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Abstract

A theoretical approach [M.R-Monteiro et al., Phys. Rev. Lett. 76, 1098 (1996)]
within a quantum-group formalism (qQG 6= 1) has recently been proposed and success-
fully compared to Greywall's high precision measurements of the liquid 4He speci�c heat.
We calculate here the speci�c heat for 4He using Tsallis non-extensive thermostatistics
(qT 6= 1). A comparative analysis reveals that more sophisticated theories, possibly
including many-body interactions, would be necessary for discriminating between alter-
native formalisms.
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The speci�c heat of liquid 4He has been measured with high precision [1, 2] for the
temperature range 0:14 � 0:86 and values for phonon parameters were determined from
experimental data. They also obtained roton parameter from neutron measurements. The
low temperature 4He speci�c heat is usually given by

C = CPhonon + CRoton (1)

where CPhonon is the polynomial expansion

CPhonon = AT 3 +BT 5+DT 7 (2)

that was �tted to the measured values of the speci�c heat CE (where E stands for exper-
imental) thus determining the parameters A; B and D; T is the temperature; CRoton is a
function of (�=kBT ), where � is the energy gap [3] and kB the Boltzmann constant.

In fig.1., the relative contributions of the phonons (dashed line) and rotons (solid
line) are depicted. We can see that for T < 0:5K, the roton contribution is smaller than
1%. When T increases from 0:5K to 0:8K the roton contribution grows very fast and, at
T � 0:8K both contributions are similar; for temperatures immediately above this value,
the roton contribution is the most important one.

Recently, a quantum group (qQG-Bosonic) model [4] for the speci�c heat (CQG) of
4He has been proposed. The model does not consider inter-particle interactions, i.e., the
phonons and rotons are assumed as independent quasi-particles. The phonons are treated
as bosonic qQG-oscillators, the rotons as usual. Bosonic qQG-oscillators [5] are a gener-
alization of the Heisenberg algebra by introducing a deformation parameter qQG, where
qQG = 1 corresponds to the standard quantum mechanic description. The q-deformation
of the Heisenberg algebra in the phonon calculation is used to give an algebraic interpre-
tation for the polynomial expansion (2).

On the other hand, Tsallis [6] has presented a generalized thermostatistics, pointing to
systems with non-extensive properties. The formalism is dependent on a parameter here
denoted by qT . A possible connection between Tsallis thermostatistics (characterized by
qT 6= 1) and quantum group (characterized by qQG 6= 1) has been recently proposed [7].
Through the discussion of the mean values of observables, a possible temperature depen-
dent relation between qT and qQG was derived; it was illustrated with bosonic oscillators.

The aim of the present work is essentially two-fold: (i) to establish the generalized ther-
mostatistic formulation, and (ii) to compare the available di�erent theoretical approaches,
for low-temperature phonon excitations in 4He.

Let us denote by C(qT ; qQG; T ) the generic speci�c heat of 4He, where T is the tem-
perature. The possibilities for C are:

C(qT ; qQG; T )!
8><
>:
C(1; 1; T ) � CBG Boltzmann-Gibbs statistics,
C(1; qQG; T ) � CQG quantum group,
C(qT ; 1; T ) � CT Tsallis statistics.

(3)

In this communication, we �rst calculate the speci�c heat CBG using Boltzmann-
Gibbs statistics and considering an anomalous phonon dispersion. Then, we obtain a
generalized speci�c heat CT in the approximation of small departures from the standard
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model. Finally, we compare our result to those of the qQG-Bosonic model CQG and to
experimental data CE [2].

In a global sense, the Boltzmann-Gibbs thermostatistics and its connection with ther-
modynamics are powerful tools in theoretical physics to study situations where the follow-
ing conditions appear (i) the e�ective microscopic interaction is short-range or inexistent,
(ii) the microscopic memory is short-ranged or inexistent and (iii) the system evolves
in an euclidean-like (non-fractal) space-time. That is, whenever the extensive (additive)
description of thermodynamics holds. Then, we calculate the speci�c heat without any ex-
tra approximation in the Boltzmann-Gibbs framework, considering only the contributions
due to phonons and rotons.

We take the Hamiltonian H for a non-interacting phonon gas, into a box of side ` in
D dimensions, as given by

H = �h
NX
i=1

!i(N +
1

2
); (4)

where N is the operator number, !i is the frequency of the oscillator and �h = h=2� (h
is the Planck constant). The partition function can be found by standard methods; the
free energy takes the form

F Phonon =
1

2
�h

NX
i=1

!i + kBT
NX
i=1

log(1� e�h!i=kBT ): (5)

Since there is a �nite number of particles there will be a superior bound for the possible
number of modes for the particles,

N =

 
`

2�

!D
�D=2

�(D=2 + 1)
kDc ; (6)

where kc will be the maximum-k-mode. Let us consider 4He as a continuous medium
and assume the anomalous dispersion relation for phonons w = cok(1 � �k2), where
co is the sound velocity, and � < 0 as it has been experimentally estimated [1, 2] and
theoretically justi�ed [4]. For a large number of particlesN , we can replace all summations
by integrations; then Eq.(5) can be written as

F Phonon = Fo +NkBT log
�
1� e�

�
T
(1��k2c)

�
� NkB

�D
TD+1

Z �=T

0
dxxD

(1 � 3t2x2)

exp(x(1� t2x2))� 1
;

(7)
where � = �hcokc=kB , t =

p
� kcT=� and

Fo =
1

2
NkB�

�
1

D + 1
� 1

D + 3
�k2c

�
:

It is possible to �nd the internal energy UPhonon = F Phonon�T@F Phonon=@T ; thus we get

UPhonon = Uo +D
NkB
�D

TD+1
Z �=T

0
dxxD

(1� t2x2)

exp(x(1� t2x2))� 1
; (8)

with Uo = Fo, and the speci�c heat at constant volume can be obtained from CPhonon =
(@UPhonon=@T )V .
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We take for the energy of the roton gas its usual dispersion relation � = �+(p�po)2=2�,
where po is the momentum value for the energy minimum and � is the e�ective mass of
the roton. Using standard methods we obtain the free energy in D dimensions:

FRoton = R(D)
�
�

kB

� 
kBT

�

!3=2

exp(��=kBT ): (9)

The corresponding internal energy is given by

URoton = R(D)
�
�

kB

�"�
�

kBT

�1=2
+
1

2

�
�

kBT

�3=2#
exp(��=kBT ); (10)

and the speci�c heat can be written as

CRoton = R(D)

2
43
4

 
kBT

�

!1=2

+
�

�

kBT

�1=2
+
�

�

kBT

�3=235 exp(��=kBT ) (11)

where

R(D) =

 
`

2��h

!D
2�D=2

�(D=2)
pD�1o

q
2��� kB

In general, the additive properties of the Boltzmann-Gibss statistics give FBG = F Phonon+
FRoton for the free energy (in its extended form it is called the fundamental equation for
the system), UBG = UPhonon+URoton for the internal energy and CBG = CPhonon+CRoton

for the speci�c heat.
As an alternative, we present a calculation within the Tsallis generalized statistics.

This kind of calculation is useful when the system is expected to violate the extensive
properties. More precisely [8], the di�culties and their consequences are classi�ed as
follows:

(i) For a relevant euclidean-like (non-fractal) space-time and if either the forces or the
memory (or both) are long-ranged but we are interested in an equilibrium state,
the Boltzmann-Gibbs statistics is weakly violated and the formalism can be used
to obtain an approximate description. However, if we are interested in a meta-
equilibrium state, the Boltzmann-Gibbs description is strongly violated. Another
formalism must be used.

(ii) For a relevant (multi)fractal space, the Boltzmann-Gibbs formalism is strongly vio-
lated once more and another formalism is needed.

The explicit need for a non-extensive thermodynamics has been well known from
cosmology, gravitation and astrophysics [9], magnetic systems [10], L�evy-like anomalous
di�usion [11], etc. Consequently, Tsallis proposed a non-extensive thermostatistics in [6].
This formalism has already received some applications. Among them, let us mention the
following ones: self-gravitating systems, stellar polytropes, Vlasov equation [12, 13]; L�evy-
like anomalous di�usion [11, 14] and correlated anomalous di�usion [8, 15]. Furthermore,
its connection with quantum statistics [16], quantum uncertainty [17], fractals [18, 19],
dynamical linear response theory [20], etc., has been established. The speci�c heat of
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some simple systems has been studied; among them we have: con�ned free particle [21],
anisotropic rigid rotator [22], hydrogen atom [23], etc.

Tsallis' generalized statistics relies on entropy

ST � �k1�
P

R p
qT
R

1� qT
; (12)

where qT 2 <; k is a positive constant and ST recovers the standard form�kBPR pR ln pR,
in the limit qT ! 1.

Expression (12) has enabled several (nontrivial, although mathematically simple and
natural) generalizations of important properties (see, for example ref. [21] for canonical
ensemble calculations and ref. [16] for grand-canonical ones).

(i) The generalized canonical distribution adopts the form

pR =
[1� �(1� qT )"R]

1

1�qT

ZT
; (13)

with the generalized partition function consistently given by

ZT (�) =
X
R

[1� �(1� qT )"R]
1

1�qT ; (14)

where � � 1=kT > 0 and "R is the spectrum (R represents a set of given real
numbers).

(ii) The thermodynamics associated with Eq.(12) is invariant under Legendre transfor-
mations and preserves thermodynamic stability [24]; in particular, the fundamental
equation is

FT = �kT Z
1�qT
T � 1

1 � qT
: (15)

The qT -expectation value of the energy is given by UT =
P

R p
qT
R "R = FT�T (@FT=@T )

and the generalized speci�c heat is CT = @UT=@T .

Due to the small departure from the Boltzmann-Gibbs result and to the mathematical
di�culties associated with a generic value of qT , let us focus from now on the qT � 1
case. Similar approximations were applied in precedent works [25, 26]. By using Eq.(7)
from ref. [25], the generalized speci�c heat (CT ) asymptotically becomes

CT � exp (�(1 � qT )FBG=kBT )� (16)"
CBG +

1� qT
kB

 
2UBG

CBG

T
� C2

BG � UBG
@CBG

@T
� kBT

@CBG

@T
� 1

2
kBT

2@
2CBG

@T 2

!#
:

For the following calculation we take D = 3, NA(1 � qT ) � 10�2, where NA is the
Avogadro number and we use the data for sample 6 measured by Greywall [2], thus,
`3 = 27:579 cm3 is the molar volume, �=kB = 8:72, R(3) = 6:19� 104 and co = 237m=s.

In fig.2., we show the pro�le of the experimental data of the speci�c heat (dashed
line) and its generalized form according to Eq.(16) and, as we can see, the results seem
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to be good. For T ! 0 we have CT > CE, but as T increases there is a temperature at
which CT equals CE; for temperatures higher than this value CT < CE. We have chosen
sample 6 of ref. [2] in order to compare our results with those of ref. [4].

If we compare carefully the results from quantum groups, Boltzmann-Gibbs and Tsallis
thermostatistics with the experimental data, we �nd a rather interesting result. Indeed,
although we do not have a microscopic model for excitations in 4He and are just ap-
plying statistical methods, comparison with experimental data do not show substantial
di�erences between our results and those of quantum groups [4] and Boltzmann-Gibbs
statistics. In fig.3., the relative di�erence of each known expression to the values of CE

measured by Greywall is depicted.
We see that for small values of T , i.e., when the particles interact weakly, the Boltzmann-

Gibbs statistics is better. As T increases, interactions become important and, conse-
quently, CBG di�ers more from CE, while CT and CQG are closer to experimental values.

Summarizing, all the available theories are of the same order of accuracy and, if a
better theoretical approach to the liquid 4He speci�c heat is to be obtained, a theory is
needed that considers phonon-phonon, roton-roton and phonon-roton interactions in the
Hamiltonian.

The authors are very indebted to C. Tsallis for valuable discussions.
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fig.1. Relative phonon (dashed line; CPhonon
E =CE) and roton (solid line; CRoton

E =CE)
contributions to the speci�c heat of 4He.
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fig.2. Experimental (dashed line; C � CE) and present theoretical (solid line; C � CT )
curves for the speci�c heat of 4He. Experimental values correspond to sample 6 of ref. [2]
as it was made in ref. [4]. Theoretical values were computed from Eq.(16). We have used
the data measured by Greywall.
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fig.3. Relative di�erence between experimental data (sample 6 of reference [2] as in
ref. [4]; CE) and the di�erent theories; Boltzmann-Gibbs (circles ; C � CBG), quantum
groups (triangles; C � CQG) and Tsallis thermostatistics (diamonds; C � CT ). We have
also used the data measured by Greywall.
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