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Abstract

We evaluate the fermionic determinant for two-dimensional
massive QED for the case of zero topological-charge sector by

means of Seeley's technique
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1, Introduction

In the last years, a considerable effort has been done to
understand some two-dimensional theories [1-10]. The hope is
that some of the properties in two-dimensional models will be
either independent of the dimension of space-time or will at
least have generalizations to higher dimensions.

The problem of integrating over the fermionic field has
received also some attention [[2-9]. An advance along this
Tine [[5-97, which can be understood as a sort of path-inte-
gral version of the bosonization technique [2,10], has been
achieved in some two-dimension models with massless fermions
but in the case that the fermions are massive [2,10] this ap
proach was not successfull,

We show in this paper for the case of zero topological-
charge sector how we can evaluate the fermionic determinant
for two-dimensional QED(QEDZ) with massive fermions. The me-
thod used is the following: at first we implement a chiral
change of variables, the Jacobian associated to the transfor-
mation is calculated by the method developed recently [6] and
the remaining fermionic determinant is obtained by means of
Seeley's asymptotic expansion [11].

In the next section we implement the chiral change of vari-
ables and calculate the associated Jacobian, in section III we
evaluate the remaining fermionic determinant and briefly com-

ment the result.
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2. The change of fermionic variables

Let us now consider generating functional for Euclidean

QED., with massive fermions; the behavior of all fields at in

2
finite is assumed so that it is possible to compactify the

space:
7 = JDJ)DL[)DA exp{J[mnw +-}Ffw Jd%x (1)
where D =-p - m =-1i} - ef - m.

We want to perform the finite chiral transformation:

v(x) = e¥s20)p00

B(x) = n(x)eYseO)

This finite transformation will be achieved by successive in
finitesimal changes. We introduce then a real parameter r

r< 1) so that

no(x) = a¥sre0dy

(3)
T(x) = B(x)e Ysralx)

and for r =1 we reobtain the finite transformation (2). In or
der to calculate the Jacobian associated to (2) we performthe
transformation (3) in (1); considering for simplicity only the

fermionic part we get:
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G =ﬂjd(r)Dﬁanr exp{JﬁrDrnrdzx} (4)
where

D, = eYsro () povsralx) (5)
and

0YDY = I(r)0n Do (6)

we note that the Jacobian for the finite transformation is giv
en by J = J(r=1). Integrating over the fermionic variables

in (4) and since G cannot depend on r:

g% =0 = Q%éﬁl det D_ + J(P)ﬁé(dEt D) (7)

After integration of (7) over r we obtain:

J = J(1) = exp{-J w'(r)dr} (8)
o
where
w(r) = £&n det D_ (9)

Regularizing the determinant by the zeta function method

[12], we can write w(r) as:

w(r) = -g5t(s,D)]| (10)

t(s.Dp) = ] A7 (11)
J
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with Aj the eigenvalues of D . Now, in order to compute w'(r),

we obtain from (5):

= 2 12
D yar = Dy AlAr + 0(ar®) (12)

with

Ay = YSOL(X)Dr + Dry5u(x) (13)

Then we have for w'(r):

W' (r) = Lim - z]',:EC(O’Dr‘fA]“) - £(0,0.)]
Ar-0
- 2Tr (D] vza(x))] (14)

s =0

In the last step we have used a property of the zeta function

[6,13]. Then substituting (14) in (8) we have:

1
J = exp{-ZJ Tr(D;SYSQ(x)‘ dr} (15)

s =0
o}

The trace in (15) can be rewritten according to Seeley

[11] and we get

J = exp{—ZJHZ%J drTr(ko(Dr;x,x)YS)a(x) (16)
0

and the Kernel kO can be explicitly evaluated by . means of
Seeley's coefficients [6,11].

Choosing the Lorentz gauge
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A =-le 3 (17)
u e uv v
we obtain for D_ defined in (5)
D =-if - e(1-r)k - me 2" Ys® (18)

Now in order to compute kO(Dr;X’X) for this operator we
follow Seeley's technique [6,11]. The symbol [11] of .the

differential operator Dr is
o(D_) = a, + a (19)

where a, is the principal symbol of-Dr,

and a is given by:

a, =-(1-r)A - me?rY¥s® (21)

We have to construct the coefficients b_]_j(x,g,k), j =20,

....d=4, in order to use Seeley's result for kO(Dr;x,x):

. _o_ =i .
Ko (D _5x,x) n) Jg?i]jjb_g(x,g,1x)dk (22)

The b;s satisfy the following relations:
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b_(ay= 2) =1

g (O

5 : 1
b_j_pla; =2) + ) (g’g‘)ub (=is3) LR e 0 (23)

a 1=

with £ > 0, the sum taken for j < £ and j+k+|a| = £.
Evaluating these coefficients for the operator Dr we ob-
tain
e m2 . ’
Tr[KO(Dr;x,x)y5] = = »=(1-r)F | - 5= sinh(4ra) (24)

Substituting (24) in (16) we get for the Jacobian:

2 2
J = exp{-gF_fAuAudzx -%? J(] - cosh 4a)d?x} (25)

3; Evaluation of the fermionic determinant

The generating functional given in (1) in terms of the

new fermionic variables n and n is
_ - . 2Y.0 e? m? 1
Z -JDADnDn exp{—]l_n(w +me” 157 )n +-2?A2 +7=(1 - coshda) -Iszdzx} (26)

We may note that the fermionic part of the Lagrangian is the
model studied by H. Lehmann and K. Pohlmeyer [ 147. Now, in-
tegrating over the new fermionic variable in (26) we get:

2

Z =JDA det(ig +me?Ys%) exp{—szx ]:;%Az +r£-7?(1 - coshda) —-}‘-Fz:]} (27)



CBPF-NF-020/84

In order to compute the determinant given in (27) we introduce

again a parameter r(0<r <1) and the operator D_ given as | 9]:
D, = ip + me” T (28)

where f = ysu(x), for r =1 we reobtain the operator under con

sideration. Differentiating D, with respect to r we obtain:

S0 = 2(D, -ip)f (29)

The determinant of D_ is regulated by the proper time method:
ds— |-
tndet D2 = Tr £nDZ = -Jm—wTr|pxp(—sDi)] (30)

where € is an ultraviolet cutoff on the proper time integration.
Differentiating (30) with respect to r and using property (29)

we obtain:

d ” >0 B '
a?Tr,KnDi = J ds Tr]_ZDrDr exp(-SDi)] =
€

_ *n2 _en2y\l _ a4 -  «n2 _
= 4rds Tr]_f'Dr exp( sDr)] 41des T\r'[_7h°Dr exp( sDr)j =

€ €

d . -
=-4] ds g= Tr[f exp(-sD’)] - 41fds Tr[#fD_ exp(- sD2)] =
€ €

= 4Tr[f exp(- sDi)] - 41‘Fds Trl:ﬁfDr exp (- st_)] (31)

€

The second term on the last 1ine above does not give contribu

tion since weare considering only fields with trivial topology.
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For the first term Seeley [[11] has shown that there is an

asymptotic smalle expansion for the diagonal part of the ex

ponential. For operators of the form:
D=-Dpr + X ‘ (32)

where Dp is a covariant derivative and X a matrix valued func
tion we have [3,15]:

<x|exp(-€D)|x> > L d/2|:]+ eX+0(e?)] (33)

g0 (4me)

where d is the dimensionality of space-time,

Now, calculating Dﬁ, with D_ given in (28), substituting
the asymptotic small expansion (33) in the differentia] equa-
tion (31) and using the well known properties of traces of

y-matrices we obtain the differential equation:

d 2 _ om 2, d - s roy

I 4n D2 = ZF_Jd X g=Trle 5] (34)
Integrating this equation with respect to r we obtain:

2
Tr £n(ig +me2®s) - Tr en(ig+m) = % d?x(1 - coshda) (35)

Substituting this result (35) in (27) we get for the generat

ing functional of QED2

2
Z =.IDA exp{-Jd2x|:§?A2-+g%(1 - coshda) -%sz} (36)
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which is the path-integral version of the bosonized QED2 with
massive fermions. As we are working in Euclidean space in the
continuation to Minkowski space we would have a » io and the
hiperbolical cosine would transform to a simple cosine 1in agre

ement with the results obtained by bosonization techniques [2,10].
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