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ABSTRACT

We define curves on a Riemannian manifold as inte
grals of generalized Jacobi fields. We show that the force
term that deviates the trajectory from the geodesic motion

can be constructed as a functional of the metric tensor.

These curves can be interpreted as particles (ob-
servers) coupled non-minimally with gravitation which can
provide a class of residual observers for the inevitable

singularity - as shown in the text.

1. Introduction

The interest on Jacobi fields rests - for most re-
lativists - on its intimate connection with tidal forces ,

the focusing effect of gravity and the discussion of sinqu -
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larity regions. In this paper we use Jacobi fields, defined
in a 4-dim Riemannian manifold, to introduce a class of
accelerated curves (actuafly a class of congruence of acce-
lerated curves) which are integral curves of Jacobi fig]ds
in the following sense: the connecting vectors of two neigh
bouring curves is a Jacobi field. This way of introducing
curves appears to be natural and straightforward, and the
mathematical properties of these acceleratec curves are dis
cussed. The conformal equivalence to geodesics of some
classes of accelerated curves follows naturally. Also acce-
lerations (or forces) can be considered as being of purely
metrical origin because they can always be expressed as a
series of terms depending only on metrical functions.
Geodesics are a special case of such curves. The
special role of geodesics among the whole class of continuous
curves in M4 is a consequence of Einstein's theory: it is
the trajectory of particles interacting solely with and mi-
nimally coupled to gravitation. In the past years a lot of
work has been done on studying local and global properties
of geodesics, and some embarassing results have appeared
(e.g. the singularity theorems [1]). This gave us the sus -
picion that probably Einstein's theory is not the final answer
to the gravity problem. Modifications of the equations of
motion of the field (guv) and some alternatives of the inter
actions of particles with gravitation have been proposed
(e.g. Cartan theory of spin-spin contact gravitational inter
action, non-minimal coupling of interacting fields, etc.).

In this vein, we should be prepared to face the problem of



gravity being able to accelerate particles, in some cases,
diminishing the focusing of them and producing possible re

sidual observers to the classical singularity.

2. Definitions

Let M4 be a four-dimensional Riemannian manifold
with a metric connection structure on it. Thi; connection
defines naturally the operation of covariant differentiation
V of vectors and tensors in M4. A curve T on M4 is a maﬁ vy of
an interval I of R] into M,. Let y(so) represent a generic

4
point of T, S, € I. The tangent vector to the curve at So will

be V =(%§)s=s which can be described by its components Ve
0
in the coordinate basis (-—3-&)S A curve T is by definition
Y 0

a geodesic if the covariant derivative of the tangent vector

v along the curve,
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is parallel to VB, namely

o B
) Vo v fv

where f is a function which can be made zero by a reparame-
trization of the curve. The new parameter thus obtained is

called an afinne parameter and the geodesic equation gives

D B _ o B _
s Vo=V VP = 0 (2)

In what follows, all the congruence of curves [2] are para-
metrized with the same parameter s, at least on a small com

pact domain.



A vector m which connects points on two infinite-
simally neighbouring curves of a congruence, with equal values
for the parameters s, is called a connecting vector. We call a
Jacobi field (JF) along T any connecting vector ¥ which satis-
fies the equation

2 o

2—12 + R® gV VP 1Y = 0 (3)
Ds
in which %E 7 is given by (1). The curvature tensor is defined
by
= - = €
v[p VQ] £, = (V 9, -V, V) g, =R 8

for an arbitrary vector 7. The second term of equation (3)
represents, in Einstein's gravity, tidal forces experienced
by neighbouring particles moving on a congruence of geodesics.

We call integral curves of (3) the congruence of

curves such that the connecting vector is a Jacobi field along
the congruence, that is, the connecting vector of two neigh-
bouring curves of the congruence is a sclution of (3).

For Ricci-flat space-times Yeyl conformal tensor
[3] Capuv reduces to the curvature tensor Raeuv' dow it is
well known that we can separate Yeyl tensor into two symmetric
trace-free tensors EaB’ Hae with respect to a congruence (time-
1ike or null) whose tangent vector is v

- - e} g
Eap = " Copps V0V (4a)

- p O
Hop = Coxppg V0V (4b)

(4a) and (4b) are called respectively the electric and mag -

netic part of lteyl tensor.



Equations (4) and (3) tell us that the evolution
of the connecting vector depends only on the electric part of
eyl tensor, and linearly.

The most simple and direct way of generalizing
equation (3) is by assuming that non-linear terms in E_  and/or

af
H can appear in the RHS of this expression. Ve are thus led

afl
to define: a generalized Jacobi field (GJF) 7 is such that it
satisfies the equation
%Séi = N% 2P (5)

where N%g is a polinomial function of the curvature tensor.
We call attention to the fact that we can also introduce 1in
equation (5) a new tensor ﬁ“s, not reducible to geometry but
which can be related to it by some dynamical equation. This
non-geometric way of introducing GJF will not be pursued here.
The final aim of setting up equation (5) is to be ahble to
describe accelerated curves representing non-minimal coupling
of particles with gravitation as we shall see in the next
section.

It seems worthwhile to remark that we can use the
projection field 7L when setting the equation of GJF. Indeed

using the projection tensor

hae = gocB -~ VaVB

we define the projection ?l orthogonal to the tangent vector

V as

zaL = h% 78



A straightforward calculation shows that the distinction

between both cases depends quadratically on the acceleration
-

a = %% , when the associated congruence is not geodesic. We
find

%8 g % B (h%02°) = h% X, 2° - 22% a 77 (7)
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The importance of the projection L is due to the interpre-
2 5
tation of —E? Z, as the relative acceleration of neichbouring
Ds !
-> ->
points. YWe will use Z instead of l in our equations but from

(7) we can easily translate all our results to the corres -

ponding projected expression.

3. Accelerated Curves

Equation (5) tells us that in general the paths T
of the associated congruence will have a non-null accelerated
vector. In order to make explicit the relationship between
the acceleration a® and the tensor N%g, let us make the cons-
truction of the GJF ; from the value of 7 at a given point

P eI by Lie-transport along I'. We define
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From equations (5) and (8) we find

V. a~ = Nap - Rappv ve vV (9)



The behaviour of the acceleration is governed by
N“p and the curvature tensor. Assuming the geometrical origin
of Nau we develop it in powers of the curvature tensor and
its dual. In Ricci-flat manifolds we can distinguish 3 classes
of polynomials:
(a) n-type Electric field: defined by power of order n of

E“v,

E %8 =k % EPo .... E"B (10a)
(n) n-terms
k a constant. A particular case of this class is n =1, k=-1,

when the curves are minimally coupled to gravitation. And
since we are assuming that acceleration cannot be of non-geo
metrical origin, they must be unaccelerated (geodesics).

(b) g-type Magnetic field: defined by powers of order q
of H"y ,

H % = k'H% HPs .... H"p (10b)
(q)

g-terms

(c) n-Electric and g-Magnetic field: defined by powers of
order n of £ and of order q of §

Mo % = K" E® EP ... EM WM ... HE (10¢)

P VY R
(n,q) n-terms q-terms

Due to the properties of E and Qnﬁof eqs (4)) we have

E of = E Ba H af = H Bo
(n) (n) (q) (9)
E%®y -op HOB v -0
(n) P (q) B (11)
M op \/8 = 0 M aB # M Ro
(n,q) (n,q) (n,q)
E o = 0 H a =
(1) @ (1) @ °



Calling the force that accelerates the particle as

Fa (we normalize mass to unity),

Dv® - yB o _ O 2
-D—S—-_VVBV-F (12)
we have from (9)
Vu Fa = Nau + a

For classes (a) and/or (b) the following properties hold:
(1) Fdlu - Fula = 0 which implies Fa = Va @

c =
(I1) v, v B =0

B ]
(111) Vv Fyo= 0

It can be shown (4) that the existence of the fung
tion @ for classes (a) and (b) defines a conformal transform
ation which maps the accelerated curves (12) into geodesics.
Thus for cases purely electric and purely magnetic n-type
fields, the accelerated congruence is conformally equivalent

to a congruence of geodesics.
M o8

(n,q)
is not such a potential function @ in class (c). Property

The lack of simmetry of implies that there

(IIT1) says that all curves of purely electric, and/or magnetic

A

type have constant acceleration. 7 similar result holds for

curves defined by M . So the whole class of curves defined

(n,q)
by polynomials of £ and H have constant acceleration.

4, The Optical Parameters of the congruence and the Focusing
Effect

The geometr: il behaviour of a congruence of curves



>
with tangent field V(x) can be described by two tensors: the

rotation tensor

and the general shear tensor

eaB = v(a VB)

Instead of using the symmetrical tensor ea , we deal with its

g
irreducible parts, the (trace-free) shear tensor S and the

expansion parameter

By making use of the projection tensor has

We can write

1o € 1
oas'fh [0 h B]vev)\-§eha8 (13)

A

w h

]
wg =z N [eh® gl vV, (14)

From Bianchi's identities [2] we can obtain the equations of

evolution for ¢, 48 and Wy After a lenghty calculation we
find [2] :
u v
h ¥y VD -1 2 oy =
o Ng 5 Wy > h[a hB] v a, *3 0 Wept 0[0: wBID 0
- (15)

D o, 2 62 2 TRV

TP -V, @ +o" 4 — * 2w - R VR VY =0 (16)
(D o, Jh " P + a a ! h Yh P v, a + 0 © + 290 .+
Ds “wp’a B B o B (p%w) ap- B 3 Y “aB
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1. o 2 _ 7] 21 _
- waw8+ 3 nae[&aa + W U_J + EaB_ 7 Tap 0 (17)
Some properties of these equations can be analysed

for three distinct classes of paths:

(i) tH-poles: when Nau = Hau. From the properties of H*u we
find
v F* = o (18a)

(18b)

Equation (18a) implies that there is no contribution from the
force term to the focusing effect of gravity. Indeed, the
existence of conjugate points on path T will depend - similar
ly as in geodesic curves - on the sign of the scalar Ruvv”vv.
If the metric is such that R VHVY < 0 then the equgtion of
expansion for the accelerated H-pole will give 6 + %T i 0
(for ¢ = w = 0). This implies the existence of conjugate
points (in which GJF % is null).

The equation of rotation oy depends only on the
curl of the acceleration. From (18b) we can éonclgde that
the acceleration induced on a particle which is non-minimally
coupled with gravitation - given by the presence in the
equation of congruence deviation of a term Tinear in the mag
netic part of the Weyl tensor - is not able to modify direc-
tly the creation or destruction of vorticity. This means that
if the vorticity is null at some point cf the path, it will
be null along the path irrespectively of how big the accele-
ration becomes. The effect of non-null acceleration on the
shear o comes only from the second and third terms of

expression (16).
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A B
(ii) case N = e. E + } h H
an T Ly % (a)%"  b=1 D (b)OH
By equation (9)
a% = v* ¢ (19a)

v, %= - g eﬂ(i? at % hb(E?a (19b)

The convergence of the congruence (equation of
evolution of 6) depends on the sign of [ ] #. If ]9 is
positive definite, we can apply the same reasoning as in
Raychaudhuri's equation for geodesics - showing the focusing
effect of gravity. In this case the role of the acceleration
is only to diminish (without being able to eliminate) the
convergihg power of gravity, by enlarging the distance of
focal points. Due to (19) there is no effect on the evolution
of vorticity and the effect on shear comes only from the

second and third terms of (16).

(iii) the general case (from (10c))
N = ) m(n,g) M ou
M nyg (n,q)

The contribution of acceleration to the focusing
effect of gravity on these curves will be given by
v a® = 7 m(n,q) NM* g (20)
n,q (n,q)
As in case (ii) the positivity of (20) will diminish the fo-
cusing power of gravity on the trajectories. Also by choosing
suitable coefficients m(n,q) these accelerated trajectories

can be focused at any desired rate.
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In conclusion, if we can have matter coupled non-
minimally to gravitation as in (ii) and (iii) the problem
of singularity will have another view, because residual

3

observers can still survive the inevitable singularity.
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