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The amazing quantity of information required to initialize the enormous number

of connections on which is based the neuron network functioning cannot possibly

be encoded in the genoma. The answer to this puzzling problem could be in self-

organized criticality.

Koch1 has called the attention on the difficulty (maybe impossibility) to store

in the genoma all the information required to initialize a network of neurons without

the intervention of an external programmer.

Brain function2 is largely based on a complex system of connections among its

basic components, neurons and synapses. If the sum of excitatory signals (of the order

of one millivolt each) that reach a neuron within a short period of time, surpasses

some threshold (of approximately tens of millivolts high), the neuron will eventually

release an electric signal (spike). After the traumatic event, that the emission of a

spike represents, the neurons require a period of time to recover. This period is called

the absolute refractary period of the neuron.

By self-organized criticality it is understood the tendency of certain

collectively organized systems to reach a steady state without necessity of external

tuning of parameters. The lack of a typical size for bursts of activity or avalanches

(except the own size of the system) and the lack of a relevant time scale are the main
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features of the above mentioned steady state. Self-organized criticality appears in

systems and models that, at a first glance, could appear very unlike. It is a quite

ubiquitous phenomenon and experimental evidence has been found, among others, in

earthquakes3, superconducting vortex avalanches4, sand piles5 and (maybe?) the

brain1.

Self-organization (some times called self-tuning) has become popular among

the scientists that model the brain function6-10. It has been used in general problems as,

for example, the cortical organization, as well as in the modeling of specific activities

as, for instance, the breath regulation. In all these cases the implemented algorithm

adapts itself locally to a cost function landscape. In the model to be confronted to

experimental results it is not attempted to give a detailed description of the elements

of the brain. Instead, each neuron is represented by a barrier that is a relaxed measure

of the number of stimulatory inputs that the neuron must receive to fire. When the

barrier is high, firing is difficult unless accumulative activity of related neurons lower

the barrier enough; the firing would only happen at later times. The barriers are the

measure of stability. The modification of a barrier can be thought as either the result

of the release of a spike by the own neuron or as the consequence of a received signal

that changes the stability of the neuron.

A simple model that represent the main characteristics of all that was

explained above, and that can liberate the genoma from the burdensome responsibility

of initialize the 1014 connections in the brain, is defined by  following the simulation

sequence: N neurons are distributed on a ring (a line with periodic boundary

conditions). A random barrier, Bi, between 0 and 1, is assigned to each neuron. The

lowest barrier is detected and the corresponding neuron is fired (this is, at the same

time, the updating algorithm and the definition of time step) by assigning a new
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random number between 0 and 1 to the barrier and by assigning to its first neighbors

new random numbers between 0 and 1. Last, the site that suffers a change in its barrier

as a consequence of firing itself is prohibited of firing again during a period of time Tr

(the refractary period). Its neighbors are free to fire at any moment if they fulfill the

condition of being the lowest. If after a certain time interval Tr a nearest neighbor is

fired, the barrier of the temporarily ''frozen'' neuron is also changed but it continues to

be prohibited to produce a spike until a time Tr has elapsed.

After a transient, independently of the initial conditions, the system reaches a

stationary state boldly characterized by a step-like distribution for the barrier heights

and by a threshold Bc. The spike activity takes place in neurons with barriers below

the self-organized critical value Bc. The distribution of the lowest barriers in the

critical state vanishes at and above the self-organized threshold.

In the critical state each barrier suffers bursts of activity alternated with long

periods of calm. The hanging garden of Babylon shaped picture in Figure 1 presents

the instantaneous values of a single barrier, during a time interval, when the system is

at the critical state. It seems to present a fractal character: when the time scale is

changed the appearance continues to be essentially the same as in the magnification

shown.

Now, if at the critical state all the events become correlated in space it is not

too difficult to realize that by looking, for a sufficiently long period of time, at the

subsequent values of a single barrier, it will be obtained some ``comprehension'' of

what is usually called avalanche. Defining the size s of, what is preferable to call, anti-

avalanche (the name will become clear now) as the number of consecutive time steps

during which the observed barrier remains constant it is possible to obtain an

histogram. In Figure 1 the horizontal segments are the evidence of large anti-
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avalanches (the avalanches present in the system during those time intervals are far

away from the barrier of interest or are small enough to, even being in the

neighborhood of the barrier, not affect it). The vertical punctuated strips are time

intervals of ''intense'' activity,  i.e., periods of time during which the barrier is

submersed in the sea of an avalanche.

Figure 2 shows the distribution of anti-avalanches in the critical state for a

single barrier. The power law reveals the existence of anti-avalanches of all scales.

The exponent beta  in the anti-avalanche distribution A( s) = sβ is β = −1.60 ± 0.04.

As illustrated by the power law distribution of anti-avalanches, at the critical

state, the neurons are connected at all scales. All neurons belonging to a single

avalanche should remain in activity at the ''same'' time period, thus, they might be

considered as a single domain of the brain. We thus have a hierarchical organization

of neurons up to and including the whole brain and we can speculate that the whole

brain acts as a single interconnected neuron; it suffers bursts of activity as a

consequence of excitations coming, in some way, from other neurons. A situation

similar to this was obtained in the model of Bak and Sneppen11 and was previously

suggested by Lovelock12 for biological evolution. It is, very probably, a general feature

of some classes of self-organized critical models and systems.

We have changed the representation of Figure 1 in order to compare it to

Figure 2b of Koch (with experimental data provided to him by W. Newsome and K.

Britten). In the horizontal axis of Figure 3 we put a tick, with the same height, each

time the barrier changes. Both results strongly resemble  each other. The similarity

between them could be more than simply pictorial. However a rigorous proof of that

would require longer measurements of  single neurons or in its lack many of the trips

shown by Koch. Contrary to what was mentioned by Koch and to what could be
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expected, the distribution of spikes in time is not random. Some colleagues at our

center were asked, independently, to magnify approximately four times the Figure 2b

of Koch and make a low-statistics histogram of the distances between subsequent

spikes using a bin size of about one millimeter. All the results gave a one-decade

flavor of what should be expected in better quality statistics: a power-law. Figure 4

shows one of the results. The calculated slopes range from −1.79 to −1.53. The result

obtained within the model was −1.6,  a nice result. Corroboration of this result would

be an amazing example of self-organized criticality and at the same time will

demonstrate the high universality expected in what is believed to be one of the latest

evolution products in the nervous system2: the brain. Equally important, the

confirmation of this could answer the question on where and how store the

information required to initialize the network of neurons: the information is at the

same time nowhere and everywhere. The brain self-organizes critically.
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FIGURE CAPTIONS
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Figure 1.-  Temporal dependence of the value of a barrier when the system is at the

self-organized critical state. It has a fractal character: if the time scale is changed the

shape continues to be the same, as shown in the zoomed area.

Figure 2.- Distribution of anti-avalanches for a single barrier when the whole system

has attained the self-organized critical state. The value of the exponent of the power

law is β = −1.60 ± 0.04.

Figure 3.- Representation a la Koch of the activity of a single model neuron when the

whole system has attained the self-organized critical state. Each  tick represents a

change in the value of the barrier that represents the neuron  or, alternatively, the

release of a spike.

Figure 4.- Low-statistics histogram of the periods of inactivity or antiavalanches of a

single model neuron. The straight line is a guide for the eyes. It has a slope of -1.79.
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