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Abstract

Several aspects of the manifestation of the causality principle in LQP (local
quantum physics) are reviewed or presented. Particular emphasis is given to those
properties which are typical for LQP in the sense that they do go beyond the
structure of general quantum theory and even escape the Lagrangian quantization
methods of standard QFT. The most remarkable are those relating causality to the
modular Tomita-Takesaki theory, since they bring in the basic concepts of antiparti-
cles, charge superselections as well as internal and external (geometric and hidden)
symmetries.
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1 LQP Principles and some Consequences

If one thinks about the fundamental physical principles of this century which have stood
their grounds in the transition from classical into quantum physics, relativistic causality
as well as the closely related locality of quantum operators (together with the localization
of quantum states) will certainly be the most prominent one.

This principle entered physics through Einstein's 1905 special relativity, which in turn
resulted from bringing the Galilei relativity principle of classical mechanics into tune with
Maxwell's theory of electromagnetism. Therefore it incorporated Faraday's \action at a
neighborhood" principle which revolutionized 19th century physics.

The two di�erent aspects of Einstein's special relativity, namely Poincar�e covariance
and the locally causal propagation of waves (in Minkowski space) were kept together in
the classical setting. In the adaptation of relativity to LQP (local quantum physics1)
on the other hand [1], it is appropriate to keep them at least initially apart in the form
of positive energy representations of the Poincar�e group (leading to Wigner's concept of
particles) and Einstein causality of local observables (leading to observable local �elds
and local generalized \charges"). Here a synthesis is also possible, but it happens on a
deeper level than in the classical setting and results in LQP as a new physical realm which
is conceptually very di�erent from both classical �eld theory and general QT (quantum
theory). The elaboration of some of these di�erences, in particular as they may be relevant
with respect to the measurement process, constitutes one of the aims of these notes. For
material which already entered textbooks or review articles, we have preferred to quote
the latter. A more detailed account of the consequencs of causality in a much broader
context can be found in [2][3].

As a result of this added locality, LQP acquires a di�erent framework than the kind of
general quantum theory setting [5] in which the basics of quantum theory and measure-
ment (including those ideas, which in the fashionable language of the day, are referred
to as \quantum computation") are presented . Those concepts, which originate from
the quantum adaptation of Einstein causality, lead in the presence of interactions to
real particle creation (which arti�cially could be incorporated into a multichannel version
quantum theory of particles) and, what has more importance within our presentation, to
virtual particle structure (related to the phenomenon of vacuum polarization) which has
no counterpart in global general quantum theory as quantum mechanics and cannot be
incorporated into it at all. The latter remark preempts already the greater signi�cance
of superselected charges and their fusion, as opposed to particles and their quantum me-
chanical bound states. Thus the hierarchy of particles in QM is replaced by the hierarchy
of charges and consequently we obtain \nuclear democracy" between particles. This is
closely related to an almost anthropological principle which LQP realizes in a perfect
way in laboratory particle physics: whenever energy-momentum and (generalized) charge
conservation allow for particle creation channels to be opened, nature will maximally use
this possibility. To be sure there are theoretical models of LQP (integrable/factorizing
models in d=1+1 spacetime dimensions) which do not follow this dictum, but even in

1We use this terminology, whenever we want to emphasize that we relate the principles of QFT not
with necessarily with the standard text-book formalism that is based on quantization through Lagrangian
formalism.
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those cases at least its theoretical \virtual" version is realized: a vector state created by
the application of an interacting �eld to the vacuum which has a one-particle compo-
nent, is inexorably accompanied by a \polarization cloud" of particles/antiparticles (the
hallmark of LQP). As already emphasized the only exception are free bosonic/fermionic
�elds and in a somewhat pointed (against history), but nevertheless correct manner, one
may say that this very exception is the reason why QM as a nonrelativistic limit of LQP
has a physical reality at all. More general braid group statistics, as it can occur together
with exotic spin in low dimensional QFT, requires these polarization clouds already in the
\freest" realization of anyons/plektons and they are not fading away in the nonrelativistic
limit because they are needed to uphold braid group statistics in that limit. This is the
reason why the attempts of Leinaas, Myrheim, Wilcek and many others, which draw on
the analogy with the Aharanov-Bohm quantum mechanics may catch some aspects of
plektons but miss the spin-statistics connection which is their most important property
(i.e. their LQP characterization).

This aspect of virtuality, which at �rst sight seems to complicate life since it activates
the coupling between in�nitely many degrees of freedom/channels, is counterbalanced by
some very desirable and useful features: whereas general quantum theory needs an outside
interpretative support, LQP carries this already within itself. It was emphasized already
at the end of the 50ies (notably by Rudolf Haag [1]), that e.g. for a particle interpretation
one does not need to resolve the distinction between the various local observables which
are localized in the same space-time region (laboratory extension and time duration of
measurement), the knowledge of the space-time a�liation of a generic observable from a
region O is enough. The experimenter does not know more than the geometric spacetime
placement of his counters and their sensitivity; the latter he usually has to determine by
monitoring experiments. The basic nature of locality in interpreting the particle aspect
of a theory is underlined by the fact that despite intense e�orts nobody has succeeded
to construct a viable nonlocal theory. Here \viable" is meant in the sense of conceptual
completeness, namely that a theory is required to contain its own physical interpretation
i.e. that one does not have to invent or impose formulas from outside this theory.

Although physical reality may unfold itself like an onion or an in�nite Russian \ma-
trushka" with in�nitely many layers of ever more general physical principles towards
higher energies (smaller distances), it should still continue to be possible to have a math-
ematically consistent theory in each layer which is faithful to the principles valid in that
layer. This has been fully achieved for quantum mechanics, but this goal was not yet
reached in QFT. As a result of lack of nontrivial d=1+3 models or structural arguments
which could demonstrate that the physical locality and spectral requirements allow for
nontrivial solutions, the theory is still far from conceptual maturity, despites its impres-
sive perturbative successes in QED, the Standard Model and in the area of Statistical
Mechanics/Condensed Matter physics.

Causality and locality are in a profound way related to the foundations of quantum
theory in the spirit of von Neumann, which brings me a little closer to the topic of this
symposium. In von Neumann's formulation, observables are represented by selfadjoint
operators and measurements are compatible if the operators commute. The totality of all
measurements which are relatively compatible with a given set (i.e. noncommutativity
within each set is allowed) generate a subalgebra: the commutant L0 of the given set of
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operators L. In particular in LQP, a conceptual framework which was not yet available
to von Neumann, one is dealing with an isotonic \net" of subalgebras (in most physically
interesting cases von Neumann factors, i.e. weakly closed operator algebras with a trivial
center) O ! A(O): Therefore unlike quantum mechanics, the spatial localization and the
time duration of observables becomes an integral part of the formalism. Causality gives
an a-priori information about the size of spacetime O -a�liated operator (von Neumann)
algebras:

A(O)0 � A(O0) (1)

in words: the commutant A(O)0 of the totality of local observables A(O) localized in
the spacetime region O contains the observables localized in its spacelike complement
(disjoint) O0: In fact in most of the cases the equality sign will hold in which case one
calls this strengthened (maximal) form of causality \Haag duality" [1]:

A(O)0 = A(O0) (2)

In words, the spacelike localized measurements are not only commensurable with the given
observables in O, but every measurement which is commensurable with all observables in
O; is necessarily localized in the causal complement O0: Here we extended for algebraic
convenience von Neumann's notion of observables to the whole complex von Neumann
algebra generated by hermitian operators localized inO: If one starts the theory from a net
indexed by compact regions O as double cones, then algebras associated with unbounded
regions O0 are de�ned as the von Neumann algebra generated by all A(O1) if O1 ranges
over all net indices O1 � O

0:

Whereas the Einstein causality (1) allows a traditional formulation in terms of pointlike
�elds A(x) as

[A(x); A(y)] = 0; (x� y)2 < 0; (3)

Haag duality can only be formulated in the algebraic net setting of LQP, since it is not a
property which can be expressed in terms of individual operators. This aspect is shared
by many other important properties and results [1].

One can prove that Haag duality always holds after a suitable extension of the net to
the so-called dual net A(O)d: The latter may be de�ned independent of locality in terms
of relative commutation properties as

A(O)d :=
\

O1;O
0

1
�O

A(O1)
0 (4)

The relative commutance with respect to the observables is called (algebraic) \localiz-
ability". These considerations show that causality, locality and localization in LQP have
a natural and deep relation to the notion of compatibility of measurements. In addi-
tion there are subtle modi�cations with respect to the basic quantum structure with
possible changes of environmental and other aspects of quantum measuring. The funda-
mental reason for all such modi�cations in the interpretation of LQP versus QM is the
di�erent structure of local algebras: the vacuum is not a pure state with respect to any
algebra which is equal to or contained in an A(O) with O0 nonempty, and the sharply
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localized algebras A(O) themselves do not admit pure states at all2! They possess an
algebraic structure which has not been taken into account in the present day presentation
of quantum basics including quantum computation. Since these �ne points can only be
appreciated with some more preparation, I will postpone their presentation.

If the vacuum net (i.e. the vacuum representation of the observable net) is Haag dual,
then all associated \charged" nets share this property, unless the charges are nonabelian
(in which case the deviation from Haag duality is measured by the Jones index of the
above inclusion, or in physical terms the statistics- or quantum-dimension [13]). If on the
other hand even the vacuum representation of the observable net violates Haag duality,
then this indicates spontaneous symmetry breaking [6] i.e. not all internal symmetry
algebraic automorphisms are spatially implementable. As already mentioned, in that case
one can always maximize the algebra without destroying causality and without changing
the Hilbert space, such that Haag duality is restored. This turns out to be related to the
descend to the unbroken part of the symmetry which allows (since it is a subgroup) more
invariants i.e. more observables.

Since QM and what is usually referred to as the basics of quantum theory do not know
these concepts at all, I am presenting in some sense a contrasting program to the (global)
QT orientation of this symposium. But often one only penetrates the foundations of a
framework more profoundly, if one looks at a contrasting structure even if the di�erence is
(presently) not measurable. For an analogy we may refer to the Hawking e�ect which has
attracted ever increasing attention as a matter of principle, even though there is hardly
any experimental chance.

In connection with this main theme of this symposium, it is interesting to ask if LQP
could add something to our understanding of classical versus quantum reality (the ERP,
Bell issue) or the measurement process i.e. production of \Schr�odinger cat states" and
observation of their subsequent decoherence. For the �rst issue I refer to [4]. Apart from
some speculative remarks [5], there exists no investigation of the measurement process
which takes into consideration the characteristic properties of the local algebras in LQP. I
tend to believe that, whereas most of the present ideas on coherent states of Schr�odinger
cats and their transition to von Neumann mixtures will remain or at least not su�er
measurable quantitative modi�cations, LQP could be expected to lead to signi�cant con-
ceptual changes. Certainly it will add a universal aspect to the issue of decoherence
through environments. Contrary to QM where the environment is introduced by ex-
tending the system, localized systems in LQP are always open subsystems for which the
\causal disjoint" de�nes a kind of universal environment which is build into its formalism.

Another structurally signi�cant deviation which was already alluded to results from
the fact that the vacuum becomes a thermal state with respect to the local algebras A(O):
There are two di�erent mechanisms to generate thermal states: the standard coupling with
a heat bath and the thermal aspect through restriction or localization and the creation
of horizons [8][9]. The latter is in one class with the Hawking-Unruh mechanism; the
di�erence being that in the localization situation the horizon is not classical i.e. is not

2In order to �nd local algebras which are anywhere near quantum mechanical algebras and admit pure
states and tensor products with entanglement similar to the inside/outside quantization box situation
in Schr�odinger theory, one has to allow for a \fuzzy" transition \collar" between a double cone and its
causal disjoint outside, in more precise terms one has to consider a so-called split inclusion [1].
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de�ned in terms of a di�erential geometric Killing generator of a symmetry transformation
of the metric.

The fact that algebras of the type A(O) have no pure states is related to the di�erent
behavior of the pair inside/outside with respect to factorization: whereas in QM the
boxed system factorizes with the system outside the box, the total algebra B(H) in LQP
is generated by A(O) and its commutant B(H) = A(O) _A(O)0; but it is not the tensor
product of the two factor algebras A(O) and A(O)0 = A(O0): In order to get back to a
tensor product situation and be able to apply the concepts of entanglement and entropy,
one has to do a sophisticated split which is only possible if one allows for a \collar" (see
later) between O and O0 [1].

Since the thermal aspects of localization are analogous to black holes3, there is no
chance to directly measure such tiny e�ects. However in conceptual problems, e.g. the
question if and how not only classical relativistic �eld theory, but also QFT excludes
superluminal velocities, these subtle di�erences play a crucial role. Because of an unusual
property of the vacuum in QFT (the later mentioned Reeh-Schlieder property), the exclu-
sion of superluminal velocities requires more conceptual and mathematical understanding
than in the classical case. Imposing the usual algebraic structure of QM (i.e. assuming
tacitly that the local observables allow pure states) onto the local photon observables
will lead to nonsensical results. Most sensational theoretical observations on causality
violations which entered the press and in one case even Phys. Rev. Letters, su�er from
incorrect tacit assumptions (if they are not already caused by a misunderstanding of the
classical theory). We urge the reader to look at the fascinating reference [12] and the
conceptually wrong preceeding article.

Historically the �rst conceptually clear de�nition of localization of relativistic wave
function was given by Newton and Wigner [7] who adapted Born's x-space probability
interpretation to the Wigner relativistic particle theory. Apparently the result that there
is no exact satisfactory relativistic localization (but only one su�cient for all practical
purposes) disappointed Wigner so much, that he became distrustful of the usefulness of
QFT in particle physics altogether (private communication by R. Haag). Whereas we
know that this distrust was unjusti�ed, we should at the same time acknowledge his
stubborn insistence in the importance of the locality concept which he thought of as an
indispensable requirement in addition the positive energy property and irreducibility of the
Wigner representations. Without explanation we state that modular localization of state
vectors is di�erent from the Born probability interpretation. Rather subspaces of modular
localized wave functions preempt the existence of causally localized observables already
on the level of the Hilbert space of relativistic wave functons and have no counterpart
at all in N-particle quantum mechanics. As will be explained later, modular localization
may serve as a starting point for the construction of interacting nonperturbative LQP's
[13]4. It is worthwhile to emphasize that sharper localization of local algebras in LQP

3The analogy is especially tight for the wedge localization since the boundary of wedges de�ne bi-
furcated classical \Killing horizons" (Unruh), whereas the boundary of e.g. a double cone in a massive
theory de�nes a \quantum horizon". This concept has a cood meaning with respect to the nongeometri-
cally acting modular group associated with the latter situation, and it has no classical analogon (it is in
fact a \hidden symmetry").

4In fact the good modular localization properties are guarantied in �nite component positive energy
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is not de�ned in terms of support properties of classical smearing functions but via the
rather unusual formation of intersection of localized algebras; although in some cases as
CCR- or CAR-algebras (or more generally Wightman �elds) the algebraic formulation (1)
can be reduced to this more classical concept.

Since the modular structure is related to the so-called KMS property [1], it is not
surprising that the modular localization has thermal aspects. In fact as mentioned be-
fore, there are two manifestations of thermality, the standard heat bath thermal behavior
which is described by Gibbs formula or, after having performed the thermodynamic limit,
by the KMS condition, and thermality caused by localization either with classical bi-
furcated Killing-horizons as in black holes [8][9] curved spacetime and (Rindler, Unruh,
Bisonano-Wichmann) wedge regions, or in a purely quantum manner as the boundary
of the Minkowski space double cones. In the latter case the KMS state has no natural
limiting description in terms of a Gibbs formula (which only applies to type I and II, but
not to type III von Neumann algebras), a fact which is also related to the boundedness
from below of the hamiltonian, whereas the e.g. Lorentz boost (the modular operator
of the wedge) does not share this property. In [10] the reader also �nds an discussion
of localization and cluster properties in a heat bath thermal state. Although in these
notes we will not enter these interesting thermal aspects, it should be emphasized that
thermality (similar to the concept of virtual particle clouds) is an inexorable aspect of
localization in LQP and does not need the Hawking type of Killing vector horizons. The
close relation of particle and thermal physics (KMS thermal property'crossing symmetry
of S-matrix and formfactors [13]) is a generic property of LQP and should not be counted
as a characteristic success of string theory.

Already in the very early development of algebraic QFT [11] the nature of the local
von Neumann algebras became an interesting issue. Although it was fairly easy (and
expected) to see that i.e. wedge- or double cone- localized algebras are von Neumann
factors (in analogy to the tensor product factorization of standard QT under formation of
subsystems, it took the ingenuity of Araki to realize that these factors were of type III
(more precisely hyper�nite type III1; as we know nowadays thanks to the profound con-
tributions of Connes and Haagerup), at that time still an exotic mathematical structure.
Hyper�niteness was expected from a physical point of view, since approximatability as
limits of �nite systems (matrix algebras) harmonizes very well with the idea of thermo-
dynamic+scaling limits of lattice approximations. A surprise was the type III1 nature
which,as already mentioned, implies the absence of pure states (in fact all projectors
are Murray von Neumann equivalent to 1) on such algebras; this property in some way
anticipated the thermal aspect (Hawking-Unruh) of localization. Overlooking this fact
(which makes local algebras signi�cantly di�erent from QM), it is easy to make concep-
tual mistakes which could e.g. suggest an apparent breakdown of causal propagation [12]
as already mentioned before. If one simply grafts concepts of QM onto the causality
structure of LQP (e.g. quantum mechanical tunnelling, structure of states) without de-
riving them in LQP , one runs the risk of wrong conclusions about e.g. the possibility of

representations, with the Wigner in�nite component \continuous spin" representations being the only
exception.. In this in�nite component �nite energy representation it is not possible to come from the
wedge localization down to the spacelike cone localization which is the coarsest localization which one
needs for a particle interpretation.
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superluminal velocities.
A very interesting question is: what is the in
uence of the always present causally

disjoint environment on the measurement process, given the fact that in the modern
treatment the coupling to the environment and the associated decoherence relaxation are
very important. Only certain aspects of classical versus quantum reality, as expressed in
terms of Bell's inequalities, have been discussed in the causal context of LQP [4]. In the
following we will sketch some more properties which set apart QM from LQP and whose
conceptual impacts on decoherence of Schr�odinger cats, entanglement etc. still is in need
of understanding.

Let me mention two more structural properties, intimately linked to causality, which
distinguish LQP rather sharply from QM. One is the Reeh-Schlieder property:

P(O)
 = H; i:e: cyclicity of 
 (5)

A 2 P(O); A
 = 0 =) A = 0 i:e: 
 separating

which either holds for the polynomial algebras of �elds or for operator algebras A(O): The
�rst property, namely the denseness of states created from the vacuum by operators from
arbitrarily small localization regions (a state describing a particle behind the moon5 and
an antiparticle on the earth can be approximated inside a laboratory of arbitrary small
size and duration) is totally unexpected from the global viewpoint of general QT and has
even attracted the interest of philosophers of natural sciences. If the naive interpretation
of cyclicity/separability in the Reeh-Schlieder theorem leaves us with a feeling of science
�ction, the way out is to ask: which among the dense set of localized states can be really
produced with a controllable expenditure (of energy)? In QM to ask this question is
not necessary since, as already mentioned, the localization at a given time via support
properties of wave functions leads to a tensor product factorization of inside/outside so
that the ground state factorizes and the application of the inside observables never leads
to a dense set in the whole space. It turns out that most of the very important physical
and geometrical informations are encoded into features of dense domains and in fact the
aforementioned modular theory is explaining such relations. For the case at hand, the
reconciliation of the Reeh-Schlieder theorem with common sense has led to the discovery
of the physical relevance of localization with respect to phase space in LQP, i.e. the
understanding of the size of degrees of freedom in the set:

PEA(O)
 is compact (6)

e��HA(O)
 is nuclear; H =
Z
EdPE

The �rst property was introduces way back by Haag and Swieca [1], whereas the second
statement (and similar nuclearity statements involving modular operators of local regions
instead of the global hamiltonian) which is more informative and easier to use, is a later
result of Buchholz and Wichmann [1]. It should be emphasized that the LQP degrees of

5This weird aspect should not be held against QFT but rather be taken as indicating that localization
by a piece of hardware in a laboratory is also limited by an arbitrary large but �nite energy, i.e. is a
\phase space localization" (see subsequent discussion). In QM one obtains genuine localized subspaces
without energy limitations.
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freedom counting of Haag-Swieca, which gives an in�nite (but still nuclear) number of
localized states is di�erent from the �niteness in QM, a fact often overlooked in present
day's string theoretic degree of freedom counting. The di�erence to the case of QM
decreases if one uses instead of a strict energy cuto� a Gibbs damping factor e��H :

In this case the map A(O) ! e��HA(O)
 is \nuclear" if the degrees of freedom are
not too much accumulative in order to prevent the existence of a maximal (Hagedorn)
temperature. The nuclearity assures that a QFT, which was given in terms of its vacuum
representation, also exists in a thermal state. An associated nuclearity index turns out to
be the counterpart of the quantum mechanical Gibbs partition function [1] and behaves
in an entirely analogous way.

The peculiarities of the above Haag-Swieca degrees of freedom counting are very much
related to one of the oldest \exotic" and at the same time characteristic aspects of QFT:
vacuum polarization. As discovered by Heisenberg, the partial charge:

QV =
Z
V
j0(x)d

3x =1 (7)

diverges as a result of uncontrolled vacuum 
uctuations near the boundary. For the
free �eld current it is easy to see that a better de�nition involving test functions, which
takes into account the fact that the current is a 4-dim distribution and has no restriction
to equal times, leads to a �nite expression. The algebraic counterpart is the already
mentioned so called \split property" namely [1] that if one leaves between say the double
cone (\relativistic box") observable algebra A(O) and its causal disjoint A(O0) a \collar"
region, then it is possible to construct in a canonical way a type I tensor factor N
which extends into the collar and one obtains inside/outside factorization if one leaves
out the collar region (a fuzzy box). This is then the algebraic analogon of Heisenberg's
smoothening of the boundary to control vacuum 
uctuations. It is this \split inclusion"
which allows to bring back some of the familiar structure of QM, since type I factors allow
for pure states, tensor product factorization, entanglement and all the other properties
at the heart of quantum theory and the measurement process. Although there is no time
to explain this, let us nevertheless mention that the most adequate formalism for LQP
which substitutes quantization and is most characteristic of LQP in contradistinction to
QT, is the formalism of modular localization related to the Tomita modular theory of von
Neumann algebras. The interaction enters through wedge algebras, thus giving wedges
a similar fundamental role as they already had in the Unruh illustration of the thermal
aspects of the Hawking e�ect. Modular localization also leads to a vast enlargement of
the symmetry concepts in QFT [14][15] beyond those geometric symmetries which enter
the theory through quantized Noether currents.

If by these remarks I have created the impression that local quantum physics is one of
the conceptually most fertile and spiritually (not historically) young areas of future basic
research with relevance to the basics of measurement and quantum computation, I have
accomplished the purpose of these notes. Indeed I know of no other framework which
brings together such seemingly di�erent ideas as Spin & Statistics, TCP and crossing
symmetry of particle physics on the one hand together with thermal and entropical aspects
of (modular) localization & black hole physics on the other hand.
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