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Abstract. The paper aims to introduce a new symmetry principle in the space-time
geometry through the elimination of the classical idea of rest and by including a universal
minimum speed limit in the subatomic world. Such a limit, unattainable by particles,
represents the preferred reference frame associated with a universal background field that
breaks Lorentz symmetry. Thus, the structure of space-time is extended due to the pres-
ence of a vacuum energy density, which leads to a negative pressure at cosmological scales.
The tiny values of the cosmological constant and the vacuum energy density shall be suc-
cessfully obtained, which are in good agreement with current observational results.
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1. Introduction

Driven by an urge to search for new fundamental symmetries in nature [1], the
paper attempts to implement a uniform background field into the flat space-time.
Such a background field connected to a uniform vacuum energy density represents
a preferred reference frame, which leads us to postulate a universal minimum speed
limit for particles with very large wavelengths (very low energies).

The idea that some symmetries of the fundamental theory of quantum gravity
may have non-trivial consequences for cosmology and particle physics at very low
energies is interesting and indeed quite reasonable. So, it seems that the idea of a
universal minimum speed as one of the first attempts of Lorentz symmetry violation
could have the origin from the fundamental theory of quantum gravity at very low
energies (very large wavelengths).

Besides quantum gravity for the Planck minimum length Ip (very high energies),
the new symmetry idea of a minimum velocity V' could appear due to the indispens-
able presence of gravity at quantum level for particles with very large wavelengths
(very low energies). So we expect that such a universal minimum velocity V also



CBPF-NF-020/08

Cldudio Nassif

depends on fundamental constants such as, for instance, G (gravitation) and &
(quantum physics). In this sense, there could be a relation between V' and Ip since
Ip o< (GE)1/2. The origin of V and a possible connection between V and Ip shall
be deeply investigated in a future work.

The hypothesis of the lowest non-null limit of speed for low energies (v < ¢) in
the space-time results in the following physical reasonings:

— In non-relativistic quantum mechanics, the plane-wave wave function (Ae
which represents a free particle is an idealization that is impossible to conceive under
physical reality. In the event of such an idealized plane-wave, it would be possible
to find with certainty the reference frame that cancels its momentum (p = 0), so
that the uncertainty on its position would be Az = co. However, the presence of
an unattainable minimum limit of speed emerges in order to forbid the ideal case of
a plane-wave wave function (p = constant or Ap = 0). This means that there is no
perfect inertial motion (v = constant) such as a plane-wave, except the privileged
reference frame of a universal background field connected to an unattainable mini-
mum speed limit V', where p would vanish. However, since such a minimum speed
V (universal background frame) is unattainable for the particles with low energies
(large length scales), their momentum can actually never vanish when one tries to
be closer to such a preferred frame (V).

On the other hand, according to special rela.t1v1ty (SR), the momentum cannot
be infinite since the maximum speed ¢ is also unattainable for a massive particle,
except for the photon (v = ¢) as it is a massless particle.

This reasoning allows us to think that the electromagnetic radiation (photon:
‘c — ¢’= ¢) as well as the massive particle (‘v — v’> V(# 0) for v < ¢) are in
equal footing in the sense that it is not possible to find a reference frame at rest
(Urelative = 0) for any speed transformation in a space-time with both maximum and
minimum speed limits. Therefore, such a deformed special relativity will be termed
as symmetrical special relativity (SSR). We will look for new speed transformations
of SSR in the next section.

The dynamics of particles in the presence of a universal background reference
frame connected to V is within the context of ideas of Sciama [2], Schrédinger [3]
and Mach [4], where there should be an ‘absolute’ inertial reference frame in relation
to which we have the inertia of all moving bodies. However, we must emphasize
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Figure 1. S’ moves with a velocity v with respect to the background field of
the covariant ultra-referential Sv. If V — 0, Sy is eliminated (empty space)
and thus the Galilean frame S takes place, recovering Lorentz transformations.
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that the approach used here is not classical as Machian ideas, since the lowest
(unattainable) speed limit V' plays the role of a privileged (inertial) reference frame
of background field instead of the ‘inertial’ frame of fixed stars.

It is very interesting to notice that the idea of universal background field was
sought in vain by Einstein [5], suggested first by Lorentz. It was Einstein who
coined the term ultra-referential as the fundamental aspect of reality to represent a
universal background field [6]. Based on such a concept, let us call ultra-referential
Sy to be the universal background field of a fundamental inertial reference frame
connected to V.

2. Transformations of space-time and velocity in the presence
of the ultra-referential Sy

SSR should contain three postulates, namely:

(1) The constancy of the speed of light c.

(2) The non-equivalence (asymmetry) of the reference frames in such a space-
time, i.e.; we cannot exchange the speed v (of §’) for —v (of Sy) by the inverse
transformations, since we cannot find the rest for 8’ (‘v — v’ > V) (see figure 1).
Such an asymmetry will be clarified later.

(3) The covariance of the ultra-referential (background frame) Sy connected to
an unattainable minimum speed limit V' (figure 1). This postulate is directly related
to the second one. Such a connection will be clarified by studying the new velocity
transformations to be obtained soon.

Let us assume the reference frame S’ with a speed v in relation to the ultra-
referential Sy according to figure 1.

Hence, to simplify, consider the motion only at one spatial dimension, namely
(14 1)D space-time with the background field Sy . So we write the following trans-
formations:

dz’ = U(dX — Bcdt) = U(dX — vdt + V dt), (1)
where B, = fe = 3(1 — ), B =v/c and a = V/v, so that B, — 0 for v — V or
a— 1.

dt’=\Il(dt—M)=\Il<dt—vd2X+g), (2)

c c c

being ¥ = vyx. We have ¥ = Ei; If we make V — 0 (o — 0), we recover

Lorentz transformations, where the ultra-referential Sy is eliminated and simply
replaced by the Galilean frame S at rest for the classical observer.

In order to get the transformations (1) and (2) above, let us consider the following
more general transformations: 2’ = y(X —eyvt) and t/ = Oy(t — 52;”,)—(), where 0, €;
and ey are factors (functions) to be determined. We hope all these factors depend
on a, such that, for « — 0 (V — 0), we recover Lorentz transformations as a
particular case (f§ = 1, &g = 1 and e = 1). By using those transformations to
perform [c?t"? — 2/?], we find the identity: [c®t? — z'?] = 242[c*t? — 20t X +
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220t X — e2v2t? + fg%zgx—z — X?]. Since the metric tensor is diagonal, the crossed
terms must vanish and so we assure that ¢; = e = €. Due to this fact, the crossed
terms (2¢vtX) are cancelled between themselves and finally we obtain [c?¢/% — z'?]
0%~%(1 - 6—26-5’—2-)[621&2 — X?]. For o — 0 (¢ = 1 and § = 1), we reinstate [c*t"2 — z?] =
[¢*t? — 22] of SR. Now we write the following transformations: z’ = 8y(X — evt) =
67(X —vt+6) and t' = Oy(t — LX) = y(t — ¥ + A), where we assume § = §(V)
and A = A(V), so that § = A = 0 for V — 0, which implies ¢ = 1. So from

such transformations we extract: —vt + 6(V) = —evt and —% + A(V) = —2X,

from where we obtain € = (1 — é%/l) =(1- %ﬂ) As € is a dimensionless
factor, we immediately conclude that §(V) = Vt and A(V) = %&£, so that we find
e=(1-%)=(1-a). On the other hand, we can determine § as follows: 0 is a
function of a (f(a)), such that 8 = 1 for @ = 0, which also leads to € = 1 in order
to recover Lorentz transformations. So, as € depends on «, we conclude that 8 can
also be expressed in terms of ¢, namely 0 = 8(¢) = 8[(1 — a)], where € = (1 — a).
Therefore, we can write § = §[(1 — a)] = [f(a)(1 — )]*, where the exponent k > 0.
The function f(e) and k will be estimated by satisfying the following conditions:

(i) As 6 =1 for a =0 (V = 0), this implies f(0) = 1.

(ii) The function 6y = s ((f‘_)élzgf’)zlk = [(gqug))((tg))]]f - should have a symmetrical
behaviour, that is to say it goes to zero when closer to V' (o — 1) and in the same
way it goes to infinity when closer to ¢ (3 — 1). In other words, this means that the
numerator of the function v, which depends on « should have the same shape of its

denominator, which depends on 3. Due to such conditions, we naturally conclude

1/2 (1—a?)t/?

that & = 1/2 and f(a) = (1 + «), so that 6y = K}ig)(i:gnl > = G =
VIV
eyt U, where = V1 — a? = /1 - V?/s2.

The transformations shown in (1) and (2) are the direct transformations from
Sy [X* = (X,ict)] to §' [z = (2',ict’)], where we have 2™ = Q) X* (2’ = QX),
so that we obtain the following matrix of transformation:

v il - a)u
Qz(—i,@(l—a)\ll uee ) 3)

such that Q — L (Lorentz matrix of rotation) for « — 0 (¥ — «). We should
investigate whether the transformations (3) form a group and if so whether an
invariant object like the Lorentz invariant length of a vector can be defined for this.
However, these investigations can form the basis of further work.

We obtain detQ = %t—g;—%[l — B2%(1 — @)?], where 0 < detQ < 1. Since V
(Sy) is unattainable (v > V), this assures that @ = V/v < 1 and therefore the
matrix  admits inverse (det 2 # 0 (> 0)). However,  is a non-orthogonal matrix
(det 2 # £1) and so it does not represent a rotation matrix (det # 1) in such a
space-time due to the presence of the privileged frame of background field Sy that
breaks strongly the invariance of the norm of the 4-vector (limit v — V in (15) or
(16)). Actually, such an effect (det 2 = 0 for a &~ 1) emerges from a new relativistic
physics of SSR for treating much lower energies at infra-red regime closer to Sy
(very large wavelengths).

4 Pramana — J. Phys., Vol. 71, No. 1, July 2008
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We notice that det) is a function of the speed v with respect to Sy.. In the
approximation for v > V (a = 0), we obtain detQ ~ 1 and so we practically
reinstate the rotation behaviour of Lorentz matrix as a particular regime for higher
energies. If we make V — 0 (o — 0), we recover det§2 = 1,

The inverse transformations (from S’ to Sy) are

dX = ¥'(dz’ + fycdt') = ¥'(da’ + vdt' — V dt'), 4)
! ! /
dt =o' (dt’+&$”-) = (dt’-i- vde @) (5)
C C &

In matrix form, we have the inverse transformation X* = Q™ (X = Q- 12"),
so that the inverse matrix

_ o’ —i8(1 — o)V’
f 1=(i,8(1—a)\1!’ Z (\p' : ) ©

where we-can show that ¥'=¥"1/[1-32(1~a)?], so that we must satisfy Q10 = I.

Indeed we have ¥’ # ¥ and therefore Q! # Q. This non-orthogonal aspect of 2
has an important physical implication. In order to understand such an implication,
let us first consider the orthogonal (e.g. rotation) aspect of Lorentz matrix in SR.
Under SR, we have & = 0, so that ¥/ — 4" = y = (1 — 82)~1/2, This symmetry
(v = v, L™ = LT) happens because the Galilean reference frames allow us to
exchange the speed v (of §’) for —v (of S) when we are at rest at S’. However,
under SSR, since there is no rest at S’, we cannot exchange v (of 8) for —v (of
Sy) due to that asymmetry (¥’ # ¥, Q=1 % QT). Due to this fact, Sy must
be covariant, i.e., V remains invariant for any change of reference frame in such a
space-time. Thus, we notice that the paradox of twins, which appears due to the
symmetry by the exchange of v for —v in SR should be naturally eliminated in SSR
where only the reference frame S’ can move with respect to Sy. So Sy remains
covariant (invariant for any change of reference frame). Such a covariance will be
verified soon.

We have det @ = ¥2[1 — 8%(1 - a)?] = [(det Q)¥~2] = [1 — 82(1 — )?]. So we
can alternatively write ¥'=U~1/[1 — 8%(1 — a)?] = &1 /[(det Q)U~2] = T /det Q.
By inserting this result in (6) to replace ¥’, we obtain the relationship between the
inverse matrix and the transposed matrix of 2, namely Q! = QT /det Q. Indeed
£ is a non-orthogonal matrix, since we have det £ # +1.

By dividing (1) by (2), we obtain the following speed transformation:

v—v+V

R v —— e Y
1—%52+ch

(7)

URel =

where we have considered vgel = VRelative = dz’/dt’ and v/ = dX /dt. v' and v are
given with respect to Sy, and vg. is related between them. Let us consider v/ > v
(see figure 2).

If V. — 0, the transformation (7) recovers the Lorentz velocity transformation
where v’ and v are given in relation to a certain Galilean frame Sy at rest. Since (7
implements the ultra-referential Sy, the speeds v’ and v are now given with respect
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Figure 2. Sy is the covariant ultra-referential of background field. S rep-
resents the reference frame for a massive particle with speed v in relation to
Sy, where V < v < c. S’ represents the reference frame for a massive particle
with speed v’ in relation to Sy. In this case, we consider V < v < v’ <.

to Sy, which is covariant (absolute). Such a covariance is verified if we assume that
v = v =1V in (7). Thus, for this case, we obtain vge =V -V'=V.

Let us also consider the following cases in (7): .

(a) v = cand v < ¢ = vRe = ¢. This just verifies the well-known invariance
of c. T

(b) if v/ > v(=V) = vRel = V' ~ V' = v'. For example, if v/ =2V and v =V
= VRe = ‘2V — V’ = 2V. This means that V really has no influence on the
speed of the particles. So V works as if it were an absolute zero of movement,
being invariant and having the same value in all directions of space of the isotropic
background field.

(c) f v/ = v = vga = ‘v —v'(#0) = l——nﬁ From (c) let us consider two
—Za-Y

specific cases, namely,

— (c1) assuming v = V = vge) = ‘V — V' = V as verified before.

—(c2) if v = ¢ = vRel = ¢, where we have the interval V < vge) < cforV <wv <ec.

The last case (c¢) shows us in fact that it is impossible to find the rest for the
particle on its own reference frame S’, where vgre(v) (=Av(v)) is a function that
increases with the increase in v. However, if V' — 0, then we would have vge =
Av = 0 and therefore it would be possible to find the rest for S/, which would
become simply a Galilean reference frame of SR.

By dividing (4) by (5), we obtain

v4+v-V

vy vV
1+ -

(8)

VRel =

In 8),if v  =v =V = ‘V+V’'=V. Indeed V is invariant, working like an
absolute zero state in SSR. If v/ = ¢ and v < ¢, this implies vre) = ¢. For v/ > V
and considering v = V, this leads to vre; = v'. As a specific example, if v/ = 2V
and assuming v = V', we would have vpe = 2V +V’ = 2V. And if we make v/ = v

we get URel = W+ V' = 1+§:(_1‘: - In Newtonian regime (V < v < ¢), we recover

URel = ‘V+ v’ = 2v. In relativistic (Einsteinian) regime (v — ¢), we reinstate
Lorentz transformation for this case (v = v), i.e., Yrel = ‘v + v’ = 2v/(1 +v%/c?).

By joining both transformations (7) and (8) into just one, we write the following
compact form:

6 Pramana — J. Phys., Vol. 71, No. 1, July 2008
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v Fev v Fo(l-a) vFoxV
URel = 1F vew voli—o) 13 Yu 4 vV? (9)
= 1F =0 T e
where @ = V/v and e = (1 —a). For a = 0 (V = 0) or € = 1, we recover Lorentz
speed transformations.
Transformations for (3+1)D and also a new group algebra for SSR will be sought
elsewhere.

3. Covariance of the Maxwell wave equation in the presence
of the ultra-referential Sy

Let us assume a light ray emitted from the frame S’ (figure 1). Its equation of
electrical wave at this reference frame is
E(x' ) 1PE@,t)

9z & ar

As it is well-known, when we make the following exchange: X — 8/dt and

t — 8/0X; also ' — 8/0t and ¥ — §/0x’, the transformations (1) and (2) for
differential operators are written in the form:

(10)

% =v [gt_ — Be(1 - a)ai,] (11)
0 8 B ¢}

where 8 =v/c and @ = V/v.
By squaring (11) and (12), inserting into (10) and after performing the calcula-
tions, we will finally obtain

82E 1 8°E
det Q <6X2 C2 W) = 0, (13)

where det Q = ¥?[1 — 82(1 — )?] (see (3)).

As the ultra-referential Sy is definitely inaccessible for any particle, we always
have a <1 (or v > V), which always implies det Q@ = ¥2[1 — $%(1 — @)?] > 0. And
as we already have shown in the last section, such a result is in agreement with the
fact that we must have det Q2 > 0. Therefore, this will always assure

E  18°E

0X2 2o

By comparing (14) with (10), we verify the covariance of the electromagnetic wave
equation propagating in the background field of the ultra-referential Sy. Indeed we
conclude that the space-time transformations in SSR also preserve the covariance of
the Maxwell equations in vacuum as well as Lorentz transformations. This leads us
to think that Sy works like a relativistic background field that is compatible with
electromagnetism, other than it was the Galilean ether of pre-Einsteinian physics,

breaking the covariance of the electromagnetism under the exchange of reference
frames.

(14)

Pramana - J. Phys., Vol. 71, No. 1, July 2008 7
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4. The flat space-time and the ultra-referential Sy

Let us consider the ultra-referential Sy as a uniform background field that fills the
whole flat space-time as a perfect fluid, playing the role of a kind of de-Sitter (dS)
space-time {7] shown in the next section (A > 0). So let us define the following
metric:

ds® = Og,, dx* dz", (15)

where g,,, is the well-known Minkowski metric. © is a scale factor that increases for
very large wavelengths (cosmological scales) governed by vacuum (dS), that is to say
for much lower energies, where we have © — co. On the other hand, © decreases
to 1 for smaller scales of length, namely for higher energies (6@ — 1) where dS
space-time approximates to the Minkowski metric as a special case. © breaks the
invariance of ds strongly only for very large distances governed by vacuum of the
ultra-referential Sy. For smaller scales of length governed by matter, we naturally
restore Lorentz symmetry and the invariance of ds. Following such considerations,
let us consider © to be a function of speed v with respect to the background field
Sy, that is,

1
(1=%)

v

0=0®) = (16)

such that © = 1 for v > V (Lorentz symmetry regime) and © — oo for v — V
(regime of ultra-referential Sy that breaks ds invariance strongly, so that ds — o).
The total energy E of a particle in Sy is

7

E = 0(yme?) = Ume® = me? e, (17)

1-=

<
[

where § = ©"1/2 = /T — a2 and v=1/4/1 -2, a = V/v and 8 = v/c. v is given
in relation to Sy.

In (17), we observe that E — 0 for v — V (Sy). For the case v = vy = V¢V,
we obtain 8y = ¥(v) = 1 = E = mc?. Actually, as a massive particle always
has motion v (V(Sy) < v < ¢) with respect to the unattainable ultra-referential
Sy, its proper energy mc? requires a non-zero motion v(=vg) in relation to Sy (see
figure 3).

The momentum of the particle in relation to Sy is

. 1-%
P=mvw ) (18)
1-%
C

From (17) and (18), we show the following energy—momentum relation: ¢2P? =
E® —m2i(1- 5.

The de-Broglie wavelength of the particle in Sy is due to its motion v with respect
to Sy, that is,

8 Pramana — J. Phys., Vol. 71, No. 1, July 2008



CBPF-NF-020/08

Deformed special relativity with an invariant minimum speed

E

|
|
|
1 ' v
\ Vg ={cVu2 c

Figure 3. v represents the speed in relation to Sy, from where we get the
proper energy of the particle (Ey = mc?), being ¥p = ¥(vp) = 1. For v < o
or closer to Sy (v — V), a new relativistic correction on energy arises, so that

E — 0.

—— (19)

from where we have used the momentum (18) given with respect to Sy .

If v — ¢ = A — 0 (spatial contraction), and if v — V (Sy) = A — oo (spatial
dilation to the infinite, breaking strongly Lorentz symmetry in SSR), it means we
have cosmological wavelengths. This leads to © — oo (see (16)).

5. Cosmological implications
5.1 Energy-momentum tensor in the presence of the ultra-referential Sy

Let us write the 4-velocity in the presence of Sy, as follows:

— \/1—%;-’%\/1—%;— ’ (20)
Vi-%  o/1-%

where 1 =0,1,2,3 and « = 1,2,3. If V — 0, we recover the 4-velocity of SR.
The well-known energy—momentum tensor to deal with perfect fluid is of the form

T = (p+e)UrU” — pg", (21)

where U* is given in (20), p represents pressure and e the energy density.
From (20) and (21), performing the new component 7%, we obtain

2 2 2
1-) +p(% — 4=

TOO
2
i-z

(22)
If V — 0, we recover the old component 7%,

Pramana — J. Phys., Vol. 71, No. 1, July 2008 9
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Now, as we are interested only in obtaining T in the absence of matter, i.e., the
vacuum limit connected to the ultra-referential Sy, we perform the limit of (22) as
follows:

: 00 00 p(%:— -1
vh_I'I‘l,T = Tiacuum = 1- Z; == (23)

From (22), we notice that the term ey2(1 — V?/v2) representing the matter van-
ishes naturally in the limit of vacuum-Sy (v — V), and therefore just the con-
tribution of vacuum prevails. As we must always have 7% > 0, we get p < 0 in
(23). This implies a negative pressure for the vacuum energy density of the ultra-
referential Sy. So we verify that a negative pressure emerges naturally from such
a new tensor in the limit of Sy .

We can obtain T4 ., by calculating the limit of vacuum-Sy for (21), by con-
sidering (20), as follows:

Tlacuum = lim T# = —pgh”, (24)
v—=V
where we conclude that e = —p. In (20), we see that the new 4-velocity vanishes

in the limit of the vacuum-Sy (v — V), namely U%_ = (0,0). So T¥% is in fact a
diagonal tensor as we hope it to be. The vacuum-Sy inherent to such a space-time
works like a sui generis fluid in equilibrium with negative pressure, leading to a

cosmological anti-gravity.

9.2 The cosmological constant A

The well-known relation [8] between the cosmological constant A and the vacuum
energy density p,) is

Ac?
) = 5o (25)

Let us consider a simple model of spherical universe with Hubble radius filled
by a uniform vacuum energy density. On the surface of such a sphere (frontier of
the observable universe), the bodies (galaxies) experience an accelerated expansion
(anti-gravity) due to the whole ‘dark mass’ of vacuum inside the sphere. So we
could think that each galaxy is a proof of body interacting with that big sphere of
‘dark mass’, like in the simple case of two bodies interaction. However, we need
to show that there is an anti-gravitational interaction between the ordinary proof
mass m and the big sphere with a ‘dark mass’ of vacuum (My), but let us first start
from the well-known simple model of a massive proof particle m that escapes from
a classical gravitational potential ¢ on the surface of a big sphere of matter, namely
E=mc(1—2v%/®) 712 = mc®(1 + ¢/c?), where E is its relativistic energy. Here
the interval of escape velocity 0 < v < c is associated with the interval of potential
0 < ¢ < oo, where we stipulate ¢ > 0 to be the attractive (classical) gravitational
potential.

Now we can show that the influence of the background field (vacuum energy
inside the sphere) connected to the ultra-referential Sy (see (23)) leads to a strong

10 Pramana - J. Phys., Vol. 71, No. 1, July 2008
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repulsive (negative) gravitational potential (¢ < 0) for very low energies (E — 0).
In order to see this non-classical aspect of gravitation [9], we use eq. (17) just taking
into account the new approximation given for very low energies (v(~ V) < ¢}, as

follows:
2
E%mczwl——-‘%zmcz(l-i--%), (26)
v c

where ¢ < 0 (repulsive). For v — V, this implies E — 0, which leads to ¢ — —c?.

So the non-classical (most repulsive) minimum potential ¢(V) (= —c?) connected
to the vacuum energy of Sy (v = V) is responsible for the cosmological anti-
gravity (see also (23) and (24)). We interpret this result assuming that only an
exotic ‘particle’ of the vacuum energy at Sy could escape from the anti-gravity
(¢ = —c?) generated by the vacuum energy inside the sphere (consider v = V in
(26)). Therefore, ordinary bodies like galaxies and any matter on the surface of
such a sphere cannot escape from its anti-gravity, being accelerated far away.

According to (26), we should note that such an exotic ‘particle’ of vacuum (at
Sv) has an infinite mass m since we should consider v = V' (6 = 0) in order to have
a finite value of E, other than the photon (v = c), that is a massless particle (see
(17)). So we conclude that an exotic ‘particle’ of vacuum works like a counterparty
of the photon, namely an infinitely massive boson.

We consider that the most negative (repulsive) potential (¢ = —c? for v = V, see
(26)) is directly related to the cosmological constant {(vacuum energy density) since
we have shown (in (23) and (24)) that the fundamental reference frame Sy (v = V)
plays the role of the vacuum energy density with a negative pressure, working like
the cosmological constant A (p = —e = —p(4)). So we write

¢ = (M) = ¢(V) = —c*. 27)

Let us consider the simple model of spherical universe with a radius R,, being
filled by a uniform vacuum energy density p(a), so that the total vacuum energy
inside the sphere Ex = pa)Vu = —pViy = Mpc?. 'V, is its volume and M} is the
total dark mass associated with the ‘dark energy’ for A (vacuum energy: w = —1
[8]). Therefore, the repulsive gravitational potential on the surface of such a sphere

GM, _Gp(A)Vu _ 4rGpR2

or=- Re  Rucz 32 (28)

where p = —p(y), with w = —1 [8].
By introducing (25) into (28), we find

AR2
or = o(A) = — = (29)
Finally, by comparing (29) with (27), we extract
6¢c?
A= 7 (30)
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where AS, = 24nc?, S, = A R2.
By comparing (28) with (27), we have

3ct
Pay=—P= m, (31)
where p(A)Sy = —pSy = 3¢*/G. We can verify that (31) and (30) satisfy (25).

In (30), A is a kind of cosmological scalar field, extending the old concept of
Einstein about the cosmological constant for stationary universe. From (30), by
considering the Hubble radius, with R, = Ry, ~ 10% m, we obtain A = Ag ~
(10'" m? s72/10°% m?) ~ 1073 s=2. To be more accurate, we know the age of
the universe Ty = 13.7 Gyr, being Ry, = ¢TIy ~ 1.3 x 10%% m, which leads to
Ao ~ 3 x 10735 s72. This tiny positive value is very close to the observational
results [10-14]. The vacuum energy density [15,16] given in (31) for Ry, is p(a,) &
2 x 10™2° g/cm3, which is also in agreement with observations. For scale of the
Planck length, where R, = lp = (Gh/c®)/2, from (30) we find A = Ap = 6¢5/Gh ~
10%7 572, and from (31) pa) = pap) = T, p = Apc?/87G = 3¢7 [4xG2h ~ 10113
J/m3(=3c* /4mIZG ~ 10%3 kgf/Sp ~ 10'% atm ~ 109 g/cm3). So just at that past
time, Ap or p(a;) played the role of an inflationary vatuum field with 122 orders of
magnitude [8] beyond the ones (Ag and p(a,)) for the present time.

It must be stressed that our assumption for obtaining a tiny positive value of A
starts from first principles.
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