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Abstract

In this work we develop a geometric formalism for constrained
Hamiltonian systems. Using a symplectic projector, we can write
the Dirac bracket of two functions as the Poisgon bracket of the
projected function on a submanifold defined by a local basis of
1=-forms. This approach yields in a natural way all properties

ascsociated to a generalized symplectic structure.
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I INTRODUCTION

The method of generalized canonical quantization of constrained
systemse has been discussed along twoe main lines namely a)
emphasizing its geometric character® and b) developing algebraic
methods involving the structure of the Poiszson brackets? The
Lagrange multiplier method is applied as a starting point in both
approaches. This method, however, is disadvantageous for quan-~
tization, since the conjugated momentum of the multiplier is zero.
Takahashi® has doveloped a technique that was generalized by
Schwartz® to several independent linear suplementary conditions.

In his technique nelither lagrange multipliers nor the
elimination of coordinate are required. In the same spirit Alllasr‘a].,5
developed a geometric approach by introducing a projecior in the
space of configuration-velocities. Here the supplementary condi-
tion need not be restricted to a homogeneous equation of the first
degree in velocities. All we neec; is to have a local vector space
generated by the constraints. The vector normal to a hypersurface
defined in the configuration-velocities space iz generated by the
gradienlt in velcu::lt.ian? With the local vector we can construct the
projector on the hypersurface where the virtual displacement must
be restricted. In this manner, a generalized variational principle
can be extended to a non-holonomic system. For an interesting
apllication of this method to a classical particle with spin see

Amr:i.m.?
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In the present work we extend the projector method enabling us
to handle in a very simple way the dynamical variables and the
Polsson brackets assoclated to the constirained system.

Constraints of the second class define a system which is the
local basis of the vector space of forms (ideal) in the exterior
algebra. This simple observation enables us to construct the
symplectic projetor on the submanifold complementary to the local
basis. The infinitesimal variations of the observables must belong
to this submanifold. As a consequence the Dirac bracket is written
as a function of the matrix elements of the préjector, which are
the Casimir invariant functions.

In sec.II we briefly describe the method in the configuracional
space, whereas sec.]III is devoted to discuss the projector in the
framework of the symplectic geometry. In sec IV we make some

remarks on the structure of the theory.

II - PROJECTORS IN THE CONFIGURATION SPACE

Let us consider a system described by a Lagrangean L = L(xp i”,t)
4

together with a set of T independent constraints:

Sx %) =0 i ® 1,004, T g = dyeeesn . 1)
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These constraints define a hypersurface in the configuration -
velocitites space. The T normal vectors to the hypersurface are

described by a vectorial basis{ | e’ > } that is

le'> = a,2'| > i ® 1,000, T v ®1,00e,n o 2)

Here and in what follows 0‘.) = a/ahv , and ov = OIOxP : we adopled

the sum convention over repeated indices.

The vectors ]et) span a local geomeiry whose wmetric is non

singul ar:

< ei| e > = gi"i (3)

Following Whittaker® we can con.:sider a generalized variational
principle extended to a non-hollonomic case. The constraints must
be imposed on the wvirtual displacement and not on the
trajectories.o We can do this by means of a projector on the
hypersurface orthogonal Lo a local basis. The projector operator

is a symmetric operator in the configuration-velocities space."o

Pal-g, |&f>¢d] ®)
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The matrix elements of P in the basis{ I o> } are 1

v » L e HO . ig i oW
<e"|P|e™> = P = g g, 49 dquoaqbg s

where g™ = (eplev) is the global metric of the configuration
space. The componentes of the virtual displacement on the

hypersurface are:
sxM* = PHPsx . 6)
[

Making the variation of the action along sxH*  and taking into
account that 6):” is arbitrary we have the vector Euler-Lagrange Ev

of the unconstrained system projected on the hypersurface:

PYE = 0 . 4P

This system of equation together with the constraint conditions

(1) are the equations of motion of the syste»m.‘1
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III PROJECTOR IN THE SYMPLECTIC SPACE

Let the 2n variables of the R®"™ space be denoted by f” In

this space a symplectic metric is defined by a regular Z2-form i
dar? . ar¥ = Y e« V,g®m1,...,2n ()

Here the set {d{P} is 3 local free basis of 1-forms. The Poisson

bracket of two functions f(Z), h{) assumes the form,
{f,h} = c"“”a“fovh m df - dh Q)

Let us consider a submanifold of't.he fase space determined by a
set of T independent constraints of the secoand classe. Due to
these constraints the Polsson bracket 1s defined only on a
manifold of Dim = 2n = T (even), by a singular metric. We have the

singular generalized Poisson bracket
e
{f,g} =P O“fopg . (10)

with det P = 0.
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The constraints define a setl of independent i-forms,

d¢' = av¢‘dz"' i = 1...T

Thus, we have a symplectic local metric

gt’ = dg' A~ d¢’ = {2\, 0%

whose inverse is

g, = ap ~dé = (6,9}

and

”

ap ~ d¢' = {8, ¢} = &!

(11)

(12.a)

(12.b)

(12.¢)

These relations are not new constraints because dz¢i” = 0. Thus,

the constraints define an jideal of Dim T ( T even due ithe

antissimetiry of gLJ_ b

Let us now extend the concept of projector to the symplectic

geometry. The projector is defined by a bilinear form:

S=d¢ @ do' = g_tkdq&k e do

(13)
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The projector on the manifold allowed by the constraints is the

complementary 3

PulesS , Qe

where I is a identity matrix of Dim =~ 2N. From (13) it is easy to

verify the properties:

i
u
N
K
v
-
-
-y
|
v

PP , dF = 0 as)

In frae coordenates P has the components:
PP = ath AP A dt” = - (atf A dg) e d¢' ~ dr™) (16)

or

Y MYo g_‘js"“’aqu‘oa&s"‘” a7

where we have used the definition (9).We observe Lthat theses
functions (17) are the Casimir invariant functions as was shown by
Rugger:l.:" they have the same structure of (B). The projector in

the symplectic case has a representation in a degenerated 2-form
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Pu Puvd{“a\dtp 1e)

Here d{y A d{v = £PV is the inverse of the fundamental Poisson

bracket:

£ 19
“up P S

It is easy lo verify that : TrP = 2n -~ T.
Consider now two functions A and B of the symplectic space.
Their variations, acording to the Whttaker principle, wmust be

projected on the submanifold of Dim 2N -T. That is :
» * :
dA = P A dA » dB = P . dB {(20)

Where dA = OPA dE‘J taking into “account the properties (16) and

{19) we can write :
dA* ~ dB* = dA AP A dB = P“"a“AavB 21)
From definiton {(13) and (14) we can see that :

dA” « daB” = (A, B}" z2)
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A, B} = (A, B} - (A, 0"} g _{¢r B (23)

Since P is ldempotent we have:

A B = (A", 8"} = A%, B} = {A,B") (24

It may be noliced that the involution relation between the
second class constraint and the fundamental coordinates compatible

with the constraints assumes the simple form

dgt A " e« 0 (25)

since that P A d¢ = O.

From {(21) the Hamilton equation of motion has the form, in each

instant:

M = df A Pa dH = {£, 1" . (26)

We conclude from this that the second class constraints are
constants of the motion simply because P A d¢:.t = 0, and all symme-
tries of the system must belong to the manifold of dimension
T.This resuli points out that we may write the symmetries as
linear combination of the second class constraints. Theelements of
the group of symmetry g has the following variation: dJ'g = S.dg ;

d“g = Pandg = 0 in each submanifold.
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Iv FINAL. REMARKS

We make a remark concerning the definition of projectors. A
projection is definied in a linear manifold by Lhe property P*up.
Any idempotent operator is a projection and reciprocally.“ The
projection in the configuration space in which we have a
positive~definite inner product is called orthogonal projection
and is associated to a bilinear symmetric form. In the symplectic
space in which we have a skew-symmetric external product the
projector is assoclated to a skew~symmetric a bilinear form.
Finally, one observe that if the projector 2-form is exact one
may write P w do, where o = A‘udzy defined only on the submanifold.

In this case the Dirac braket may be write as:

Hy by V_ o aM
2%} OPA I A 27)

They bracket appears in this case as a non singular genera-
lized Poisson brackel in the reduced space of Dim 2n-T. If the
projector 2-form is not exact we have a non trivial topology. The
study of the singularities of the projector will be object of

another paper.
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