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Abstract

Polarization{free generators, i.e. \interacting" Heisenberg operators which

are localized in wedge{shaped regions of Minkowski space and generate

single particle states from the vacuum, are a novel tool in the analysis

and synthesis of two{dimensional integrable quantum �eld theories. In

the present article, the status of these generators is analyzed in a general

setting. It is shown that such operators exist in any theory and in any

number of spacetime dimensions. But in more than two dimensions they

have rather delicate domain properties in the presence of interaction. If,

for example, they are de�ned and temperate on a translation{invariant,

dense domain, then the underlying theory yields only trivial scattering.

In two-dimensional theories, these domain properties are consistent with

non{trivial interaction, but they exclude particle production. Thus the

range of applications of polarization{free generators seems to be limited to

the realm of two{dimensional theories.
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1 Introduction

Local quantum �eld theory provides the adequate setting for elementary parti-

cle physics. It allows one to express in mathematical terms the basic features

of relativistic quantum physics, such as Einstein causality, Poincar�e covariance

and the Nahwirkungs{principle, which are encoded in the local �eld equations

and commutation relations. The physical interpretation of the theory relies on

asymptotic notions, however, based on the particle concept.

The way from the local �elds to the asymptotic particle interpretation was

paved in the seminal work of Lehmann, Symanzik and Zimmermann [1] who

invented a consistent collision theory and established reduction formulas for the

computation of scattering matrix elements. Little is known about the opposite

road, however, i.e. the reconstruction of a local theory from a given scattering

matrix. This problem, sometimes called form{factor program [2], is for example

of importance in the construction of integrable �eld{theoretic models, cf. [3] for

some interesting progress in this respect.

It was recently noticed [4] that certain interacting theories in two spacetime

dimensions admit an important intermediate step in this program. Namely, there

exist semi{local polarization{free generators, which are localized in wedge{shaped

regions of Minkowski space and generate from the vacuum single particle states,

similarly to free �elds. Important features of the theory, such as the crossing

symmetry of the scattering matrix, are encoded in simple analyticity properties

of the correlation functions of these operators (KMS{condition). Moreover, their

algebraic properties can directly be expressed in terms of the elastic scattering

amplitudes. This interesting observation warrants a more systematic investiga-

tion of polarization{free generators in the general setting of local quantum �eld

theory.

The present article is devoted to such a study. We will show that there

exist polarization{free generators in any local theory with a non{trivial particle

spectrum, irrespectively of the number of spacetime dimensions. It turns out,
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however, that these operators are generically unbounded and their domains of

de�nition exhibit some delicate features if there is interaction. If, for example,

the polarization{free generators are de�ned on a translation invariant domain

and the norms of their respective images stay polynomially bounded for large

translations, then the elastic scattering amplitudes inevitably vanish in more than

two spacetime dimensions. In two{dimensional theories, these domain properties

are consistent with interaction, but they exclude particle production. Thus the

only non{trivial theories in which such temperate families of polarization{free

generators can be de�ned seem to be models of the type studied in [4].

The upshot of our investigation is the insight that polarization{free generators

always exist. But in view of their subtle domain properties, they are not accessible

to Fourier analysis in most cases of physical interest. They are therefore not

suitable for a general analysis and synthesis of collision states and do not provide

the desired universal link between the scattering matrix and the local interacting

�elds. Some further aspects of our results are mentioned in the conclusions.

2 Existence of polarization{free generators

Explicit non{trivial examples of polarization{free generators were invented in

some two-dimensional relativistic quantum �eld theories [4]. But their generic

features can be stated more clearly in the general framework of local quantum

physics [5]. For the convenience of the reader who is not familiar with this setting,

we brie
y recall in the following the relevant notions and explain our notation.

We assume that we are given a local, relativistic quantum �eld theory in d-

dimensional Minkowski space d. But instead of dealing with the unbounded �eld

operators, we proceed to their local bounded functions [6]. Each of the resulting

bounded operators is associated to some region O � R d, �xed by support of

the test functions involved in the smearing of the �eld operators. We say that

these operators are localized in calO, for short. The collection of all operators

localized in a particular region O generates a *{algebra A(O) on the underlying
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physical Hilbert space H which is closed in the weak operator topology. (It is

thus a von Neumann algebra.) The family of these local algebras inherits from

the underlying quantum �eld theory the following fundamental properties:

1. (Locality) The assignment

O ! A(O) (2.1)

de�nes a net over Minkowski space, i.e. an inclusion preserving mapping. The net

complies with the principle of locality, that is operators a�liated with spacelike

separated regions commute.

Besides these \local algebras", we also consider algebras A(W) associated to

wedge{shaped regions W of the form (given in proper coordinates)

W1 = fx 2 R d : x1 � jx0j; x2; : : : xd�1 arbitraryg (2.2)

as well as their Poincar�e transforms. They are the smallest von Neumann algebras

containing all local algebras A(O) with O �W. Because of locality, the algebra

A(W 0) associated to the spacelike complementW 0 of W commutes with A(W),

A(W 0) � A(W)0.

2. (Covariance) The group of spacetime translations R d acts on H by a continu-

ous unitary representation U which induces automorphisms of the net. Thus for

any translation x 2 R d and region O � R d

U(x)A(O)U(x)�1 = A(O+ x) (2.3)

in an obvious notation.

3. (Spectrum) The joint spectrum of the generators P of U (the physical energy{

momentum spectrum) is contained in the closed forward lightcone,

spP � fp 2 R d : p0 � jpjg: (2.4)

Moreover, there is a unit vector 
 2 H, unique up to a phase, which is invariant

under the action of U and cyclic for the local algebras A(O) (Reeh{Schlieder{
property). This vector describes the vacuum state.
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Because of this familiar form of the energy{momentum spectrum, the mass

operator

M = (P 2
0 � P 2)1=2 (2.5)

is positive selfadjoint with spectral resolution E( � ). If there are particles of mass

m in the theory, the spectral projection Em = E(fmg) is di�erent from zero. It

is our aim to show that there exist operators which are localized in wedge regions

and generate from the vacuum single particle states with mass m.

The formal characterisation of such operators is given in the subsequent def-

inition. We recall in this context that a closed operator is said to be a�liated

with a von Neumann algebra M if it commutes on its domain with all elements

of the commutantM0 ofM. Its adjoint is then also a�liated withM.

De�nition: A closed operator G is called polarization{free generator of mass m

if (a) it is a�liated with a wedge algebra A(W), (b) 
 is contained in the domains

of G and G�, and (c) G
, G�
 are elements of EmH.

For the proof that polarization{free generators exist in any theory, we make

use of Tomita{Takesaki{Theory [7]. We begin by recalling some basic facts from

this theory for the case at hand. Since 
 is cyclic and separating for the wedge{

algebras A(W) by the Reeh{Schlieder property and locality, one can consistently

de�ne the Tomita conjugations SW, setting

SWA
 = A�
; A 2 A(W): (2.6)

These operators are closable anti{linear involutions. Their closures, which we

denote by the same symbol, have the polar decomposition

SW = JW �
1=2
W : (2.7)

Here JW is an anti{unitary operator, the modular conjugation, and �W, the

modular operator, is strictly positive and selfadjoint. The following well{known

fact is of fundamental importance in the present context. We therefore sketch its

proof.
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Lemma 2.1 Let � be any vector in the domain of SW . There exists a closed

operator F which (a) is a�liated with A(W), (b) has, together with its adjoint

F �, the vector 
 in its domain and (c) satis�es

F 
 = �; F �
 = SW �: (2.8)

Proof: Since the set of vectorsA(W)
 is a core fore SW and SW is closed, there is

a sequence Fn 2 A(W) such that Fn
! � and SWFn
! SW�, strongly. Thus

if A0 2 A(W)0, one also has FnA
0
 = A0Fn
 ! A0� and F �nA

0
 = A0F �n
 !
A0SW�. So the operator F , given by

FA0
 = lim
n!1

FnA
0
 = A0�; A0 2 A(W)0; (2.9)

is well de�ned. Its adjoint F � also has the dense set of vectors A(W)0
 in its

domain and

F �A0
 = lim
n!1

F �nA
0
 = A0SW�; A0 2 A(W)0: (2.10)

This shows that F is closable (we use the symbol F also for its closure), and

it establishes part (b) and (c) of the statement since 1 2 A(W)0. For part

(a) one makes use of the fact that for any vector 	� in the domain of F � and

A0; B0 2 A(W)0

(A0	�; FB0
) = (	�; A0�B0�) = (	�; FA0�B0
) = (A0F �	�; B0
): (2.11)

Hence j(A0	�; FB0
)j � const � jjB0
jj, B0 2 A(W)0. So A0	� lies in the domain

of F � and F �A0	� = A0F �	�, A0 2 A(W)0. An analogous statement holds for

F �� = F , so the proof of the lemma is complete.

In view of this lemma, it su�ces for the proof of the existence of polarization{

free generators to exhibit non{zero vectors �1 2 EmH in the domain of SW such

that also SW�1 2 EmH. To accomplish this, we have to take a closer look at the

modular operators and conjugations. Fortunately, we have su�ciently concrete

information about these objects in the present general setting.

Since �W is strictly positive, we can proceed to the corresponding unitary

group �is
W; s 2 R, called modular group. It is an important consequence of the
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spectral properties of the generators of U and covariance [8] that for x 2 Rd

�is
W U(x)��is

W = U(�(s)x) and JW U(x)J�1W = U(�x); (2.12)

where �(s); s 2 R, is (with some appropriate scaling of s) the one{parameter

group of boosts leaving the wedge W invariant and � is the re
ection about the

edge ofW. If, for example,W1 is the wedge given in (2.2), x� 2 R�(�1; 1; 0; : : : 0)
are any two lightlike tranlations in the characteristic planes forming the boundary

of W1, and x? = (0; 0; x2; : : : xd�1) is any translation along the edge of W1, then

�1(s)x� = e�2�sx�; �1(s)x? = x? and �1x� = �x�; �1x? = x?:

(2.13)

Thus the modular groups and conjugations act on the translations U like Lorentz

transformations. As a matter of fact, these operators generate a representation of

the proper Poincar�e group in generic cases according to the Bisognano{Wichmann

theorem [9]. But this more detailed information is not needed here.

Knowing that the modular groups and conjugations act on the generators

P of U like Lorentz transformations, we conclude that the mass operator M ,

being invariant under Lorentz transformations of P , commutes both with JW

and �is
W ; s 2 R. The same is true for the spectral projections Em of M , hence

SW = JW �1=2
W commutes on its domain D(SW ) with Em. This implies that

EmD(SW ) is a dense subspace of EmH which is stable under the action of SW

since SW
2 = 1, cf. relation (2.6). Applying the preceding lemma, we have thus

established the existence of polarization{free generators.

Theorem 2.2 Given any m in the discrete spectrum of the mass operator and

any wedge W, there exist polarization{free generators G of mass m which are

a�liated with A(W). In fact, for any vector �1 in the dense subspace EmD(SW)
of EmH, there is a G such that G
 = �1 and G�
 = SW�1 2 EmD(SW ).

The simplest example illustrating this existence theorem is free �eld theory.

We brie
y discuss it here in order to indicate a subtle point in applications of this

abstract result. Let �0 be the free massive scalar �eld acting on Fock space. It is
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well{known [10] that the �eld operators �0(f), smeared with real test functions

f with compact support in some O � R d, are essentially self{adjoint on the

domain D0 consisting of all vectors with a �nite particle number. They generate,

by their spectral resolutions, the local algebras A0(O) and are thus a�liated

with the wedge{algebras A0(W) whenever supp f � W. Since the operators

�0(f) also generate single particle states from the vacuum, they are polarization

free generators in the sense de�ned above.

We mention as an aside that the dense set of vectors A(W)0
 is a core for

�0(f) for any wedge W � supp f . This implies that, by the preceding general

construction, one would recover �0(f) from the single particle state �0(f)
 and

the net.

The full domains of the locally smeared free �elds �0(f) are not invariant

under spacetime translations, but they contain the common coreD0 which has this

property. As a matter of fact, D0 is also invariant under Lorentz transformations

and the vector{valued functions

(�; x)! �0(f)U0(�; x)	; (2.14)

where U0 denotes the underlying unitary representation of the Poincar�e group,

are strongly continuous for each 	 2 D0. Moreover,

jj�0(f)U0(�; x)	jj � const; (2.15)

uniformly for all Poincar�e transformations (�; x).

We emphasize that the existence of such a domain D0 on which polarization{

free generators exhibit a \temperate behaviour" with respect to spacetime trans-

formations does not follow from the general theorem. But it seems to be an

indispensible requirement if one wants to use these operators in the analysis of

collision states and of scattering amplitudes. For that analysis is based on Fourier

transformation, which is only meaningful if the underlying functions do not in-

crease too rapidly at in�nity. We therefore take a closer look at such temperate

generators in the subsequent section.
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3 Temperateness and absence of interaction

In view of the preceding considerations, we restrict attention now to those theories

which admit polarization{free generators with a temperate behaviour with respect

to translations.

De�nition: A polarization{free generator G is said to be temperate if there is

a dense subspace D of its domain which is stable under translations, such that

for any 	 2 D the function x ! GU(x)	, 	 2 D, is strongly continuous and

polynomially bounded in norm for large x, and the same holds true also for its

adjoint G�. The respective subspaces are called domains of temperateness.

It turns out that this regularity requirement imposes severe constraints on

the underlying theory and excludes interaction if the dimension of spacetime is

larger than two. In the proof of this statement, we restrict attention to massive

theories, describing a single scalar particle of mass m, so the spectrum of U has

the form

spU = f0g [ fp 2 R d : p0 = (p2 +m2)1=2g [ fp 2 R d : p0 � (p2 + 4m2)1=2g;
(3.1)

where m > 0, but our arguments also apply to theories with a more complex

particle spectrum. In a �rst step we show that temperate polarization{free gen-

erators lead to solutions of the Klein{Gordon equation and have in their domains

single particle states with compact energy{momentum support about any given

point on the \mass shell" fp 2 d : p0 = (p2 +m2)1=2g.

Lemma 3.1 Let G be a temperate polarization{free generator of mass m. Then

(a) x! G(x) = U(x)GU(x)�1 is a weak solution of the Klein{Gordon equation

of mass m on the domain of temperateness D.

(b) The domain D contains a dense set of vectors with compact spectral support.

In particular, there exist single particle states of mass m in D with spectral

support in any given neighborhood of any point on the mass shell.
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Corresponding statements hold also for the adjoint G� of G.

Proof: (a) If G is a�liated with the wedge algebra A(W), say, the operators

G(x) are a�liated with A(W + x) by covariance. Now for x varying in some

open, bounded region U � R d, there is a wedge W0 � [x2U(W + x), hence the

operators G(x)�, x 2 U , contain the common dense subspace A(W0)0
 in their

domains. Thus for 	 2 D

(G(x)	; A0
) = (	; G(x)�A0
) = (	; A0 G(x)�
); A0 2 A(W0)
0: (3.2)

Since G�
 2 EmH, the function x ! G(x)�
 = U(x)G�
 is a weak solution of

the Klein{Gordon equation, so one obtains from the preceding equation for any

test function f with support in U
Z

dx
�
(�+m2)f�

�
(x) (G(x)	; A0
) = 0; A0 2 A(W0)

0; (3.3)

where f� is the complex conjugate of f . Making use of the temperateness as-

sumption and the Reeh{Schlieder property of 
, this implies

Z
dx
�
(�+m2)f

�
(x)G(x)	 = 0; (3.4)

where the integral is de�ned in the strong sense. Since U was arbitrary, the latter

equation extends to all test functions f 2 S(R d) by continuity.

(b) The set of vectors of the form 	(f) =
R
dx f(x)U(x)	, where 	 2 D and f is

any test function whose Fourier transform ef has compact support, has compact

spectral support and it is dense in H since D is dense and U is continuous. By

choosing the support of ef properly, one obtains single particle states with spectral

support in any given neighborhood of any point on the mass shell. It remains to

be shown that these vectors belong to the domain of temperateness of G. There

holds for any vector �� in the domain of G�

j(	(f); G���)j = j R dx f�(x) (U(x)	; G���)j � R
dx jf(x)j j(GU(x)	;��)j

� R
dx jf(x)j jjGU(x)	jj jj��jj � R

dx jf(x)jQ(x) jj��jj (3.5)

for some polynomial Q, depending only on 	 by the temperateness assumption.

Hence 	(f) is an element of the domain of G�� = G, and the same holds true
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for U(x)	(f) = 	(fx), where fx(y) = f(y � x); y 2 R d, is the translated test

function. The continuity of x ! GU(x)	(f) and temperateness follow from

the estimate jjG (U(x)	(f) � 	(f))jj � R
dy jfx(y) � f(y)j Q(y) with the same

polynomialQ as above. Hence 	(f) is an element of the domain of temperateness

D. The corresponding statements for G� are established in the same manner.

Picking any single particle state 	1 2 D with spectral support in a given com-

pact region on the mass shell, let us turn next to the interpretation of the vectors

G(x)	1. As x ! G(x) is a solution of the Klein{Gordon equation, one may

expect { guided by the LSZ asymptotic condition { that these vectors describe

asymptotic two{particle states. But in view of the weak localization properties

of the generators G and the domain problems involved, some care is needed in

the analysis.

We rely in our argument on an approach to collision theory established by

Hepp [11] for the proof of the LSZ reduction formulas in the general framework

of local quantum �eld theory, cf. also [12]. The main ingredient are quasilocal

operators A(ft) of the form

A(ft) =
Z
dx ft(x)A(x): (3.6)

Here A 2 A(O) are local operators, where the localization region O is held �xed

in the following, and the functions ft, t 2 , are given by

ft(x) = (2�)�d=s
Z
dp ef(p) ei(p0�!p)t e�ipx; (3.7)

where ef 2 S(R d) and !p = (p2 +m2)1=2. If ef has support in a su�ciently small

neighborhood of some point on the mass shell, A(ft)
 is an element of EmH
which does not depend on t. Moreover,

lim
t!�1

A(ft)� = A(f) in
out

�; lim
t!�1

A(ft)
�� = A(f) in

out

��; (3.8)

where A(f)in, A(f)out are the creation operators of an incoming, respectively

outgoing particle which is in the state A(f)
, and their adjoints A(f)in
�, A(f)out

�

are the corresponding annihilation operators.
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These asymptotic relations have been established in [11, 12] for some dense set

of \decent" collision states �. But, making use of the fact that the operator norms

jjA(ft)E(�)jj and jjA(ft)�E(�)jj are uniformly bounded in t for any compact

subset � of the spectrum of U [13], they can be extended by continuity to all

states with compact spectral support. Thus there holds in particular for the

single particle states 	1 considered above

lim
t!�1

A(ft)	1 =
�
A(f)
�	1

�
in
out

lim
t!�1

A(ft)
�	1 = (A(f)
;	1)
; (3.9)

where we employ the standard notation for collision states.

In the subsequent discussion, we will make use of the support properties of

the functions ft for asymptotic t [11]. Let

�(f) = f (1;p=!p) : p 2 supp ef g (3.10)

be the \velocity support" of f and let � be any smooth function which is equal

to 1 on �(f) and vanishes in the complement of some slightly larger region �"(f).

The asymptotically dominant part of ft is given by x! f̂t(x) = �(x=t)ft(x). It

is thus a test function with support in t�"(f), t 6= 0. The resulting remainder

x! �ft(x) = (1��(x=t))ft(x) tends to zero in the topology of S(R d) as t!�1.

The decomposition ft = f̂t+ �ft will be repeatedly used in the following arguments.

Assuming for the sake of concreteness that the given generator G is a�liated

with A(W1), where W1 is the wedge de�ned in (2.2), we introduce the following

partial ordering of sets with reference to that wedge.

De�nition: Let �a;�b � R d be compact sets. �a is sai/d to be a precursor of �b,

�a � �b in formula form, if �b ��a (the set of all di�erence vectors) is contained

in W1.

Since �a;�b are compact, the set �b � �a is compact as well. Hence, as W1

is an open cone, it follows from �a � �b that there is some � > 0 such that

t�b� t�a �W1+(0; t�; 0; : : : 0) for t > 0. In view of fW1+xg 0 = �W1+x, this

implies t�a+(0; t�; 0; : : :0) � (W1+ t�b) 0, t > 0, i.e. the sets t�a and (W1+ t�b)

are spacelike separated and their spatial distance increases linearly with t.
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We shall apply the above order relation to the velocity supports of test func-

tions, de�ned in (3.10), as well as to the velocity supports of single particle states,

which are de�ned in an analogous manner by

�(	1) = f (1;p=!p) : p 2 supp	1 g; (3.11)

where supp	1 is the spectral support of 	1. After these preparations, we can

clarify now the interpretation of the vectors G(g)	1 =
R
dx g(x)G(x)	1 in terms

of asymptotic two{particle states.

Lemma 3.2 Let G be a temperate polarization{free generator of mass m which

is localized in the wedge W1, let 	1 be a single particle state in its domain D
of temperateness with compact spectral support, and let g 2 S(R d) be any test

function whose Fourier transform has support in a su�ciently small neighborhood

of some point on the mass shell. Then

(a) G(g)	1 = (G(g)
 �	1)in if �(g) � �(	1),

(b) G(g)	1 = (G(g)
�	1)out if �(	1) � �(g).

Proof: Let 	� be any vector in the domain of temperateness of G� with compact

spectral support. Then

(G(g)	1;	
�) =

Z
dx g�(x)(	1; G

�(x)	�) = (	1; G
�(g�)	�); (3.12)

where G�(g�)	� =
R
dx g�(x)G�(x)	� is de�ned as a strong integral. Now by the

Reeh{Schlieder property of 
, there is for any � > 0 an A 2 A(O) and a test

function f whose Fourier transform has support in any given neighbourhood of

supp	1 such that jj	1 � A(f)
jj < � and A(f)
 2 EmH. In view of the latter

fact, one may replace f in A(f)
 by any member of the corresponding family of

test functions ft, de�ned in (3.7). Proceeding to the decomposition ft = f̂t + �ft

and taking into account that jjA( �ft)jj �
R
dx j �ft(x)j jjAjj ! 0 as t ! �1, it

follows that

A(f)
 = A(ft)
 = lim
t!�1

A(f̂t)
: (3.13)
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Similarly, since x ! G�(x)	� is a weak solution of the Klein{Gordon equation

according to Lemma 3.1, one may replace g in G�(g�)	� by gt. For

(gt � g)(x) = (�+m2) (2�)�d=s
Z
dp

eg(p)
(p0 + !p)

(1 � ei(p0�!p)t)

(p0 � !p)
e�ipx; (3.14)

and the expression under the integral is a test function because of the support

properties of eg. Making use of the decomposition gt = ĝt+ �gt and temperateness,

which implies

jjG�(�g �t )	�jj �
Z
dx j�gt(x)j jjG�U(x)	�jj �

Z
dx j�gt(x)jQ(x) (3.15)

for some polynomial Q, one �nds that G�(�g �t )	
�! 0 as t! �1 and

G�(g�)	� = G�(gt
�)	� = lim

t!�1
G�(ĝ �t )	

�; (3.16)

strongly. Combining these facts, one gets

(A(f)
; G�(g�)	�) = lim
t!�1

(A(f̂t)
; G
�(ĝ �t )	

�)

= lim
t!�1

Z
dx ĝ �t (x) (A(f̂t)
; G

�(x)	�): (3.17)

According to the choice of the test function f , its velocity support �(f) is con-

tained in a small neighborhood �"(	1) of �(	1), and consequently the oper-

ators A(f̂t) are localized in O + t�"(	1). On the other hand, the operators

G�(x), appearing under the integral in (3.17), are a�liated with A(W1 + x),

x 2 t�"(g). Because of locality, they commute with A(f̂t) on their respective

domains if W1 + t�"(g) is spacelike separated from O + t�"(	1).

In case (a) of the statement, there holds ��(	1) � ��(g) and therefore also

��"(	1) � ��"(g) if the respective neighborhoods are suitably chosen. Hence,

according to the above geometrical considerations, the regions �jtj�"(	1) and

W1�jtj�"(g) are spacelike separated, and their spatial distance increases linearly

with jtj. Because of the latter fact and since O is bounded, the two regions

O + t�"(	1) and t�"(g) are spacelike separated if t < 0 and jtj is su�ciently
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large. One can then reexpress the integral in (3.17) according to

Z
dx ĝ �t (x) (A(f̂t)
; G

�(x)	�) =
Z
dx ĝ �t (x) (
; G

�(x)A(f̂t)
�	�)

= (G(ĝt)
; A(f̂t)
�	�): (3.18)

In the latter expression, one can reverse now the passage from ft; gt to their

respective asymptotically dominant parts, taking into account that, in the limit

of asymptotic t, jjG(�gt)
jj ! 0, jjA( �ft)jj ! 0, and jjA(ft)�	�jj � const since

	� has compact spectral support [13]. Hence, by a straightforward estimate, one

�nds that (G(ĝt)
; A(f̂t)�	�) and (G(gt)
; A(ft)�	�) = (A(ft)G(g)
;	�) have

the same limit as t ! �1. Plugging this information into relation (3.17) and

making use of the asymptotic formula (3.9), one arrives at

(A(f)
; G�(g�)	�) = lim
t!�1

(A(ft)G(g)
;	
�)

= ((A(f)
�G(g)
)in ;	
�): (3.19)

In the resulting equation, one can replace A(f)
 by 	1 since jj	1�A(f)
jj < �,

where � > 0 was arbitrary, and

jj(	1 �G(g)
)in � (A(f)
�G(g)
)injj �
p
2 jj	1 �A(f)
jj jjG(g)
jj;

(3.20)

by the Fock structure of collision states. In view of relation (3.12), this completes

the proof of part (a) of the statement. The proof of part (b) is similar, but

now one has to take into account that the regions O + t�"(	1) and t�"(g) are

spacelike separated if t > 0 is su�ciently large. So in this case one arrives at an

interpretation of the vectors G(g)	1 in terms of outgoing collision states.

In the next step, we establish a weak form of commutation relations between

the operators G(x) and the asymptotic creation and annihilation operators. The

result will enable us to compute scattering amplitudes.

Lemma 3.3 Let 	, 	� be vectors with compact spectral support in the domains

of temperateness of G and G�, respectively, and let f; g be test functions whose

Fourier transforms have support in small neighborhoods of points on the mass

shell. Then
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(a) (G(g)	; A(f)in
�	�) = (A(f)in

� �	; G�(g�)	�) if �(g) � �(f),

(b) (G(g)	; A(f)out
�	�) = (A(f)out

� �	; G�(g�)	�) if �(f) � �(g).

Here the symbol X� stands for both, the operator X and its adjoint X�.

Proof: The argument is very similar to the proof of the preceding lemma and it

therefore su�ces to indicate the main steps. In case (a) one has, in view of the

fact that G(gt)	 = G(g)	, t 2 R, and the asymptotic relation (3.8),

(G(g)	; A(f)in
�	�) = (G(gt)	; A(f)in

�	�)

= lim
t!�1

(G(gt)	; A(ft)
�	�) = lim

t!�1
(G(ĝt)	; A(f̂t)

�	�); (3.21)

where, in the last step, ft; gt have been replaced by their asymptotically dominant

parts. Since �(g) � �(g), the regions W1 + t�"(g) and O + t�"(f) are spacelike

separated for t < 0 and jtj su�ciently large. Hence, by locality,

lim
t!�1

(G(ĝt)	; A(f̂t)
�	�) = lim

t!�1
(A(f̂t)

��	; G�(ĝ �t )	
�)

= lim
t!�1

(A(ft)
��	; G�(gt

�)	�) = (A(f)in
��	; G�(g�)	�); (3.22)

where, in the second equality, the transition from ft; gt to the asymptotically

dominant parts has been reversed and, in the last step, the asymptotic relation

(3.8) has been used as well as the fact that G�(gt�)	� = G�(g�)	�, t 2 R. This
establishes statement (a). The proof of (b) is analogous. �

In a �nal step, we have to determine the spectral support of G
 with respect

to the spatial momentum operators P in order to see which single particle states

can be generated by G from the vacuum.

Lemma 3.4 Let G be a polarization{free generator which is a�liated with the

algebra A(W1). The spectral support of G
 with respect to the spatial momen-

tum operators P = (P1; P2; : : : Pd�1) is equal to R � C, where C � Rd�2 is a

closed set with open interior.
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Proof: Let A be any local operator which is localized in W1
0. Since x! G(x)


and x ! G�(x)
 are solutions of the Klein{Gordon equation of mass m, the

commutator function

x! C(x) = (A
; G(x)
)� (G�(x)
; A�
) (3.23)

can be represented in the form

C(x) =
Z
dp "(p0)�(p

2 �m2)K(p) eipx: (3.24)

Here K is an integrable function with respect to dp=2!p which has support on

the positive and negative mass shell, respectively. It is given by

K(p) =

8><
>:

(A
)(p)�(G
)(p) for p0 = !p

(G�
)(�p)�(A�
)(�p) for p0 = �!p;
(3.25)

where p ! (A
)(p) is the momentum space wave function of the single particle

vector EmA
, and similarly for the other terms.

Because of the localization properties of the operator A, the commutator

function x! C(x) vanishes for x 2 W1. This implies that, for any test function

x? ! k(x?) on the (d � 2){dimensional edge of A(W1), the partial Fourier

transform

p0; p1 !
Z
dxC(x) k(x?) e

�i(p0x0�p1x1) (3.26)

can be analytically continued in the variables p� = (p0 � p1)=2 into the upper

and lower complex half plane, respectively, and it is bounded there. Thus the

Lorentz{transformed Fourier transform

�!
Z
dxC(x) k(x?) e

�i(e� p+(x0+x1)+e�� p
�

(x0�x1)); � 2 R; (3.27)

can be analytically continued in � into the strip 0 < Im� < � if p� > 0. Plugging

this information into the representation (3.24), one sees that these analyticity

properties devolve upon

�!
Z dp

2!p
K(e��p+ + e�p�; e

��p+ � e�p�;p?)
eh(p1)ek(p?); (3.28)
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where p� = !p � p1 and eh 2 S() is any test function.

Now if U � R and V � Rd�2 are open sets such that the wave function

p ! (G
)(p) vanishes for almost all spatial momenta p = (p1;p?) with p1 2 U
and p? 2 V, the function (3.28) vanishes if supp eh � U , supp ek � V and � is

su�ciently small, cf. (3.25). Being the boundary value of an analytic function, it

therefore vanishes everywhere. So, after a change of variables, one �nds that

Z
dp

2!p
K(!p;p) eh(cosh(�) p1 + sinh(�)!p) ek(p?) = 0; � 2 : (3.29)

Varying eh; ek within the above limitations, it readily follows that K(!p;p) = 0 for

almost all spatial momenta p = (p1;p?) with p1 2 R and p? 2 V. As A was

arbitrary and the set of single particle states EmA
, A 2 A(W1
0), is dense in

EmH, this impliesG(p) = 0 for p1 2 R and p? 2 V. Thus the complement of the

support of p ! (G
)(p) in momentum space Rd�1 has the form R � V, where
V � Rd�2 is open. Hence, disregarding sets of measure 0, the statement follows

since G
 is di�erent from zero. �

We have accumulated now su�cient information in order to proceed to the

computation of the scattering amplitudes in the underlying theory, provided the

dimension of spacetime is larger than two. Let p = (p1;p?) be any vector in

the spectral support of G
 with respect to the spatial momentum operators and

let p1 < 0 and p? 6= 0. We pick a test function g whose Fourier transform has

support in a su�ciently small neighborhood of (!p;p), and a single particle state

	1 which is an element of the domain of temperateness of G with spectral support

in a small neighborhood of (!p;�p). Hence �(g) � �(	1) and consequently

G(g)	1 = (G(g)
�	1)in by Lemma 3.2.

As p? 6= 0, there are spatial momenta q with q1 < p1 and jqj = jpj (here the
dimension of spacetime enters). For any such q, we choose a test function f whose

Fourier transform has support in a small neighborhood of (!q;q) such that �(f) �
�(g). Finally, we pick a single particle state 	�1 in the domain of temperateness of

G� with spectral support about (!q;�q). After these preparations, we can apply
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Lemma 3.3 and compute

((G(g)
 �	1)in; (A(f)
�	�1)out) = (G(g)	1; A(f)out	�1)

= (A(f)�
out
	1; G

�(g�)	�1) = 0; (3.30)

where, in the last step, we used the fact that A(f)out
�	1 = (A(f)
;	1)
 = 0

since �(f) � �(	1). Varying f; g and 	1;	�1 within the above limitations, it

follows that elastic scattering processes of two particles with initial momenta

about p;�p and �nal momenta about q;�q { although admitted by the energy{

momentum conversation law { do not occur in the underlying theory.

This result implies that the elastic two{particle scattering amplitude T van-

ishes identically. For the proof of this statement, we recall that in a relativistic

theory T = T (s; t) is a distribution with respect to the invariants s; t (the squares

of the energy in the center of mass system and the momentum transfer, respec-

tively). Thus for p;q as above, s = 4(m2 + p2) and t = �2p2(1 � cos �), where

� is the scattering angle. It is a well{known consequence of locality, relativistic

covariance, and the form of the energy{momentum spectrum that T (s; t) is, in

the physical region s � 4m2� t for �xed t � 0, the boundary value from Ims > 0

of an analytic function in the cut s{plane. On the other hand, for �xed s, it is

analytic in the variable cos(�) in the Lehmann ellipse [14] with foci at �1 and

semi-minor axis of length 6m2=
q
s(s� 4m2), cf. [15] for an exposition of these

basic facts.

By the preceding computations, we know that the scattering amplitude van-

ishes for s; t in some open set. In fact, taking into account that all momenta

p = (p1;p?) with p1 2 R� belong to the spectral support of G
 for some �xed

p? 6= 0 (cf. Lemma 3.4) and varying q within the above limitations, we get

T (s; t) = 0 for s > 4(m2 + jp?j2); 0 > t > �4jp?j2: (3.31)

By analyticity in cos(�), this equality extends to all scattering angles and hence

to all t for the given range of s. Analyticity of T (s; t) in s then implies that the

scattering amplitude vanishes everywhere. It is a well{known consequence of this
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result that then there can be no non{trivial multi particle scattering or particle

production either [16]. These implications hold in any number d > 2 of spacetime

dimensions [17]. So we arrive at the following statement.

Theorem 3.5 If in a local, relativistic quantum �eld theory of a scalar massive

particle in d > 2 spacetime dimensions there exists a temperate polarization{free

generator, then the scattering matrix is trivial.

For the sake of simplicity, we have restricted attention in the preceding anal-

ysis to theories describing a single scalar massive particle. But it should be clear

from our discussion that similar results hold in theories with a more complex

particle spectrum. There one �nds that particles whose states can be generated

from the vacuum by temperate polarization{free generators do not participate in

collision processes. For the derivation of this result it is actually not necessary to

assume that the collision states can be constructed by local operators. Cone{like

localized \interpolating operators", whose existence has been established in all

theories of massive particles [18], are completely su�cient for the proof. We there-

fore conclude that in the presence of interaction there is no room for temperate

polarization{free generators in more than two spacetime dimensions.

4 Polarization{free generators in two dimensions

The analysis in the preceding section did not lead to any restrictions on the form

of the elastic scattering amplitudes in two spacetime dimensions. For con�gura-

tions of asymptotic particle momenta which would allow one to show that the

scattering amplitudes have to vanish in the presence of temperate polarization{

free generators cannot occur in this case because of the energy{momentum con-

servation law. So non{trivial theories admitting polarization{free generators can

and do exist in two spacetime dimensions [4]. It seems therefore worthwhile to

have a closer look at the type of constraints imposed on such theories from the

present general point of view.

In order to abbreviate this discussion, we assume in the following that the
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domains of temperateness of G and G� contain incoming and outgoing collision

states for arbitrary con�gurations of particle momenta. Lemma 3.4 then implies

that on these states

G(g)A(f)in
� = A(f)in

�G(g) if �(g) � �(f); (4.1)

G(g)A(f)out = A(f)out G(g) if �(f) � �(g); (4.2)

and similarly for G�(g�). For the lemma says that on the domain of temperateness

G�(g�)�A(f)in
� � A(f)in

�
G(g) if �(g) � �(f), say, and with the above domain

assumptions one can replace the triple{star expression G�(g�)� by G(g).

It turns out that these commutation relations imply that there can be no

particle production in the underlying theory. In the proof of this statement, we

make use of the following lemma.

Lemma 4.1 Let f; g1; : : : gn be test functions whose Fourier transforms have

support about points on the mass shell such that �(g1) � � � � � �(gn) � �(f)

and let A;A1; : : :An 2 A(O) be arbitrary local operators. Then

A(f)in
� (A1(g1)
 � � � � �An(gn)
)out = 0: (4.3)

Proof: The proof is based on induction in n. For n = 1, one has

A(f)in
�A1(g1)
 = (A(f)
; A1(g1)
)
 = 0 (4.4)

because of the support properties of f; g1 in momentum space. Assuming that the

statement holds for n, let g be a test function whose Fourier transform has support

about points on the mass shell such that �(g1) � � � � � �(gn) � �(g) � �(f). It

then follows from relation (4.2) that

G(g)A1(g1)out � � �An(gn)out
 = A1(g1)out � � �An(gn)outG(g)


= (A1(g1)
� � � � �An(gn)
�G(g)
)out: (4.5)

Hence, by relation (4.1) and the induction hypothesis, one obtains

A(f)in
� (A1(g1)
� � � � �An(gn)
�G(g)
)out

= A(f)in
�G(g)A1(g1)out � � �An(gn)out


= G(g)A(f)in
�
A1(g1)out � � �An(gn)out
 = 0: (4.6)
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Now let An+1 2 A(O) be any local operator and gn+1 any test function such that

�(g1) � � � � � �(gn) � �(gn+1) � �(f). There exists for given � > 0 a test

function g as in the preceding step such that jjAn+1(gn+1)
 �G(g)
jj < �. For

the spectral support of G
 consists of the whole mass shell according to Lemma

3.4 and consequently the set of vectors fG(g)
 : supp eg � �g is, for any compact

set � � R2, dense in the corresponding spectral subspace E(�)EmH of single

particle states. As the collision states are continuous with respect to their single

particle components, one can thus replace in equation (4.6) the vector G(g)
 by

An+1(gn+1)
, proving the statement. �

Let us consider now an incoming collision state of two particles with momenta

p1; p2 on the mass shell and an outgoing state of n > 2 particles with mutually

di�erent momenta q1; : : : qn. Taking advantage of the fact that in d = 2 spacetime

dimensions the momenta on the mass shell are linearly ordered, we may assume

without loss of generality that q1 < � � � < qn. Now if the incoming state is to

evolve with non{zero probability into this outgoing state, the energy{momentum

conversation law requires that p1 + p2 = q1 + � � �+ qn. Taking into account that

the linear order of momenta is preserved under proper othochronous Lorentz

transformations, it is not di�cult to see that at least one of the incoming particle

momenta, say p1, has to be strictly larger than any one of the outgoing momenta,

i.e. q1 < � � � < qn < p1. We pick now test functions f1; f2 and g1; : : : gn which,

in momentum space, have support about p1; p2 and q1; : : : qn, respectively, such

that �(g1) � � � � � �(gn) � �(f1). Thus, for any choice of local operators

A1; : : : An+2 2 A(O), we obtain with the help of the preceding lemma

�
(A1(f1)
�A2(f2)
)in; (A3(g1)
� � � � �An+2(gn)
)out

�

= (A1(f1)inA2(f2)
; (A3(g1)
� � � � �An+2(gn)
)out)

= (A2(f2)
; A1(f1)in
� (A3(g1)
� � � � �An+2(gn)
)out) = 0: (4.7)

But the set of collision states with non{overlapping momenta is dense in the set

of all collision states, so we arrive at the conclusion that an incoming collision
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state of two particles can never evolve into an outgoing collision state containing

more than two particles, i.e. there is no particle production in the underlying

theory.

Theorem 4.2 If a local, relativistic quantum �eld theory in d = 2 spacetime

dimensions admits temperate polarization{free generators, there is no particle

production.

This result shows that in d = 2 dimensions temperate polarization{free gen-

erators can only exist in the presence of additional conservation laws, besides

energy{momentum conservation. We have illustrated this fact on the example

of the particle number. By a more re�ned analysis, one can show that also the

individual particle momenta have to be preserved in multi{particle collisions.

This brings us close to the structure of scattering amplitudes found in completely

integrable models. In particular, the apparently general Ansatz for correlation

functions of polarization{free generators, proposed by one of the authors in [4, 19],

falls back to this special class of theories. Moreover, there are indications in the

present general setting that temperate polarization{free generators necessarily

have algebraic properties of the type found in these examples. Thus the notion of

temperate polarization{free generator may not only be useful for the characteriza-

tion of such integrable models, but it might also serve as a tool for their general

analysis and classi�cation. This interesting aspect of the present investigation

will be discussed elsewhere.

5 Concluding remarks

Harry Lehmann, one of the pioneers of the rigorous approach to relativistic quan-

tum �eld theory, liked to mock at the sometimes cumbersome subtleties appearing

in this setting as \problems of inessential selfadjointness". But his scienti�c work

provides ample evidence to the e�ect that he was willing to invest mathematical

diligence and care where the physical context required it.

In the present article, we have encountered a surprisingly subtle feature of
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relativistic quantum �eld theory: Mathematics tells us, on one hand, that any

such theory accommodates well{de�ned polarization{free generators. Physics,

on the other hand, implies that these generators necessarily have rather peculiar

domain properties which do not allow one to apply methods of Fourier analysis.

Their relation to the asymptotic particle interpretation is thereby obscured. Being

sloppy with regard to these domain properties, one would be led to the unpleasant

conclusion that the fundamental postulates of relativistic quantum �eld theory

exclude interaction in more than two spacetime dimensions. Thus it is this subtle

point which provides the loophole for theories with non{trivial interaction.

Temperate polarization{free generators exist, however, in two{dimensional

integrable models and the present results indicate that they are a distinctive

feature of such theories. This fact may be attributed to the presence of large

groups of conservation laws in such theories which help to restrain the polarization

e�ects of local operations. We believe that a more detailed investigation of these

temperate generators is warranted and will lead to a better understanding of the

speci�c features of these models.

There is another aspect of the present analysis which deserves mentioning,

namely the problem of particle statistics in low dimensions. We have discussed

here only the simple case of bosons, the case of fermions being similar. But it is

well{known that particles in two and three spacetime dimensions can also have

anyonic or plektonic statistics (cf. [20, 21] for a systematic analysis of this issue).

There is also a general collision theory for such particles [22], but it is an open

question whether there exists some kind of associated free �elds.

A negative result to that e�ect is due to Mund [23], who proved that there are

no operator{valued solutions of the Klein{Gordon equation which generate such

particles from the vacuum and are localized in salient (pointed) spacelike cones.

This ad hoc assumption about the localization is, however, crucial for the proof

of this no{go theorem. In fact, as in theories of massive anyons and plektons

there are still cone{like localized (vacuum polarizing) operators which generate

the states of physical interest from the vacuum, one can establish the existence
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of wedge{localized polarization{free generators for these particles. Taking tem-

perateness as an additional input, it may well be possible to construct from these

generators in a systematic manner examples of anyonic or even plektonic theories

which come close to the idea of a free �eld theory.
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