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ABSTRACT. 1In a Banach Space with unconditional Schauder basis
it is not true in general that all holomorphic functions are rep
resentable by multiple power series (the series of monomials) but,
for Reinhardt domains, every domain of existence is the domain
of existence of a holomorphic function representable by a multi

ple power series and, in fact, the domain of convergence of such
a series,

Key-words: Holomorphy types; Domains of holomorphy.



CRPF~NF-019/88

I. INTRODUCTION

In 1908, at the International Congress of Mathematics in
Rome, D. Hilbert outlined a theory of holomorphic functions in
infinitely many variables. For him a holomorphic function had an
expansion in series of the form

o«

£ ) z Tl kK
x 'x Fe e = c x ..!x
1772 nyseeemy =0 "1027 0 Pl k
k= 1'2'I..
with the series being absolutely convergent on |xll < el,...,

|xk| < Eprece o His results were published in 1909 (see [17])and
they were concerned with analytic continuation and composition
of holomorphic functions. After the works of M. Fréchet {(7],[8],
[9],[10],{11]) and R. Gateaux ([12],[13],[14]) it became clear that
holomorphic functions in infinite dimensional vector spaces should
be studied as representable by power series of h—homogeneous
polynomials (obtained from n-linear functions} since this im-
plicit point of view had a far more range than the explicit repre-
-sentation through the variableg as it was proposed by D. Hilbert.
In a series of papers, A.D. Michal, a student of Fréchet , and
his own students A.H. Clifford, R.S. Martin, I.G. Highbert, A.E.
Taylor developed the theory of holomorphic mappings along this
line of reasoning and stablished definitely the equivalence of
the concept of holomorphic mapping between normed spaces (i.e.,
a mapping represented by a power series of homogeneous polyno-
mials in a neighborhood of each point) with the existence of a
Fréchet derivative at each point and with continuity plus the
exlstence of a Gateaux derivative at each point. See [15],[20},
{22] and {27]). After that the research in Infinite Dimensional
Holomorphy was worked out by consideriné the concept of holo-
morphic mapping under this point of view. In 1978 P.J. Bolland
and S. Dineen (see [3]) brought back the multiple power series
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representation when they studied holomorphic functions on nuclear
locally convex spaces with a basis. See also [5] and Dineen's
book [6] for a good exposition of results related to this line
of reasoning. In [21]) M.C. Matos characterized all the holomorphic
_ functions in open subsets of Banach spaces with unconditional
basis which are representable by multiple power series (of mo-
nomials) and made applications concerning continuous functions
in [0, 2ﬂ] having absolutely convergent Fourier series. His ap-
proach is connected with the notion of holomorphy type introduced
by L. Nachbin in [24].

In this articlé we give examples of Banach'spaces with un-
conditional basis in which there are holomorphic functions (even
polynomials) noit representable by multiple power series. It is
known that in open subsets of 21 all hoiomorphic functions axe
nepresentable by multiple power series (see [21] and [26]) and
that in open subsets of g these functions representable by mul-
tiple power series coincide with the nuclear holomorphic func-
tions (see [21]). However, in general we prove here that , for
domains of Reinhardt, domains of existence coincide with domains
of existence of holomorphic functions representable by multiple
power series. We also show that these are the domains of conver-
~ gence of multiple power series, as well as the modularly decreas
ing ‘logarithmically convex domains. Partial results in this di-
rection were obtained by G.I. Katz in [19].

II. HOLOMORPHIC FUNCTIONS REPRESENTABLE BY MULTIPLE POWER SERIES

We consider throughout this article a complex Banach space
E with a normalized unconditional Schauder basis (b, )3]_ Hence

every z in E can be writen, in a unique way, as the sum of a

series X zjbj ; Where zj € T is called the j-th bomponent
j=1 |
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of z and we denote by \oj the continuous linear functional on
E defined by wj(z)' = 2 for every j €3, = {1,2,...}. In order
to simplify the notations we write I = w (B+) , i.e., I denotes
the set of all sequences (aj);l = ¢ of natural numbers having

only a finite number of terms different from zero. If z€E and
o o
3
a € I we denote by z® the complex number zjll...zjjn, where
. - n
« BRI O I are the non-zero terms of .
13 In
A multiple power senies around a point a € E is a series

of the form

Zc, (z=- a)® (1)
o€l

where ¢ €C for every o € I. This series converges to the
value £(z) at the point z € E if for every € > 0 there is a
finite subset Je of I- such that

| gada(z ~a)¥ - f@| <e (2)
o 4

for every finite subset J of I containing Je' In this case £(z)
is called the sum of the sehries al Lthe poinit z and we also write

f(z) = Z cd(z-a)u'.
o€l

If B is a subset of E and the series converges to £(z) at
each =z € B, we say that the multiple power series converges
pointwise to £ in B. The conveigence 48 uniform over B if (2)
holds for every =z € B with JE independent of z € B.

Since I 1is a denumerable set, once a linear order is fixed
in I, the multiple power series around a evaluated at a "point
z € B is a numerical series and the convergence defined by (2)
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is the unconditional (or, equivalently, absolute) convergence of
this series. We recall that for a finite dimensional E the set
of points where a multiple power series around a. oconverges either
reduces to {a} or contains {a} in its interior. As, it was pointed
out in [21] this does not happen when E is not finite dimen-

slonal. In this case the set of points of E where z ¢
o : ' e ael
converges is formed by those z in E such that (Zj)j=l € 2’1 and

IZjl £ lé for all 3 € z+. Henée, if E-;! 11, this set has empty
interior and does not reduce to {0}. If E = , it is clear
that this set contains the open unit ball of center 0. We say that
a multiple power series around a has a domain of conveagence D
if a€D and D is the interior of the set of all points where
the series converges pointwise (it is easy to see that D is
connected). It was proved in [21], by using Baire's Theorem and
a result of M. Zorn, that if a multiple power series around a
has a domain of convergence D, then the pointwise sum f of this
series defines a holomorphic function in D and the serics con-
verges uniformly and ab'solutely in a neighborhood of a. Therefore,
if U is an open subset of E and f is a complex function defined
in U such that there is a multlple power series around x con-
verging to f pointwise in a neighborhood of x for every X CU,
then £ is holomorphic in U.

We refer the reader to the books of L. Nachbin (24} , .
MUJJ.Cc [23] and S. Dineen [6] for the notations and basic results
of th Theory of Infinite Dimensional Holomorphy,

‘e recall that we can always replace the norm of E by an
equivelent one satisfying

k _
Ixl = suplll = A, X, b. u M. En, [x |<1,3,k€ z,}. (3)
j]_J j

In this article the norm of E satisfies (3) and it is clear that

ixll = flx|{ll for every x € E,uwhen we set x| = £ |x, le € E. If
3=1
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P belongs to the vector space P(nEJ_ of all continuous n-
homogeneous ﬁolyﬁomials in E and P 1is the peintwise sum of

a multiple power series % ¢ 2% in a neighborhood of 0, then
aET
it follows that P 1is the pointwise sum of the same series in

E. Hence we may define

B(z) = Z le 2% (Vvz € E), (4)
a€Y

and get = P("E). It is easy to show that

ve) = I3l = sup |P®| = sup I Ic llxl“ (5)
hxlk<1 Il < 1 a€I

defines a norm in the vector space Pv(nE) of all P in P("E)
" which are representable pointwise in E by the sum of a mul-
tiple power series. This normed space is complete and

2l < v(P) (ve € ("E)). (6)

L4

In [21] it was proved that Pv(nﬂl) = P(nll) with

v(p) < e"lpl (ve € P("4))). (n

Since’ E has unconditional basis it foilows that every continuous
linear functional in E is an element of P (1E) . Hence , if
P (PE) denotes the vector space of aill finlte sums of n-th powers
of elements of E', it is clear that P (nE) C P ("g) for every
n € IN. The closure Pc( NE) of Pf( E). under the norm .l of
P(®E) is the Banach space of all n-homogeneous polynomials of
compact type in E.
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2.1. THEOREM, If n € IN then P ("E) CP_("E) and this inclusion
is continuocus.

PROOF. Since P, ("E) ¢ P ("E) and (6) holds for every
PE P Ngy, it 15 enough to show that P ("E) is dense in P, ("E)
for the norxrm v. If P € P ("E) we have

P(x) = I caxa (Vv € E),

aEEJh

where J_ = {a €1 ; la] = E oy = n} and the series converges
§=1

uniformly and absolutely in the closed ball B{O) for some - p > Q.
Let (atj}) be an enumeration of Jn.,Hence, for every € > 0,
there is me > 0 such that

| (3)
sup z ]c,(.)|‘|x|a < €
Ixl < p j>m a'd? "

for each m > m_. If y € E is such that Iyl = 1 we may write
y=plz with z €5 (0) and’

K& <
sup I eyl Iyl : (3)

iyf =1 3>m © p
for every m 2> m . If we set
y ) e
Qm(x) = §m1 cdj)x .(Vx E)

we have Qm € Pf(nE) and, by (8),

(P - < ' >
v (P Qm) L= for every m > m_.
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. n
This shows that Pf( E} 1is v-dense in Pv( E). Q.E.D.

2.2. COROLLARY. (1) P (L)) # P(™.,) for every n €N, n>1

My ey > > p.
(2) Pv( p) # P p) if p>1 and m> p

n n L
(3) P,(74,) = P 21) for every n € IN.

PROOF. If P ("E) = P(E) it follows from 2.1 P.(E) = P(E).

By a result of R. Alencar (1}, if E is reflexive, P("E) is
reflexive. S.B. Chae -proved in [4] that P(Rg ) is not reflexive
for every n € IN, n > 1. By a result of R.'Aron P(mﬁ ) is not

reflexive is p > 1 and m > P. Hence (l) and (2) follow . It

is clear that (3) follows from 2.1 and (7). 0.E.D

In [21] it was provedlthat (Pv(nE)):;o is a holomorphy
type v in Nachbin's sense (see [24]) and that, for every open
- subset U of E, the ue.c.ton. dpace H (U) of all holomorphic gunctions
of type v in U (i. e., holomorphic functions in U such that

lim sup[v(— A (xP <t e for every x € U) codncides with

~+ 00
t;l vector space of all gunctions in U which anre representable
poiniwise by a muliiple power senies around x in a nedghborhood
of x 60& every x € U. Hence it is clear that Corollary 2.2 and
(7) imply the following result,

2.3. COROLLARY. (1) 'Hv(U) = H{U) if E = 21 .
(2) Hy(0) #HU) if E =2, with p> 1,
The following theorem will be used iﬁ next paragraph.

2.4. THEOREM. If D is the domain of convergence of a muitiple
series around a € E, then its pointwise sum f is in Hv(D).
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PROOF. With no loss of generality we may consider a = 0. Let

D be the domain of convergence of z caxa and let f be its
_ o€l
pointwise sum in D. Since we always have pointwise absolute con-

vergence in D it is clear that |x| € D for every x €D . we
have to show that £ 1s representable pointwise in a neighborhood
of b €D by a multiple power series around b. We take p > 0
such that B (b) and B (lbl) are contained in D. If z €B (b)

it is clear that |z --bﬂ Iz -bIII <p .and |z - b| + Ibl €
Bp(]b|) C D. Hence

z Z c (

a-B : B
Z a)ﬂaﬁ)b _|Iz bl <

< X T e, |< %) |p|o" Blz -blf =
BEI a>f

oI CN [+ 11 Ll PR L
a€I”’ B<u '

= Z le l(Ibl.+ |z-b)% <+«
a€X '

for every z € Bp(b). This means that

£lz) = 3 (% o (3)b%” f) (z -p)f
BEI a>B

for every 2z E.Bp(b) with abselute convergence of the series.

Q.E.D.
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IITI. REINHARDT OPEN SETS OF HOLOMORPHY

A subset S of E is called a Reinhardi set if for every
- z, ) o 18,
x €8 and 08 = (6;), , € IR we have x_= T e Jy b, €5.
1 3=l e j=1 xj J

A modulanty decreasing subset S of E is one such that
for every x €S and y € E with ijl < Ile for j€Z_, we
have “y € 8. It is clear that in this case S 1is also a Reinhardt.
subset of E.

For x,y €E, r>0, 58 >0 r +s8=1"-we can show that

Xy |s g r s
= 2 4 I}
%" |y 3=1|in ijl bJ

defines an element of E. Since nax{lle,lyjl} = %%(|xj|+|yjl) +
+ €%||xj]-|yj|| and I:fjlrlyjls < max{lle,lyjl} for every

J €%, . it follows that |x[*|y|® € E. A subset U of E is
called Loganithmically convex if for every x,y €U , r>90,
§>0., r+s=1 we get lerlyIsE|Ul={|u|;uEU}.

3.1. PROPOSITION. If D is the domain of convergence of a mnul-
tiple power series around 0, then D is'modularly decreasing
and logarithmically convex.

PROOF. It is clear that D is modularly decreasing, et I c'mx'm
: oSl
be a multiple power series around 0 having D as its domain of

convergence. If x,y € D we consider ¢ > 0 such that BE(hdJ
and Be(lyl) are contained in D, Hence if ¢t € B_(0) we get

Z e, Uixl+le])® <+ ang = le I lyl + [€% <4 =,
a€I . o€l |
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From the Holder's inequality we have, for r.»> 0,8>0, ris=1,
t € BE(O),

r 8 = r S8 r B8 At r S
!le ijl +_ltjl _Ile ijl +Itj| Itjl _<_(|le+|th) clyjl+ltjl)
and
a. L. a.s
Z el xl+feh™)™ Lic llyl+ 1€h®1® <
aEI '
S Z leyltlxl + DML 2 e | Uyl + 1Eh®)1® < + o,
a€I ' a €I ' :
Hence

Z el IxlTly 1%+ £1% < 2 Je [T (Ix[Fly® + [efF)e5 <
«€I a€r ¢

2 Zlle x|+ Itl)alrllca[ Uyl + [ED®1Z < + o,
a€l

This means that the series converges absolutely at lxlr Iyls +t
for every t € B_(0). Hence |x|T|y|® € p. '
- QoEoDo

If U is an open Reinhardt subset pf En and 0 é U, it is
known that U is domain of holomorphy if, and only if, U is modu-
larly decreasing and logarithmically convex. This is also equiva-
lent to U being the domain of convergence of a multiple power
series around 0. We shall prove a similar result for U C E. For
this we need a few auxiliary concepts and results.

If K is a subset of E we_set

K={x €E; |x|® < sup |t|* wo € 1}.
_ t€K _ '
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If A is a subset of an open subset U of E we denote

Kv,0) = {x€y, B < sup [Bee] = P, ve € 7 (E)}

where Pv(E) = @ Pv(kE) is the set of all polynomials in E which
k=0
are po;ntwise representable in E by a multiple power series

around 0. It is clear that g(u,U) c E(\J,E) C K for every KCU.

3.2. THEOREM. If U is a modularly decreasing, logarithmically
convex open subset of E it is possible to find an’ increasing

seguence {Cj);;l of open Reinhardt subsets of E such that
" .

U= 0 C, and
j=]_ ]

~ 1 .'
3 > R > :
| dU(Cj(V.U)) 2 73 0
for every j = 1,2,... . Here _dU{A) means the distance of A

to the boundary of U.

PROCF. We start by considering the following sets

-

_ . 1
Aj = {x € vu; dU(x) ? -af} |
1
, = c . 2 >
33 {x AJ Ixll < j and dAj(x). 3 }
Cj = {x € B, :.:3% T, (x) - xl f.dBj(x)}

n . .
where Tn(x) = X ijj and we set E =T (E). It is easy to

j=1 -
see that these sets are open and (i) U A, = UB, = S(L,
=t =17 3=1)

(ii) Tn(Cj} is contained in Bj NE if n 2 3j, (iid) Bjt\Eh

)
[JR=F:R=

is relatively compact in Aj n En for every j and n. Now we
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may use property (3) of the norm of E (see paragraph 2) to show
that' lIx -yl = lIx -y gl for all x,y €E and e—(aj) e m&,

This fact implies that Aj' Bj and C:i are Reinhardt open sets .,
since U is also a Reinhardt set. If x €A, , Y€ E and lyjl <
< |x | for 3§ =1,2,..., then there is r ? --]]E'— such that

x + B (0) CU . Since U is modularly decreasing, we use property

(3 of the-norm of E to show that y + B, (0) CU . This implies
that y € Ay and A is modularly decreasing. Now, if x,y EAk

there is r > -—]-1- such that |[x] + B_(0) .and ly! + B_(0) are

coﬂtained in U. Since U is logarithmically . convex , we have
(x| + [ehT(lyl + leh®€u for t€B(O) , x>0 , 570
and r+s = 1. By Holder's inequality we get

Iler lyjls + ‘tJ| = lx:llr |YJ ls + ‘tjlr Itj|s.<_ (lxj‘*‘ltj I)r(lyjl+|tj|)s

for § = 1,2,... . Since U is modularly decreasing we conclude
that |x[F|lyl®+t€u for every t €B, (0). Hence [x|%lyl°€ A
and -’ Ak is logarithmically convex. If x € C {(v,U} we choose
k > j such that x € ck We §hall prove that

€ n N ' | > *
T X Bj E (v, U E) for n>k (*)

We cbnsidér n >k and Pg € P (B, ). It is clear that P o0 Th €
€P, (E}) . As in the proof of Theorem 2.1. it is possible to show
that every element of P, (E) has its multiple power series around
0 converging absclutely and uniformly over every bounded subset
of E. Since Cj ig bounded in E, it follows that the multiple
power series of P o T, around 0 converges uniformly and ab-

solutely oQver Cn. If € > 0 there is Je contained in I , J.

finite such that
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__13‘__
sup z |c |t z |c It < e
t'ecn aEJ aGI
if _Pn o 'I‘n(t) aGIcc"t for each t _E We denote P(t) quEcat
for t € E. Hence we have proved that PE€ Pv (E) and IIP-P:E;TnIIC;

< . C
€. Since CJ VU {x} C C, € C, we have

|Sn(Tn(x”I = [P 0 T (x)l lP(x)I + e £

< [Ip < 1pg <.
< ||P||cj +e < ||Pn 0 'I‘nllcj + 2e <

< P .
el + 2¢

Bj ﬁEn

It follows that (*) holds true, since ¢ > 0 is arbitrary.
Now we consider the natural topological isomorphism between E
and " given by ¢: x € Enl — P(x) = {xl,...,xn) € ¢". since

UNE, and Ay NEy -are modularly decreasing and logarithmically

convex in En’ we also have (U ﬁE ) and w(A. NE ) with the

same properties in €®. Since tp(BJ ﬂE ) is a relatively compact
subset of \JJ(Aj NE) it is possible to find a finite set R of

points (rl,...,rn), with ry > 0,...,rn > 0, and

w(B.nEn)cx U D(O)Ctp(A nE)
J reR

where Dr(O) = {z € " : |z£| 2ry, 2=1,...,n}. Since J‘Eis the .
smallest logarithmically, modularly decreasing set containing X
and ¢ (Aj ﬂEn} has this property, we get

" n cxc N
'P(Bj ED) (v Y (U En)) X ¥ (Aj En) .



CBPF-NF- -019/88
-14=

But we know that X 4is compact and ¢[B, NE (v, UNE )] is a

subset of (BN E) (v,y(UNE)). Hence ¢"1(X) is a compact
subset of Aj N En and we get

A A cyiE ca nE ¢
By NE,(VUNE) €y X A; NE, Ca,.

This .and (*) imply that dU(Tn(x)) > —:]j'-- for all n > k. Hence
dU(x) id—%—--. This shows that dU(Ej (v,0)} > —%‘- for every j =
= 1;2;.-. |

Q.EID.

3.3. THEOREM. If U is a Reinhardt domain such that 0 EU and
it is the union of an increasing sequence (C ) . of open
Reinhardt sets with d (C (v,U)) > 0 for every j— 1,2,..., then
U is the domain of exls;.ence of some f € Hv(U) and we may write

£{x) = X caxa (vx € U)
' o€l

where the. <, €€ for a € I- are uniquely determined.

PROOF. Let D be a denumerable dense subset of U. For every x € D
we denote by B the largest open ball of center x contained in

U. Let (xj)j=1 be a sequerice formed by the elements of D in

such & way that every x € D appears in it infinitely many times.

If we set Aj = Cj (v,U0) we have dU(Aj) > 0 and Bx Z Aj for

every X €D and j € Zz,. If necessary we replace (Aj);;l by

a subsequence in order to obtain (y ) l. in U such that

. € B . . . € A, c . . .
Y5 x4 ‘ yj 3 AJ ' Y] AJ+1 for each j€z, Since Yy EAJ

there c'sfj € P,(E) such that
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€(v. > > I|£. .
If(yj)l 1 Ilfjll ¢

If necessary we take suficxently high powers of fj and get by
induc;ion a sequence (g ) in P (E) such that

‘N- € ssm—
IgJ"Cj

S vl >34T+ T Gy,
Igj(yj)l 3 Ik.::_l gy (v |
for j = 1,2,... . It follows that, for each % =1,2,... , we
' o o

Z g <+ @, =« ¥ g. € .
have 321 ﬂgjﬂcz Hence ¢ j=l,g3 H(u). On the other
hand, since |§5(y£)\ > % for all % < j , we have lgtyg) | 2 2

for & =1,2,... . Since C, is a Reinhardt set we get lxlEEC£
whenever x € Cy. Hence, for x € Cy ;, there is M, > 0 such that

> 5. (xh] <M, <+
= uj L

o9
T Z I-——- Dgw)l 1x1%.
j=1 o€l o-

It follows that

gilx|) = 21(.21|1$?'D“gj(0)|)|x|a
a §=

- T |3

a€r &°

D g(O)l |x|®

for every x € U. Here p%g{0) has the usual meaning conumﬂﬂnq
partial derivatives. This shows ‘that g € H (1)
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g{x) = 2
a<I

= p%g(0)x*
for every x € U and g is not bounded in (y )m =] + Now we
prove that g in not bounded in B for every x € D If x € D is given

we consider {jk k 1 in IN strictly increasing such that x = x-'lk

for k = 1,2,... . Hence yjk Bx for k =1,2,... and g is

not bounded 1in Bx' Now we show that U is the domain of exis-
tence of g. If there were open subsets V and W in E and
h € H#H(V) dsuch that V is connected and Vg U,¢ #WCU nv,
h =g in W, we would consider a € vVNaun oW and r> 0 such
that Bzr(a) C V and we would choose x € DN w'ﬂBr(a) . Then
d.U(x) < r, Bx C Bzr(a) C Vv . Since B, is connected and contained
in V AV, we would have B, C Wo , where W, is the connected
component of U NV containing W. Hence h would not be bounded
in B+ hence in B,.(a). Since we may choose xr > 0 arbitrarily,

h would not be locally bounded at a, a contradiction.

Q.E.D.

An open subset U of E is called an open set of v-holo
moaphy if it is not possible to find open subsets V and W such
that VvV 1s connected, Vv ¢ U, ‘¢#NCUﬂVandforeve.ryf€Hv(V)
there is fl € H(V) such that £ = fl in W.

3.4. THEOREM. If U is a Reinhardt domain in E such that
0 € U, then the following statements are equivalent.

- (1) U is the domain of convergence of a multiple power series
~around 0.

{2) U is modularly decreasing and logarithmically_ convex.
(3) U is the domain of existence of some f € H,(0) .
(4) U is a domain of existence of some g € H(U).

{5} U is a domain of v-holomorphy.
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(6) U 1s a domain of holomorphy

(7} U is pseudo-convex
(8} U is union of an increasing sequence (cj);—l of open
Reinhardt subsets of U such that dU (Ej (v,U)) > 0 for every

j =1'2,.00 -

PROOE. The equivalence of (4), (6) and (7) is due to a more
general theorem proved by Gruman and Kiselman {see [16]). It is
obvious that (3) implies (4), (3) implies (5) and (5) implies (6).
The implications (2) = (8) and (8) = {3) we proved respectively
in Theorem 3.2 and Theorem 3.3 . In [19] Katz has proved that
(7) implies (2). Since (1) implies (2) by 3.1., we only have to
show that (8) = (l). If we assume (8) we proved in Theorem 3.3
“that U is the domain of existence of some g € Hv (U) and

glx) = T 2 % (0)x*® (vx € U)

This shows that the domain of convergence D of this multiple power
series contains U. The sum of this series defines an element
h € H (D) .such that h =g ip U. Since U is the domain of
existence of g, it follows that U =D.

Q.E.D.
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