CBPF-NF-020/84 FERMIONIC DETERMINANT FOR TWO-DIMENSIONAL MASSIVE QED

bу

M.A. Rego Monteiro

Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq Rua Dr. Xavier Sigaud, 150 22290 - Rio de Janeiro, RJ - Brasil

FERMIONIC DETERMINANT FOR TWO-DIMENSIONAL MASSIVE QED

M.A. Rego Monteiro

Centro Brasileiro de Pesquisas Físicas Rua Dr. Xavier Sigaud, 150 22290 - Rio de Janeiro, RJ - Brasil Abstract

We evaluate the fermionic determinant for two-dimensional massive QED for the case of zero topological-charge sector by means of Seeley's technique

Key-words: Field theory; Functional integral

1. Introduction

In the last years, a considerable effort has been done to understand some two-dimensional theories [1-10]. The hope is that some of the properties in two-dimensional models will be either independent of the dimension of space-time or will at least have generalizations to higher dimensions.

The problem of integrating over the fermionic field has received also some attention [2-9]. An advance along this line [5-9], which can be understood as a sort of path-integral version of the bosonization technique [2,10], has been achieved in some two-dimension models with massless fermions but in the case that the fermions are massive [2,10] this approach was not successfull.

We show in this paper for the case of zero topological-charge sector how we can evaluate the fermionic determinant for two-dimensional $QED(QED_2)$ with massive fermions. The method used is the following: at first we implement a chiral change of variables, the Jacobian associated to the transformation is calculated by the method developed recently [6] and the remaining fermionic determinant is obtained by means of Seeley's asymptotic expansion [11].

In the next section we implement the chiral change of variables and calculate the associated Jacobian, in section III we evaluate the remaining fermionic determinant and briefly comment the result.

2. The change of fermionic variables

Let us now consider generating functional for Euclidean QED_2 with massive fermions; the behavior of all fields at $i\underline{n}$ finite is assumed so that it is possible to compactify the space:

$$Z = \int D\overline{\psi}D\psi DA \exp \left\{ \int \left[\overline{\psi}D\psi + \frac{1}{4}F_{\mu\nu}^{2} \right] d^{2}x \right\}$$
 (1)

where D = - / D - m = - i / B - e / A - m.

We want to perform the finite chiral transformation:

$$\psi(x) = e^{\gamma_5 \alpha(x)} \eta(x)$$

$$\bar{\psi}(x) = \bar{\eta}(x) e^{\gamma_5 \alpha(x)}$$
(2)

This finite transformation will be achieved by successive in finitesimal changes. We introduce then a real parameter r $(0 \le r \le 1) \text{ so that}$

$$\eta_{r}(x) = \bar{e}^{\gamma_{5}r\alpha(x)}\psi(x)$$

$$\bar{\eta}_{r}(x) = \bar{\psi}(x)e^{-\gamma_{5}r\alpha(x)}$$
(3)

and for r = 1 we reobtain the finite transformation (2). In order to calculate the Jacobian associated to (2) we perform the transformation (3) in (1); considering for simplicity only the fermionic part we get:

$$G = \int J(r) \mathcal{D}_{\eta_r} \mathcal{D}_{\eta_r} \exp \{ \int \bar{\eta}_r D_r \eta_r d^2 x \}$$
 (4)

where

$$D_{r} = e^{\gamma_{5} r \alpha(x)} D e^{\gamma_{5} r \alpha(x)}$$
 (5)

and

$$\mathcal{D}\,\bar{\psi}\mathcal{D}\,\psi = J(r)\mathcal{D}\,\bar{\eta}_{r}\mathcal{D}\bar{\eta}_{r} \tag{6}$$

we note that the Jacobian for the finite transformation is giv en by J = J(r = 1). Integrating over the fermionic variables in (4) and since G cannot depend on r:

$$\frac{dG}{dr} = 0 = \frac{dJ(r)}{dr} \det D_r + J(r) \frac{d}{dr} (\det D_r)$$
 (7)

After integration of (7) over r we obtain:

$$J = J(1) = exp\{-\int_{0}^{1} \omega'(r) dr\}$$
 (8)

where

$$\omega(r) = \ln \det D_r \tag{9}$$

Regularizing the determinant by the zeta function method [12], we can write $\omega(r)$ as:

$$\omega(r) = -\frac{d}{ds}\zeta(s, D_r)\Big|_{s=0}$$
 (10)

where

$$\zeta(s,D_{r}) = \sum_{j} \lambda_{j}^{-s}$$
 (11)

with λ_j the eigenvalues of D_r . Now, in order to compute $\omega'(r)$, we obtain from (5):

$$D_{r+Ar} = D_r + A_1 \Delta r + O(\Delta r^2)$$
 (12)

with

$$A_1 = \gamma_5 \alpha(x) D_r + D_r \gamma_5 \alpha(x)$$
 (13)

Then we have for $\omega'(r)$:

$$\omega'(r) = \lim_{\Delta r \to 0} -\frac{1}{\Delta r} \left[\zeta(0, D_r + A_1 \Delta r) - \zeta(0, D_r) \right]$$

$$= 2Tr(D_r^{-s} \gamma_5 \alpha(x)) \Big|_{s=0}$$
(14)

In the last step we have used a property of the zeta function $\begin{bmatrix} 6,13 \end{bmatrix}$. Then substituting (14) in (8) we have:

$$J = \exp\{-2\int_{0}^{1} Tr(D_{r}^{-s}\gamma_{5}^{\alpha}(x)) \Big|_{s=0} dr\}$$
 (15)

The trace in (15) can be rewritten according to Seeley

$$J = \exp\{-2\int d^2x \int_0^1 dr Tr(k_0(D_r; x, x)\gamma_5)\alpha(x)$$
 (16)

and the Kernel k_0 can be explicitly evaluated by means of Seeley's coefficients [6,11].

Choosing the Lorentz gauge

$$A_{\mu} = -\frac{1}{e} \varepsilon_{\mu\nu} \partial_{\nu} \alpha \tag{17}$$

we obtain for D_r defined in (5)

$$D_r = -i\beta - e(1-r)A - me^{2r\gamma_5\alpha}$$
 (18)

Now in order to compute $k_o(D_r;x,x)$ for this operator—we follow Seeley's technique <code>[6,11]</code>. The symbol <code>[11]</code> of the differential operator D_r is

$$\sigma(D_r) = a_1 + a_0 \tag{19}$$

where a_1 is the principal symbol of D_r ,

$$a_1 = \cancel{\xi} \tag{20}$$

and a is given by:

$$a_{o} = -(1-r)A - me^{2r\gamma_{5}\alpha}$$
 (21)

We have to construct the coefficients $b_{-1-j}(x,\xi,\lambda)$, j=0, ..., d=4, in order to use Seeley's result for $k_0(D_r;x,x)$:

$$K_{o}(D_{r};x,x) = \frac{-i}{(2\pi)^{2}} \int_{\xi|=1}^{d\xi} \int_{0}^{\infty} b_{-3}(x,\xi,i\lambda) d\lambda$$
 (22)

The b¦s satisfy the following relations:

$$b_{-1}(a_1 - \lambda) = I$$

$$b_{-1-\ell}(a_1 - \lambda) + \sum_{\alpha} \left(\frac{\partial}{\partial \xi}\right)^{\alpha} b_{-1-j} \left(-i\frac{\partial}{\partial x}\right)^{\alpha} a_{1-k\frac{1}{\alpha!}} = 0$$
 (23)

with $\ell > 0$, the sum taken for j < ℓ and j + k + $|\alpha|$ = ℓ .

Evaluating these coefficients for the operator $\mathbf{D}_{\mathbf{r}}$ we obtain

$$\operatorname{Tr}\left[K_{o}(D_{r};x,x)\gamma_{5}\right] = -\frac{e}{2\pi}(1-r)F_{o1} - \frac{m^{2}}{2\pi} \sinh(4r\alpha) \qquad (24)$$

Substituting (24) in (16) we get for the Jacobian:

$$J = \exp\{-\frac{e^2}{2\pi} \int A_{\mu} A_{\mu} d^2 x - \frac{m^2}{4\pi} \int (1 - \cosh 4\alpha) d^2 x\}$$
 (25)

3. Evaluation of the fermionic determinant

The generating functional given in (1) in terms of the new fermionic variables η and $\bar{\eta}$ is

$$Z = \int DAD\bar{\eta}D\eta \exp\{-\int \left[\bar{\eta}(i\beta + me^{2\gamma_5\alpha})\eta + \frac{e^2}{2\pi}A^2 + \frac{m^2}{4\pi}(1 - \cosh 4\alpha) - \frac{1}{4}F^2\right]d^2x\}$$
 (26)

We may note that the fermionic part of the Lagrangian is the model studied by H. Lehmann and K. Pohlmeyer [14]. Now, integrating over the new fermionic variable in (26) we get:

$$Z = \int \mathcal{D}A \ \det(i\partial + me^{2\Upsilon_5\alpha}) \ \exp\{-\int d^2x \left[-\frac{e^2}{2\pi}A^2 + \frac{m^2}{4\pi}(1 - \cosh 4\alpha) - \frac{1}{4}F^2 \right] \}$$
 (27)

In order to compute the determinant given in (27) we introduce again a parameter $r(0 \le r \le 1)$ and the operator D_r given as $\lceil 9 \rceil$:

$$D_r = i / me^{2rf}$$
 (28)

where f = $\gamma_5 \alpha(x)$, for r = 1 we reobtain the operator under consideration. Differentiating D_r with respect to r we obtain:

$$\frac{d}{dr}D_r = 2(D_r - i\beta)f \tag{29}$$

The determinant of $\mathbf{D}_{\mathbf{r}}$ is regulated by the proper time method:

$$\ln \det D_r^2 = \operatorname{Tr} \ln D_r^2 = -\int_{\varepsilon}^{\infty} \frac{ds}{s} \operatorname{Tr} \left[\exp(-sD_r^2) \right]$$
 (30)

where ϵ is an ultraviolet cutoff on the proper time integration. Differentiating (30) with respect to r and using property (29) we obtain:

$$\frac{d}{dr} \operatorname{Tr} \ln D_{r}^{2} = \int_{\varepsilon}^{\infty} ds \operatorname{Tr} \left[\overline{2} D_{r} \mathring{D}_{r} \operatorname{exp}(-sD_{r}^{2}) \right] =$$

$$= 4 \int_{\varepsilon}^{\infty} ds \operatorname{Tr} \left[\overline{f} D_{r}^{2} \operatorname{exp}(-sD_{r}^{2}) \right] - 4 i \int_{\varepsilon}^{\infty} ds \operatorname{Tr} \left[\overline{g} f D_{r} \operatorname{exp}(-sD_{r}^{2}) \right] =$$

$$= -4 \int_{\varepsilon}^{\infty} ds \frac{d}{ds} \operatorname{Tr} \left[\overline{f} \operatorname{exp}(-sD_{r}^{2}) \right] - 4 i \int_{\varepsilon}^{\infty} ds \operatorname{Tr} \left[\overline{g} f D_{r} \operatorname{exp}(-sD_{r}^{2}) \right] =$$

$$= 4 \operatorname{Tr} \left[\overline{f} \operatorname{exp}(-\varepsilon D_{r}^{2}) \right] - 4 i \int_{\varepsilon}^{\infty} ds \operatorname{Tr} \left[\overline{g} f D_{r} \operatorname{exp}(-sD_{r}^{2}) \right]$$

$$= 4 \operatorname{Tr} \left[\overline{f} \operatorname{exp}(-\varepsilon D_{r}^{2}) \right] - 4 i \int_{\varepsilon}^{\infty} ds \operatorname{Tr} \left[\overline{g} f D_{r} \operatorname{exp}(-sD_{r}^{2}) \right]$$

$$= 3 \operatorname{Tr} \left[\overline{g} \operatorname{f} \operatorname{Dr} \left[\overline{g} \operatorname{Dr} \left[$$

The second term on the last line above does not give contribution since we are considering only fields with trivial topology.

For the first term Seeley [11] has shown that there is an asymptotic small ϵ expansion for the diagonal part of the $ext{x}$ ponential. For operators of the form:

$$D = -D_{\rho}D^{\rho} + X \tag{32}$$

where D_{ρ} is a covariant derivative and X a matrix valued function we have [3,15]:

$$\langle x \mid exp(-\epsilon D) \mid x \rangle \xrightarrow{\epsilon \to 0} \frac{1}{(4\pi\epsilon)^{d/2}} \begin{bmatrix} 1 + \epsilon \dot{x} + 0(\epsilon^2) \end{bmatrix}$$
 (33)

where d is the dimensionality of space-time.

Now, calculating D_r^2 , with D_r given in (28), substituting the asymptotic small expansion (33) in the differential equation (31) and using the well known properties of traces of γ -matrices we obtain the differential equation:

$$\frac{d}{dr} \operatorname{Tr} \ln D_r^2 = \frac{m^2}{4\pi} \int d^2x \, \frac{d}{dr} \operatorname{Tr} \left[\underline{\underline{e}}^{4r\alpha\gamma} \underline{\underline{5}} \right]$$
 (34)

Integrating this equation with respect to r we obtain:

$$\operatorname{Tr} \ln(i\beta + me^{2\alpha\gamma_5}) - \operatorname{Tr} \ln(i\beta + m) = -\frac{m^2}{4\pi} \int d^2x (1 - \cosh 4\alpha)$$
 (35)

Substituting this result (35) in (27) we get for the generating functional of QED $_2$

$$Z = \int \mathcal{D}A \exp\left\{-\int d^2x \left[-\frac{e^2}{4\pi}A^2 + \frac{m^2}{2\pi}(1 - \cosh 4\alpha) - \frac{1}{4}F^2\right]\right\}$$
 (36)

which is the path-integral version of the bosonized QED $_2$ with massive fermions. As we are working in Euclidean space in the continuation to Minkowski space we would have $\alpha \rightarrow i\alpha$ and the hiperbolical cosine would transform to a simple cosine in agreement with the results obtained by bosonization techniques [2,10].

Acknowledgements

The author is indebted to C.G. Bollini, J.J. Giambiagi and J.A. Mignaco for interesting discussions, to F.A. Schaposnik for calling his attention for the paper of reference [9] and specially to L.C. Botelho for several stimulating discussions.

References

- 1. W. Marciano and H. Pagels, Physics Reports 36, 137 (1978)
- J.A. Swieca, "Obras Coligidas" (Collected papers), Projeto Galileo Galilei, CBPF-CNPq (1981)
- 3. K.D. Rothe and B. Schroer, in "Nato advanced study instituents", edited by Werner Rühl, vol. B55, Pg 249 (1980)
- N.K. Nielsen and B. Schroer, Nucl. Phys. <u>B120</u>, 62 (1977)
 E.C. Marino, B. Schroer and J.A. Swieca, Nucl. Phys. <u>B200</u>,
 473 (1982)
- 5. R. Roskies and F.A. Schaposnik, Phys. Rev. <u>D23</u>, 558 (1981)
- 6. R.E. Gamboa Saravi, M.A. Muschietti, F.A. Schaposnik and J.E. Solomin "Chiral symmetry and functional integral" La Plata University Report (1984) (to appear in Annals of Physics)
- 7. A.M. Polyakov and P.B. Wiegman, Phys. Lett. <u>B131</u>, 121, (1983) L.C. Botelho and M.A. Rego Monteiro, CBPF preprint NF-11/84
- 8. R.E. Gamboa Saravi, F.A. Schaposnik and J.E. Solomin "Towards a complete solution of two-dimensional QCD" La
 Plata University Report (1984)
- 9. O. Alvarez, Nucl. Phys. <u>B238</u>, 61 (1984)
- S. Coleman, R. Jackiw and L. Susskind, Annals of Physics 93,
 267 (1975)
- 11. R.T. Seeley, Proc. Symp. Pure Math., vol. 10, Amer. Math. Soc.,
 pg. 288 (1967)
- 12. S.W. Hawking, Commun. Math. Phys. 55, 133 (1977)
- 13. R.E. Gamboa Saravī, M.A. Muschietti and J.E. Solomin, Commun. Math. Phys. 89, 363 (1983)

- 14. H. Lehmann and K. Pohlmeyer, Commun. Math. Phys. 14, 78 (1969)
- 15. B. DeWitt, Dynamical theory of groups and fields, Gordon and Breach and (1965)
 - P.B. Gilkey, Proc. Symp. Pure Math. 27 (1973), and J. Diff. Geom. 10, 601 (1975)