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ABSTRACT

A theoretical approach [M.R-Monteiro et al., Phys. Rev. Lett. 76, 1098 (1996)]
within a quantum-group formalism (¢g¢ # 1) has recently been proposed and success-
fully compared to Greywall’s high precision measurements of the liquid *He specific heat.
We calculate here the specific heat for *He using Tsallis non-extensive thermostatistics
(gqr # 1). A comparative analysis reveals that more sophisticated theories, possibly
including many-body interactions, would be necessary for discriminating between alter-
native formalisms.
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The specific heat of liquid *He has been measured with high precision [1, 2] for the
temperature range 0.14 < 0.86 and values for phonon parameters were determined from
experimental data. They also obtained roton parameter from neutron measurements. The
low temperature *He specific heat is usually given by

C — CPhonon T CRoton (1)

CPhonon

where is the polynomial expansion

CPhonon — AT3—|—BT5—|—DT7 (2)

that was fitted to the measured values of the specific heat C'y (where E stands for exper-
imental) thus determining the parameters A, B and D; T is the temperature; CH%" is a
function of (A/kgT), where A is the energy gap [3] and kg the Boltzmann constant.

In FI1G.1., the relative contributions of the phonons (dashed line) and rotons (solid
line) are depicted. We can see that for T' < 0.5K, the roton contribution is smaller than
1%. When T' increases from 0.5K to 0.8K the roton contribution grows very fast and, at
T ~ 0.8K both contributions are similar; for temperatures immediately above this value,
the roton contribution is the most important one.

Recently, a quantum group (ggg-Bosonic) model [4] for the specific heat (Cgq) of
“He has been proposed. The model does not consider inter-particle interactions, i.e., the
phonons and rotons are assumed as independent quasi-particles. The phonons are treated
as bosonic ggg-oscillators, the rotons as usual. Bosonic ¢gg-oscillators [5] are a gener-
alization of the Heisenberg algebra by introducing a deformation parameter ¢gg, where
goc = 1 corresponds to the standard quantum mechanic description. The q-deformation
of the Heisenberg algebra in the phonon calculation is used to give an algebraic interpre-
tation for the polynomial expansion (2).

On the other hand, Tsallis [6] has presented a generalized thermostatistics, pointing to
systems with non-extensive properties. The formalism is dependent on a parameter here
denoted by ¢r. A possible connection between Tsallis thermostatistics (characterized by
gr # 1) and quantum group (characterized by go¢ # 1) has been recently proposed [7].
Through the discussion of the mean values of observables, a possible temperature depen-
dent relation between ¢r and qgg was derived; it was illustrated with bosonic oscillators.

The aim of the present work is essentially two-fold: (i) to establish the generalized ther-
mostatistic formulation, and (ii) to compare the available different theoretical approaches,
for low-temperature phonon excitations in *He.

Let us denote by C'(qr, o, T) the generic specific heat of *He, where T' is the tem-
perature. The possibilities for C' are:

C(1,1,7) = Cpq Boltzmann-Gibbs statistics,
C(qr,q90a,T) — < C(l,q06,T) = Coe quantum group, (3)
Clqr,1,T)=Cr Tsallis statistics.

In this communication, we first calculate the specific heat Cgg using Boltzmann-
Gibbs statistics and considering an anomalous phonon dispersion. Then, we obtain a
generalized specific heat Cr in the approximation of small departures from the standard
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model. Finally, we compare our result to those of the ¢gg-Bosonic model Cpe and to
experimental data Cg [2].

In a global sense, the Boltzmann-Gibbs thermostatistics and its connection with ther-
modynamics are powerful tools in theoretical physics to study situations where the follow-
ing conditions appear (i) the effective microscopic interaction is short-range or inexistent,
(ii) the microscopic memory is short-ranged or inexistent and (iii) the system evolves
in an euclidean-like (non-fractal) space-time. That is, whenever the extensive (additive)
description of thermodynamics holds. Then, we calculate the specific heat without any ex-
tra approximation in the Boltzmann-Gibbs framework, considering only the contributions
due to phonons and rotons.

We take the Hamiltonian H for a non-interacting phonon gas, into a box of side / in
D dimensions, as given by

N
1
=1
where N is the operator number, w; is the frequency of the oscillator and & = h/27 (h

is the Planck constant). The partition function can be found by standard methods; the
free energy takes the form

1, & al |
FPhonon — Sh ST wi 4+ kpT Y log(l — e™i/kaT), (5)
=1 =1
Since there is a finite number of particles there will be a superior bound for the possible
number of modes for the particles,

D
( 7_‘_D/2
N=—] ———FkP 6
(271') L(D/2+1) ¢’ (6)
where k. will be the maximum-k-mode. Let us consider *He as a continuous medium
and assume the anomalous dispersion relation for phonons w = c¢,k(1 — ak?), where
¢, is the sound velocity, and «a < 0 as it has been experimentally estimated [1, 2] and

theoretically justified [4]. For a large number of particles N, we can replace all summations
by integrations; then Eq.(5) can be written as

> Nk 6/T (1 — 3t%2?)
FPhonon — Fo NE=T1 1 — —i(l—akc) . BTD-I—I/ d D
+VhB L log ( « ) op 0 o exp(z(1 — t222)) — 1’
(7)
where 0 = hey k. /kp, t = /o k.T/0 and

1 1 1
Fy= 5Nkgo (5 - ).
2" "PPA\DF1 D3
It is possible to find the internal energy [JFhonon — frPhonon _7pgppPhonon /G thus we get
Nkg o/T (1 —t%2%)
UPhonon — Uo D TD—I—I/ d D 8
+ or 0 o exp(z(l — t222)) = 1’ ()

with U, = F,, and the specific heat at constant volume can be obtained from CThomen =

(aUPhonon /aT)V
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We take for the energy of the roton gas its usual dispersion relation € = A+(p—p, )*/2u,
where p, is the momentum value for the energy minimum and g is the effective mass of
the roton. Using standard methods we obtain the free energy in D dimensions:

AN (ksT\*?
FrRoton _ p(D) (E) (%) exp(—A/kgT). (9)

The corresponding internal energy is given by

A ANY2Z 1 A N2
Roton — (D) [ = 1 N 1
. i (kB) KkBT) 5 (kBT) ]GXP( [ksT), (10)

and the specific heat can be written as

3 (ksT\Y? (A NYE AN
()" ()" ()

4 A kgT kgt

R(D)_ l ¥ 27TD/2 D—1 9 Ak
~\2rn) T(Dj2)Pe VIS TE

In general, the additive properties of the Boltzmann-Gibss statistics give Figg = FFhoron 1

¢ Feton — R(D) exp(—A/kgT) (11)

where

FToten for the free energy (in its extended form it is called the fundamental equation for
the system), Upg = [JFhonon y [TRotor for the internal energy and Cgg = CFhonen  CRoton
for the specific heat.

As an alternative, we present a calculation within the Tsallis generalized statistics.
This kind of calculation is useful when the system is expected to violate the extensive
properties. More precisely [8], the difficulties and their consequences are classified as
follows:

(i) For a relevant euclidean-like (non-fractal) space-time and if either the forces or the
memory (or both) are long-ranged but we are interested in an equilibrium state,
the Boltzmann-Gibbs statistics is weakly violated and the formalism can be used
to obtain an approximate description. However, if we are interested in a meta-
equilibrium state, the Boltzmann-Gibbs description is strongly violated. Another
formalism must be used.

(ii) For a relevant (multi)fractal space, the Boltzmann-Gibbs formalism is strongly vio-
lated once more and another formalism is needed.

The explicit need for a non-extensive thermodynamics has been well known from
cosmology, gravitation and astrophysics [9], magnetic systems [10], Lévy-like anomalous
diffusion [11], etc. Consequently, Tsallis proposed a non-extensive thermostatistics in [6].
This formalism has already received some applications. Among them, let us mention the
following ones: self-gravitating systems, stellar polytropes, Vlasov equation [12, 13]; Lévy-
like anomalous diffusion [11, 14] and correlated anomalous diffusion [8, 15]. Furthermore,
its connection with quantum statistics [16], quantum uncertainty [17], fractals [18, 19],
dynamical linear response theory [20], etc., has been established. The specific heat of
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some simple systems has been studied; among them we have: confined free particle [21],
anisotropic rigid rotator [22], hydrogen atom [23], etc.
Tsallis” generalized statistics relies on entropy

1 —>rpr

St =—k
! I —gqr

(12)
where gy € R; k is a positive constant and Sp recovers the standard form —kg > p pr In pg,
in the limit g7 — 1.

Expression (12) has enabled several (nontrivial, although mathematically simple and
natural) generalizations of important properties (see, for example ref. [21] for canonical
ensemble calculations and ref. [16] for grand-canonical ones).

(i) The generalized canonical distribution adopts the form

=801 - gr)en] =T
PR = 7 , (13)

with the generalized partition function consistently given by

Zr(B) = _[L = B(l — qr)en] =7 , (14)
R
where 8 = 1/ET > 0 and ecp is the spectrum (R represents a set of given real
numbers).

(ii) The thermodynamics associated with Eq.(12) is invariant under Legendre transfor-
mations and preserves thermodynamic stability [24]; in particular, the fundamental
equation 1s

Z770 — 1

l—qr

The gr-expectation value of the energy is given by Ur = Y g pH er = Ir—T(0Fr/0T)

and the generalized specific heat is Cy = 9Ur /0T .

Fr=—kT (15)

Due to the small departure from the Boltzmann-Gibbs result and to the mathematical
difficulties associated with a generic value of ¢r , let us focus from now on the ¢y ~ 1
case. Similar approximations were applied in precedent works [25, 26]. By using Eq.(7)
from ref. [25], the generalized specific heat (Cr) asymptotically becomes

CT ~ exp(—(l — qT)FBg/kBT) X (16)
1 —gqr Cra 9 JCgq J0Cpe 1 ,0*Cpa
lCBG L (QUBG 7~ Cba = Use—gym = kel == = Sk 1" || -

For the following calculation we take D = 3, Na(l — g7) ~ 1072, where N, is the
Avogadro number and we use the data for sample 6 measured by Greywall [2], thus,
(% = 27.579 ¢m? is the molar volume, A/kp = 8.72, R®) = 6.19 x 10* and ¢, = 237m/s.

In FI1G.2., we show the profile of the experimental data of the specific heat (dashed
line) and its generalized form according to Eq.(16) and, as we can see, the results seem
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to be good. For T" — 0 we have C'r > (g, but as T increases there is a temperature at
which C7 equals Cg; for temperatures higher than this value C'r < Cg. We have chosen
sample 6 of ref. [2] in order to compare our results with those of ref. [4].

It we compare carefully the results from quantum groups, Boltzmann-Gibbs and Tsallis
thermostatistics with the experimental data, we find a rather interesting result. Indeed,
although we do not have a microscopic model for excitations in *He and are just ap-
plying statistical methods, comparison with experimental data do not show substantial
differences between our results and those of quantum groups [4] and Boltzmann-Gibbs
statistics. In FI1G.3., the relative difference of each known expression to the values of Cg
measured by Greywall is depicted.

We see that for small values of T', i.e., when the particles interact weakly, the Boltzmann-
Gibbs statistics is better. As T increases, interactions become important and, conse-
quently, Cpg differs more from Cp, while Cr and Cgg are closer to experimental values.

Summarizing, all the available theories are of the same order of accuracy and, if a
better theoretical approach to the liquid *He specific heat is to be obtained, a theory is
needed that considers phonon-phonon, roton-roton and phonon-roton interactions in the
Hamiltonian.

The authors are very indebted to C. Tsallis for valuable discussions.



-6 - CBPF-NF-019/96

05

n"}mn 0.2 0.4 0.6 0.8

T (K)

FIG.1. Relative phonon (dashed line; CE"mo" /() and roton (solid line; CFo"/Cr)
contributions to the specific heat of *He.
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FIG.2. Experimental (dashed line; C' = Cg) and present theoretical (solid line; C' = Cr)
curves for the specific heat of *He. Experimental values correspond to sample 6 of ref. [2]
as it was made in ref. [4]. Theoretical values were computed from Eq.(16). We have used

the data measured by Greywall.
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FIG.3. Relative difference between experimental data (sample 6 of reference [2] as in
ref. [4]; Cg) and the different theories; Boltzmann-Gibbs (circles ; €' = Cpgg), quantum
groups (triangles; C' = Cp¢) and Tsallis thermostatistics (diamonds; C' = Cp). We have
also used the data measured by Greywall.
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