
the software Mathematica employed, which is 10�7, is attained respectively with 12
and 14 terms.

Table II For q = 1:5 and �
�
= 2, in order to have three signi�cant �gures in Yq(1); yq(1)

and y0q(1), we must keep respectively 4,5 and 6 terms in the sums. The accuracy of
the software Mathematica employed, which is 10�7, is attained respectively with 9
and 10 terms.

Table III For q = 1:5 and �
�
= 3, in order to have three signi�cant �gures in yq(1); yq(1)

and y0q(1), we must keep 4 terms in the sums. The accuracy of the software Mathe-
matica employed, which is 10�7, is attained respectively with 6 and 8 terms.

Table IV For q = 4:5 and �
�
= 3

2, in order to have three sigini�cant �gures in Yq(1); yq(1)
and y0q(1), we must keep respectively 3 and 4 terms in the sums. The accuracy of
the software Mathematica employed, which is 10�7, is attained with 5 terms.

Table V For q = 4:5 and �
�
= 2, in order to have three signi�cant �gures in Yq(1); yq(1)

and yq(1), we must keep 3 terms in the sums. The accuracy of the software Mathe-
matica employed, which is 10�7, is attained with 4 terms.

Table VI For q = 4:5 and �=� = 3, the system has a fermionic behaviour (n = 0; 1)
within an accuracy of at least 10�4; the software Mathematica accuracy is attained
with 3 terms.

Table VII Comparison of numerical results for yq(z); yq(z) and y0q(z) for q = 4; �
�
= 3

2

when z is 1 and 0:2. The functions converge to the value within the Mathematica
software accuracy more rapidly when z = 0:2, as expected.
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TABLE I

q = 1:5 ;
�

�
=

3

2

n 4 5 6 7 8 11 12 13 14
Y1:5(1) 0.982873 0.983633 - - - 0.983875 0.983875
y1:5(1) - 0.955703 0.956378 0.956645 0.956645
y01:5(1) 0.879858 0.880061 0.880154 0.8801

TABLE II

q = 1:5 ;
�

�
= 2

n 2 3 4 5 8 9 10
Y1:5(1) 0.958882 0.965032 - - 0.965988 0.965988 -
y1:5(1) - 0.926074 0.928304 - 0.928787 0.928787 -
y01:5(1) - 0.848302 0.849383 - 0.849669 0.849669
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TABLE III

q = 1:5 ;
�

�
= 3

n 2 3 5 6 7
Y1:5(1) 0.966901 0.967740 0.967790 0.967790 -
y1:5(1) 0.934764 0.936702 0.936847 0.936847 -
y1:5(1) 0.873327 0.877330 - 0.877706 0.877706

TABLE IV

q = 4:5 ;
�

�
=

3

2

n 1 2 3 4 5
Y4:5(1) 0.867200 0.872085 - 0.872122 0.872122
y4:5(1) 0.765149 0.772049 - 0.772119 0.772119
y4:5(1) - 0.612900 0.613005 0.613006 0.613006
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TABLE V

q = 4:5 ;
�

�
= 2

n 1 2 3 4
Y4:5(1) 0.901543 0.902638 0.902640 0.902640
y4:5(1) 0.822467 0.824053 0.824056 0.825056
y04:5(1) 0.693147 0.695079 0.695084 0.695084

TABLE VI

q = 4:5 ;
�

�
= 3

n 1 2 3
Y4:5(1) 0.947033 0.947087 0.947087
y4:5(1) 0.901543 0.901624 0.901624
y04:5(1) 0.822467 0.822572 0.822572
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TABLE VII

q = 4 ;
�

�
=

3

2
; z = 0:2

2 3 4 5
Y4(0:2) 0.193877 0.193878 0.193878 0.193878
y4(0:2) 0.188102 0.188106 0.188106 0.188106
y04(0:2) 0.885987 0.886041 0.886041 0.886041

z=1
Y4(1) 0.874085 0.874157 0.874158 0.874158
y4(1) 0.774906 0.775046 0.775048 0.775048
y04(1) 0.616266 0.616478 0.616482 0.616482
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